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Great Expectations: A Critical Review of and Suggestions for the Study of 
Reward Processing as a Cause and Predictor of Depression 

Supplemental Information 

Supplemental Methods 

Preregistrations and deviations 

We preregistered the approach to our literature review (https://osf.io/be4nt, https://osf.io/mp49y) and meta-
analysis (https://osf.io/3dz54). The first registration (https://osf.io/be4nt) described our methodology, 
repositories, search terms, and inclusion/exclusion criteria. The second was a note modifying the search 
period from going through the end of 2019 to stopping at December, 17th, 2019 due to the limited search 
granularity provided by many of the publication databases we used. We added a second round of title and 
abstract screening in addition to the single round specified in these registrations and had two separate 
investigators (AS and DMN) review articles for inclusion or exclusion. 
The last registration (https://osf.io/3dz54) is for the analytical and qualitative approach for the meta-analyses. 
This registration was completed after reviewing papers for inclusion, but prior to beginning data extraction for 
the meta-analysis. In our registration we referred to feedback negativity, which is the subtraction of gain ERP 
from loss ERP. In reviewing the studies, we found that reward positivity (RewP, the subtraction of loss ERP 
from gain ERP) was more commonly reported and so we use RewP here. In our registration we stated that 
we would only use MetaNSUE if non-significant unreported effects made up 20% or more of the relevant 
effects to a particular hypothesis, but we instead used it for all analyses for consistency.  

Meta-analysis  

Literature review: We searched PubMed, Scopus, PsycINFO, and Web of Science for articles published in 
English from February 1, 2017 to December 17, 2019, using the following terms and their derivatives: 
depression, anhedonia, reward, motivation, reinforcement, punishment and aversion, prediction error, 
decision making, and risk taking. This is the specific query:  
(((((depress*) OR (anhedon*)) AND ((reward*) OR (motiv*) OR (reinforc*) OR (punish*) OR (aversi*) OR 
("prediction error") OR ("decision making") OR ("risk taking")))) AND ("2017/02/01"[Date - Publication]: 
"2019/12/31"[Date - Publication])) AND English[Language] 
Studies returned by this initial query were reduced by removing duplicates and non-human and non-
experimental studies based on keyword searches. 30 articles were randomly selected from the remainder 
and screened for inclusion/exclusion by independent investigators (DMN, CCC, SK, CW, SMJ, LG). The inter-
rater reliability was found to be 0.88 and the remaining sample of studies was divided among the investigators 
for abstract screening. Each article was screened twice and those that passed either screening were divided 
up among the investigators for a more thorough review by two investigators (AS and DMN). Our literature 
review covered the period starting February 1, 2017 because it is an extension of the literature review 
performed in Keren, O’Callaghan et al. (1), which reviewed publications from January 1, 2000 to February 1, 
2017, thus the two combined reviews cover January 1, 2000 to December 17, 2019. We identified 13 potential 
longitudinal papers from Keren, O’Callaghan et al. that were also given a thorough review. These two 
investigators decided together which articles to include and exclude. 
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Inclusion criteria: To be included, studies had to provide a measure of depression or anhedonia in people with 
major depressive disorder, in people at high risk of depression, or in healthy volunteers. We selected only 
studies that measured depression or depressive symptoms through questionnaires, structured interviews, or 
clinical diagnosis. In terms of reward paradigms employed, and following the classification described by 
Richards et al. (2), we included instrumental- reward tasks and decision-making tasks, which require 
participants to complete an action correctly in order to obtain a reward, as this action is linked to the reward 
value at a trial- by-trial level. Hence, reward paradigms in which rewards were presented passively were 
excluded. Either positive (e.g., winning money) or negative (e.g., losing money) reward manipulations were 
permitted. No age restrictions were applied. In addition, studies must have reported analyses examining the 
ability of measures collected at one time point to predict severity (as evidenced by changes in 
depression/anhedonia status or scores) or treatment response at a subsequent time point.  
  
Exclusion criteria: Studies were excluded if they lacked a standard measure of depression. We excluded 
studies that measured depressive symptoms in patients with a different primary disorder (e.g. bipolar or 
schizophrenia, etc.), but did not include in addition a depressed group. This was done because our primary 
question concerns the effects of depression on reward processing and in the absence of a depressed control 
group, drawing inferences about such effects would be impossible. We did not exclude studies in which 
patients with depression also had co-morbid anxiety disorders. We also excluded studies in which reward 
processing was only measured through non-experimental methods such as self-report measures or 
questionnaires. We excluded studies in which physical punishment was delivered (e.g. heat, pain, electrical 
shock, etc.) as these are likely to engage different brain networks. This would have included any studies in 
which physical pain and reward are tested in separate tasks and analyzed separately, but we are not aware 
of any studies excluded this way. For included studies, relevant methodological details, where available, were 
recorded, as outlined below.  
 

Data Extraction: We only evaluated one prediction (i.e. longitudinal association) for each set of study 
participants. If multiple predictions were reported for the same set of subjects we picked the prediction over 
the longest time period, if multiple predictions were made with the same time period, we picked the highest 
quality prediction which used the most participants. Each study could potentially provide more than one 
prediction if they reported separately on different samples. 
We rated the quality of each longitudinal prediction based on the criteria put forward in Poldrack et al. (3). 
Specifically: 

● Reporting of out of sample model fit indices 
○ Least risk for a completely separate evaluation set. Highest risk for in-sample model fit indices 

reported as predictive performance. 
■ 0: completely separate test set 
■ 1: within sample cross validation 
■ 2: in-sample model fit reported as predictive performance 

● Cross-validation procedure that encompasses all analytical manipulations 
○ Highest marks if all normalizing and selection done separately for each validation fold. Lowest 

if only the final model fit is done in a cross validated fashion. 
■ 0: all cross-dataset analytical procedures performed within training set 
■ 1: some analytical procedure performed within the training set, but not all 
■ 2: significant chance of data leakage between training and test 

 



Nielson et al.  Supplement 

3 

● Sample size  
○ Ideally greater than several hundred observations 

■ 0: > 200 
■ 1: > 50 < 200 
■ 2: <50 

● Reporting multiple measures of model fit 
○ Lowest risk if multiple measures such as R2 in addition to measures of unsigned error like 

mean square error or mean absolute error are provided. Highest risk if none of these measures 
is provided. 

■ 0: provided at least 2 measures of predictive performance, one of which is MSE or 
absolute error 

■ 1: only r-squared or a single metric reported 
■ 2: no standardized predictive accuracy reported 

● Calculating coefficient of determination via sum-of-squares formulation 
○ Lowest risk for sum-of-squares formulation. Highest risk for squared correlation coefficient. 

■ 0: sum-of-squares formulation 
■ 2: squared correlation coefficient 

● Use of k-fold or shuffle-split cross validation 
○ Lowest risk for shuffle-split or k-fold cross validation with k between 5 and 10. Highest risk for 

leave-one-out cross-validation. 
■ 0: K-fold or shuffle split cross validation with k between 5 and 10 
■ 1: some intermediate cross validation scheme 
■ 2: leave one out cross validation 

In addition, we evaluated the open science practices of the publication on the following criteria: 
● Use of pre-registration 

○ 0: if a link to a thorough pre-registration is provided 
○ 1: if link is provided but there are extensive deviations from the preregistration 
○ 2: no pre-registration 

● Publicly releasing code or scripts used in analysis 
○ 0: link to working code provided 
○ 1: link provided, but code does not work 
○ 2: no link to code 

● Publicly releasing data used in analysis 
○ 0: raw data available with or without a data-use-agreement 
○ 1: statistical maps or other derivatives released 
○ 2: no data released 

Each criteria was rated on a scale of 0 for least risk of bias to 2 for high risk of bias as described above, or 
N/A, for example the K-fold criteria is not applicable if no cross-validation was performed. Quality was 
evaluated by two separate raters (DMN and GO’C), conflicts were reconciled in person and are reported in 
Table S4. 
 
Two raters (DMN and GO’C) independently extracted the information described below from each longitudinal 
prediction. 

● Observational or treatment 
● Study in which source data were first described 



Nielson et al.  Supplement 

4 

● Nature of each group (healthy, at risk (defined as the presence of either MDD in a parent, high 
depression scale scores in the absence of MDD diagnosis, or remitted MDD, depressed), participants 
with another disorder) 

● Criteria used for diagnosis if relevant 
● Sample size of each group 
● Percentage of females in each group 
● Percentage of medicated individuals in each group 
● Mean, SD, and range of ages in each group 
● Neural measure: EEG, functional connectivity, fMRI 
● Depression measure 
● Reward task 
● Type of reward (monetary, affective, or primary) 
● Contrast used (if any) 
● Prediction interval in time 
● Terms used in the predictive model 
● Link to preregistration 
● Link to code 
● Link to data 
● Treatment type (pharmacological or psychological) 
● Specific treatment 

 
For fMRI studies we separately extracted information for the location/connection providing the best predictive 
performance across the entire brain and the striatal location/connection with the best predictive performance: 

● Direction of effect 
● Reported statistic 
● Predictive effect size uniquely contributed by the neural information 
● Overall predictive effect size 
● Template space of reported components 
● Coordinates of effect 
● Connections 

 
For EEG studies extracted information for both the most predictive component of the EEG signal and for the 
RewP: 

● Electrodes sampled from 
● Type of signal extracted (FRN, RewP, etc.) 
● Sampling method (mean amplitude, peak, etc.) 
● Window for sampling 
● High and low pass filter applied 
● Reference electrode(s) 
● Type of EEG cap or net used 
● Direction of effect 
● Reported statistic 
● Predictive effect size uniquely contributed by the neural information 
● Overall predictive effect size 
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Reported effects were transformed to have a uniform direction of effect as appropriate, for example, the sign 
of feedback negativity results were flipped so that they were in terms of RewP. Reported effects were 
transformed into correlation coefficients reflecting the unique contribution of neural data. Transformations 
from t or F statistics to correlation coefficients based on the following formulas (4): 

 

 
df: degrees of freedom; dfn: numerator degrees of freedom; dfd: denominator degrees of freedom  
Degrees of freedom were adjusted appropriately for the number of regressors. When only a beta coefficient 
was reported, this was converted to a t by dividing by the standard error and then from t to correlation 
coefficient. 
 
Analytic approach: We sought to test the central hypothesis that the expected effect size for a study predicting 
future depression severity from neural reward-related signals is not 0. We operationalized this hypothesis into 
8 separate hypotheses based on the modality (fMRI or EEG), specificity (striatal reward contrast/RewP or any 
signal), and study design (treatment or observational). We established an a priori minimum sample size of 5 
predictions for each of these hypotheses. We performed random-effects meta-analysis of correlation 
coefficients using Fisher’s transform with multiple imputation of non-significant unreported effects as 
implemented in the R package MetaNSUE (5,6). We rely on the tables converting effects sizes to area under 
the receiver operator characteristics curve (AUC) provided by Salgado (7) to help put the effect sizes we 
report in a form more familiar to machine learning practitioners. Correlation coefficients are first converted to 
d before converting to AUC. 

Accounting for the effect of measurement error on observed correlations 

After completing our meta-analysis, we wanted to understand how our findings constrained the distribution of  
reliability-corrected values for the correlation between neural reward processing signals and future depressive 
symptoms given that both depressive symptoms and reward processing are subject to measurement error. 
We first estimated the test-retest reliability of neural reward signals and depressive symptoms, then we used 
the algebraic relationships derived below to calculate the reliability relationship between neural reward 
processing signals and future depressive symptoms based on the meta-analytic estimate of correlation 
between striatal fMRI reward signal and change in depression symptoms in observational studies. Finally, we 
reversed the calculation to determine how measurement error in future studies would impact the expected 
observed effect size. 
 
Estimating measurement error of neural signals: We extract the intra class correlations, sample sizes, and 
measurement intervals from Elliott et al. (8) (Supplemental Table 7) for reward-related tasks with a prediction 
interval of less than 100 days. This resulted in 9 values from 7 studies from which to meta-analytically estimate 
the reliability of neuroimaging measures of reward. We then ran a random effects meta-analysis to determine 
the mean correlation, standard error of that estimate, and an estimate of the between studies heterogeneity,  

. 
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Estimating measurement error of depression symptoms: We conducted an informal literature review to identify 
studies that assessed test-retest reliability of the measures of depression used in the studies in our 
longitudinal meta-analysis. We extracted the correlation coefficient, sample size, prediction interval, and 
description of the population from studies that examined test-retest reliability of depression measures over an 
interval of less than 100 days (Supplemental Table 8). This gave us 13 reliability estimates for 6 measures 
from 6 studies. We then ran a random effects meta-analysis to determine the mean correlation, standard error 
of that estimate, and an estimate of the between studies heterogeneity, . 
 
Deriving relationship between measured and reliability-corrected correlation: We algebraically derived the 
relationship between between the above test-retest reliabilities (neural signals of reward processing: rNNm; 
depressive symptoms: rDDm), the measured relationship between neural reward signals and change in 
depression symptoms (rNmDm), and the reliability co relationship between neural reward signals and change 
in depression symptoms (rND). In order to do so, we assume an additive model for noise, such that the 
covariance between the underlying constructs and their measurement is 1 and the standard deviation of the 
underlying construct is 1. This simplifies the relationship between test retest correlation and the standard 
deviation of the measured properties. Formally: 
 

 
Assume ,  

 
 

 
Assume ,  

 
Given that we’ve assumed an additive noise model, we assume that the covariance between measured 
depressive symptoms and measured neural measures of reward processing is the same as the covariance 
between the reliability-corrected values. With these simplifications in place the relationship between 
measured correlation and observed correlation is greatly simplified. 
 

 
Since  and  

 
 

 
Assume  
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While these assumptions are necessary to make this estimation tractable, they do represent an optimistic 
scenario. If we define a set of past reliabilities (  and )and a set of expected future reliabilities 
in a planned study (  and ), we can express the relationship between past observed 
correlation ( ) and future expected correlation ( ) . 
 

 
 
 
With these equations in hand, we can use the delta rule (9) to combine the estimated standard errors across 
the three measured correlations and derive confidence intervals for our estimate of . Specifically: 

 
And the confidence interval is derived from the standard error with a Bonferroni correction for the number of 
estimated values, giving a critical z-score of 2.39. When estimating  for some future study, if we assume 
that the reliability of depression measures remains the same, then the   terms cancel out and we only 
need to correct for 2 comparisons, instead of 3, giving a critical z-score of 2.24. 
 
We calculated the relationship between past test-retest fMRI test-reliability for 1000 values of  
between 0 and 1 and 6 values of  between 0.4 and 0.9. We did these calculations once with the 
assumption that the test-retest reliability of depression measures would be the same in past and future studies 
(Figure 4 of the main text). We also ran these calculations assuming that the test-retest reliability of depression 
measures would be 0.9 in a future study (Figure S8). In addition to estimating expected observed effect size, 
we also estimated sample size required to have 80% power with an alpha of 0.05 for a two-sided test that the 
Pearson’s r is different from 0 (10). 

Review of previous meta-analyses 

We included three meta-analyses in our review of prior evidence for cross-sectional associations between 
reward processing and depression, Ng et al. (11), Keren, O’Callaghan et al. (1), and Zhang et al. (12). We 
did not include results from the comprehensive review of cognitive and emotional tasks conducted by Müller 
et al. (13) even though it did include reward processing tasks because the reward processing tasks were not 
analyzed separately. 
 
Results of Zhang et al. were reproduced based on published coordinates and volumes. We focused on the 
that they report in figure 1 and table 3 of their publication, which they refer to as “Results from the global ALE 
analyses of reward-related processing in MDD”. Results of Keren, O’Callaghan et al. were made available by 
the author. We focused on the results they report in figure 1A which are the results of whole brain studies 
reporting activity during reward feedback. Results of Ng et al. were downloaded from NeuroVault (14). We 
focus on the results they report in Figure 2A, which depicts results from 22 studies reporting less activity in 
response to reward in people with major depressive disorder (MDD) than healthy control and Figure 2B, which 
depicts results from 18 studies reporting greater activity in people with MDD. Results of Keren, O’Callaghan 
et al., and Zhang et al. were transformed from Tailairach to FSL’s MNI_152_T1 space via non-linear warp 
calculated and applied with AFNI (15). Resulting maps were visualized with MRIcroGL (16).  
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Supplemental Tables 

Table S1: Set of reward processing studies included across Zhang et al. (17), Keren, O’Callaghan et 
al. (1), and Ng et al. (11). 1 indicates a study was included in that review, 0 indicates it was not included. 1 
indicates that the study was among those included in the analyses considered in Figure 1 A and B. 

Study Zhang et al. Keren, O'Callaghan et al. Ng et al. 

Admon et al. (18) 0 11 0 

Arrondo et al. (19) 0 1 11 

Bremner et al. (20) 0 0 11 

Burger et al. (21) 0 0 1 

Canli et al. (22) 11 0 0 

Casement et al. (23) 0 1 0 

Chan et al. (24) 0 1 0 

Chandrasekhar Pammi et al. (25) 0 1 0 

Chantiluke et al. (26) 11 0 11 

Chase et al. (27) 0 0 11 

Chung & Barch (28) 0 1 0 

Demenescu et al. (29) 0 0 11 

Derntl et al. (30) 11 0 0 

Dichter et al. (31) 11 11 11 

Dillon et al. (32) 0 11 0 

Elliott et al. (33) 0 0 11 

Engelmann et al. (34) 0 0 1 

Epstein et al. (35) 11 0 0 

Felder et al. (36) 0 1 0 

Forbes et al. (37) 11 1 0 

Forbes et al. (38) 0 1 0 

Fournier et al. (2013) 11 0 11 

Fu et al. (39) 0 0 11 

Fu et al. (40) 11 0 11 

Fu et al. (41) 0 0 11 

Gorka et al. (42) 0 1 0 

Gotlib et al. (43) 11 0 11 
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Study Zhang et al. Keren, O'Callaghan et al. Ng et al. 

Gotlib et al. (44) 0 1 0 

Gradin et al. (45) 11 11 0 

Gradin et al. (46) 0 0 11 

Hagele et al. (47) 0 1 0 

Hall et al. (48) 0 0 11 

Johnston et al. (49) 0 11 11 

Keedwell et al. (50) 11 0 11 

Knutson et al. (51)  11 11 11 

Kumar et al.  (52) 11 0 0 

Kumari et al.  (53) 11 0 11 

Laurent et al.  (54) 0 0 1 

Liu et al.  (55) 0 0 1 

Luking et al.  (56) 0 11 0 

McCabe et al.  (57) 11 0 0 

Mitterschiffthaler et al.  (58) 11 0 0 

Mori et al.  (59) 0 1 0 

Murrough et al. (60) 0 0 1 

Olino et al. (61) 0 1 0 

Olino et al. (62) 0 1 0 

Pizzagalli et al. (63) 11 11 11 

Redlich et al. (64) 0 1 0 

Remijnse et al.  (65) 11 11 11 

Rizvi et al.  (66) 0 0 11 

Robinson et al. (67) 11 11 0 

Rosenblau et al. (68) 0 0 1 

Rzepa et al. (69) 0 1 0 

Satterthwaite et al. (70) 0 1 0 

Scheuerecker et al. (71) 0 0 1 

Schiller et al. (72) 0 1 1 

Segarra et al. (73) 0 11 11 
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Study Zhang et al. Keren, O'Callaghan et al. Ng et al. 

Sharp et al. (74) 0 11 11 

Smoski et al. (75) 11 11 11 

Smoski et al. (76) 11 11 11 

Steele et al. (77) 0 1 0 

Stoy et al. (78) 0 1 0 

Stringaris et al. (79) 0 1 0  

Surguladze et al. (80) 11 0 11 

Surguladze et al. (81) 0 0 11 

Townsend et al. (82) 0 0 1 

Ubl et al. (83) 0 1 0 

Ubl et al. (84) 0 1 0 

Wagner et al. (85) 0 0 11 

Wang et al. (86) 0 0 1 

Yang et al. (87) 0 1 0 

Young et al. (88) 0 0 11 

Zhang et al. (89) 0 0 11 

Zhong et al. (90) 0 0 1 

  



Nielson et al.  Supplement 

11 

Table S2: Demographic information from longitudinal studies.  
BA: Behavioral Analysis; CBT: Cognitive Behavioral Therapy; MDD: Major Depressive Disorder 

Study Hypothesis Population Age (Years) Female N 

Mean 
Interval 
(Days) Treatment 

Admon et al. (18) fMRI Global Treat MDD Adult 50.00%1 14 84 

SAMe (5), 
escitalopram (5), 
placebo (4) 

Bakker et al. (91) fMRI Global Treat 
Low-moderate 
risk 20.9 (2.1) 82.76% 87 7.5 

reward anticipation on 
activity pleasantness 

Bakker et al. (91) fMRI Global Obs. 
Low-moderate 
risk 20.9 (2.1) 82.76% 87 7.5 

reward anticipation on 
activity pleasantness 

Barch et al. (92) EEG Global Treat MDD 5.5 (0.8) 35.00% 60 126 
Parent-Child 
Interaction Therapy 

Barch et al. (92) EEG RewP Treat MDD 5.5 (0.8) 35.00% 60 126 
Parent-Child 
Interaction Therapy 

Bertocci et al. (93) fMRI Global Obs. 
Parent with BD or 
Axis-1 14.0 (2.3) 46.34% 41 29.6  

Bress et al. (94) 
EEG RewP Obs., 
EEG Global Obs. 

HV enriched for 
parental MDD 16 100.00% 61 630  

Burani et al. (95) 
EEG RewP Treat, 
EEG Global Treat Community 12.6 (1.7) 100.00% 183 365.25 sleep and stress 

Burani et al. (95) 
EEG RewP Obs., 
EEG Global Obs. Community 12.6 (1.7) 100.00% 183 365.25 sleep and stress 

Burkhouse et al. (96) 
CBT 

EEG RewP Treat, 
EEG Global Treat 

R-DOC 
internalizing 
symptoms 28.7 (8.9) 73.50% 34 84 CBT 

Burkhouse et al. (96) 
Sertraline 

EEG RewP Treat, 
EEG Global Treat 

R-DOC 
internalizing 
symptoms 24.9 (8.1) 75.90% 29 84 sertraline 

Flores et al. (97) fMRI Global Obs. HV 16.3 (1.5) 65.00% 34 7  

Greenberg et al. (98) fMRI Global Treat MDD 36.9 (12.8) 66.95% 194 56 sertraline or placebo 

Greenberg et al. (98) fMRI Global Obs. MDD 36.9 (12.8) 66.95% 200 56 sertraline or placebo 

Hasler et al. (99) 
fMRI Striatum Obs., 
fMRI Global Obs. Community 20 0.00% 93 730.5  

Jin et al. (100) High-risk fMRI Global Obs. High-risk 15.24 (0.58)1 100.00% 49 270  

Jin et al. (100) High-risk fMRI Striatum Obs. High-risk 15.24 (0.58)1 100.00% 49 270  

Jin et al. (100) Low-risk fMRI Global Obs. Low-risk 15.24 (0.58)1 100.00% 180 270  

Jin et al. (100) Low-risk fMRI Striatum Obs. Low-risk 15.24 (0.58)1 100.00% 180 270  

Kujawa et al. (101) 
EEG RewP Treat, 
EEG Global Treat Community 9 43.90% 369 1095.75 maternal depression 
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Study Hypothesis Population Age (Years) Female N 

Mean 
Interval 
(Days) Treatment 

Kujawa et al. (101) 
EEG RewP Obs., 
EEG Global Obs. Community 9 43.90% 369 1095.75 maternal depression 

Kujawa et al. (102) 
EEG RewP Treat, 
EEG Global Treat 

Anxiety disorder 
+ comorbidity 13.1 (4.0) 40.70% 22 84 CBT or sertraline 

Langenecker et al. (103) fMRI Global Treat MDD 28.1 (9.9) 50.00% 10 84 duloxetine 

Langenecker et al. (103) fMRI Striatum Treat MDD 28.1 (9.9) 50.00% 10 84 duloxetine 

Luo et al. (104) EEG RewP Obs. HV 18.9 (0.2) 48.00% 25 180  

Luo et al. (104) EEG Global Obs. HV 18.9 (0.2) 48.00% 23 180  

Mackin et al. (105) 
EEG RewP Obs., 
EEG Global Obs. HV 14.4 (0.6) 100.00% 467 540  

Morgan et al. (106) 
Early Puberty 

fMRI Striatum Obs., 
fMRI Global Obs. Early puberty 11-131 55.56%1 23 730.5  

Morgan et al. (106) Late 
Puberty 

fMRI Striatum Obs., 
fMRI Global Obs. Late puberty 11-131 55.56%1 38 730.5  

Queirazza et al. (107) fMRI Global Treat MDD 39.2 (12.9) 48.65% 26 90 computerized CBT 

Queirazza et al. (107) fMRI Striatum Treat MDD 39.2 (12.9) 48.65% 26 90 computerized CBT 

Scult, et al. (108) 
fMRI Striatum Obs., 
fMRI Global Obs. 

Community excl. 
psychotic 19.9 68.00% 91 210  

Stringaris et al. (79) 
fMRI Striatum Obs., 
fMRI Global Obs. Community 14.4 56.07% 915 730.5  

Swartz et al. (109) fMRI Global Obs. 
Spectrum of MDD 
risk 16.9 (0.6) 50.76% 262 365.25  

Swartz et al. (109) fMRI Striatum Obs. 
Spectrum of MDD 
risk 16.9 (0.6) 50.76% 262 365.25  

Telzer et al. (110) 
fMRI Striatum Obs., 
fMRI Global Obs. Community 16.1 58.97% 39 365.25  

Walsh et al. (111) fMRI Global Treat MDD 33.0 (7.1) 71.05% 186 52.502 BA 
1indicates statistics reported for the entire study population, not for the subgroup upon which displayed prediction is based. 

2slope of biweekly assessments over course of 15 weeks assessed with mixed effects model 
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Table S3: Prediction (i.e. longitudinal association) information for longitudinal studies. 
 OFC: Orbitofrontal Cortex; FRN: Feedback Related Negativity; RewP: Reward Positivity; dACC: dorsal 
Anterior Cingulate Cortex; MID: Monetary Incentive Delay task; NSUE: Non-Significant Unreported Effect 

Study 
Reward 
Type Task Contrast ROI Statistic Value r 

Admon et al. (18) monetary MID 

dACC-caudate connectivity 
during gain - dACC-caudate 
connectivity during loses caudate r 0.56 0.56 

Bakker et al. (91) monetary 
reinforcement 
learning reward prediction error right putamen b 0.05 0.33 

Bakker et al. (91) monetary 
reinforcement 
learning reward prediction error right putamen b 0.19 0.19 

Barch et al. (92) points doors RewP  t 2.09 0.26 

Barch et al. (92) points doors RewP  NSUE   

Bertocci et al. (93) monetary 
card guessing 
task gain - neutral 

mean beta from 15 
significant clusters 
across the brain, no 
striatal clusters NSUE   

Bress et al. (94) monetary 

doors with 
concurrent 
negative mood 
induction FN  F -5.46 -0.46 

Burani et al. (95) monetary doors RewP  B 0 -0.22 

Burani et al. (95) monetary doors RewP  B -0.2 -0.07 

Burkhouse et al. (96) 
CBT monetary guessing RewP  t -2.04 -0.34 

Burkhouse et al. (96) 
Setraline monetary guessing RewP  t 0.75 0.14 

Flores et al. (97) social social reward high positive - neutral 

right posterior 
superior temporal 
sulcus/ 
temporoparietal 
junction r 0.48 0.48 

Greenberg et al. (98) monetary 
card guessing 
task reward index left ventral striatum F 12.93 0.25 

Greenberg et al. (98) monetary 
card guessing 
task reward index 

right orbitofrontal 
cortex F 6.28 0.17 

Hasler et al. (99) monetary 
card guessing 
task gain - baseline ventral striatum r -0.08 -0.08 

Jin et al. (100) High-risk monetary doors loss - baseline OFC r -0.37 -0.37 

Jin et al. (100) High-risk monetary doors loss - baseline striatum NSUE   

Jin et al. (100) Low-risk monetary doors loss - baseline OFC r 0.02 0.02 
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Study 
Reward 
Type Task Contrast ROI Statistic Value r 

Jin et al. (100) Low-risk monetary doors loss - baseline striatum NSUE   

Kujawa et al. (101) monetary doors RewP  b -0.12 -0.1 

Kujawa et al. (101) monetary doors RewP  b -0.07 -0.12 

Kujawa et al. (102) monetary doors RewP gains  t -2.1 -0.42 

Langenecker et al. (103) monetary MID gain - neutral 
right inferior frontal 
gyrus z -3.53  

Langenecker et al. (103) monetary MID gain - neutral putamen z -3.1  

Luo et al. (104) monetary 

MID with self and 
charitable 
outcomes FRN  t -1.27 -0.25 

Luo et al. (104) monetary 

MID with self and 
charitable 
outcomes 

eudaimonic anticipation vs 
neutral  F 5.36 0.44 

Mackin et al. (105) monetary doors RewP  b -0.1 -0.12 

Morgan et al. (106) 
Early Puberty monetary 

card guessing 
task reward anticipation - baseline  r 0 0 

Morgan et al. (106) Late 
Puberty monetary 

card guessing 
task reward anticipation - baseline caudate t -3.23 -0.47 

Queirazza et al. (107) points 

Probabilistic 
reversal-learning 
task parametric weighed RPE 

cluster in right 
amygdala and right 
hippocampus r -0.64 -0.64 

Queirazza et al. (107) points 

Probabilistic 
reversal-learning 
task parametric weighed RPE 

cluster in right 
putamen and 
caudate r -0.56 -0.56 

Scult, et al. (108) monetary 
card guessing 
task 

positive feedback > negative 
feedback 

bilateral ventral 
striatum b -0.09 -0.11 

Stringaris et al. (79) monetary MID 
anticipation of large win 
versus anticipation of no win left ventral striatum t -2.28 -0.08 

Swartz et al. (109) monetary MID gain - neutral anticipation 

mean of bilateral 
ventral striatum 
small volume 
corrected clusters 
with significant 
activation B 4.17 0.16 



Nielson et al.  Supplement 

15 

Study 
Reward 
Type Task Contrast ROI Statistic Value r 

Swartz et al. (109) monetary MID gain - neutral anticipation 

mean of bilateral 
ventral striatum 
small volume 
corrected clusters 
with significant 
activation B -0.83 -0.06 

Telzer et al. (110) monetary 
family donation 
task Costly donation > control ventral striatum B -5.3 -0.45 

Walsh et al. (111) monetary MID gain - neutral right putamen t 2.82 0.2 
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Table S4: Assessment of prediction quality 

Study 
Out of 
Sample 

Comprehensive 
CV 

Sample 
Size N 

Multiple 
fit 
metrics Fit Metrics R2 method 

CV 
Method 

Scult, et al. (108) 2 NA 1 91 2 B only NA NA 

Jin et al. (100) High-risk 11 0 2 49 1 r 2 0 

Jin et al. (100) Low-risk 11 0 1 180 1 r 2 0 

Flores et al. (97) 2 NA 2 34 1 r 2 NA 

Burkhouse et al. (96) CBT 2 NA 2 34 2 B, t NA NA 

Burkhouse et al. (96) Setraline 2 NA 2 29 2 B, t NA NA 

Bakker et al. (91) 2 NA 1 87 2 β NA NA 

Luo et al. (104) 2 NA 2 25 1 B, t, R2 2 NA 

Luo et al. (104) 2 NA 2 25 2 B, t NA NA 

Barch et al. (92) 2 NA 1 60 2 B, t NA NA 

Barch et al. (92) 2 NA 2 44 1 B, t NA NA 

Kujawa et al. (101) 2 NA 0 369 2 β NA NA 

Langenecker et al. (103) 2 NA 2 10 2 Voxel Z NA NA 

Bertocci et al. (93) 12 15 1 55 0 
β, Sum of 
squared error NA 16 

Swartz et al. (109) 2 NA 0 262 2 B NA NA 

Goldstein et al. (112) 2 NA 0 369 2 B, t NA NA 

Burani et al. (95) 23 NA 1  183 2 B NA NA 

Mackin et al. (105) 2 NA 0  467 2 B NA NA 

Kujawa et al. (102) 2 NA 2  27 2 B, t NA NA 

Walsh et al. (111) 2 NA 2  38 1 t, pseudo R2 2 NA 

Queirazza et al. (107) 24 NA 2  37 1 r 2 NA 

Greenberg et al. (98) 2 NA 0  222 2 F NA NA 

Admon et al. (18) 2 NA 2  14 1 ΔF, ΔR2 2 NA 

Stringaris et al. (79) 2 NA 0  915 2 β NA NA 

Bress et al. (94) 2 NA 1  68 2 F, β NA NA 

Morgan et al. (106) Early Puberty 2 NA 2  23 1 t, r 2 NA 

Morgan et al. (106) Late Puberty 2 NA 2  40 1 r 2 NA 

Telzer et al. (110) 2 NA 2  39 2 B, β NA NA 

Hasler et al. (99) 2 NA 1  93 1 r NA NA 
1Cross validation used for orbital loss model 
2Non-significant unreported effect size, coefficient was pushed to 0 by elastic net, cross validation was used 
3Used a bootstrap approach to generate confidence intervals, but did not use it for out of sample testing. DMN rated as 2 and G’OC 
rated as 1, reconciled to 2 
4Used a CV method for treatment response as a binary, but not for severity 
5Cross validated, but unclear which steps 
6Cross validation scheme not specified 
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Table S5: Assessment of adherence to open science practices 

Study Preregistration Preregistration repository Preregistration ID Shared Code Shared Data 

Scult, et al. (108) 2   2 2 

Jin et al. (100) High-risk 2   2 2 

Jin et al. (100) Low-risk 2   2 2 

Flores et al. (97) 2   2 2 

Burkhouse et al. (96) CBT 1 ClinicalTrials.gov NCT01903447 2 2 

Burkhouse et al. (96) 
Setraline 1 ClinicalTrials.gov NCT01903447 2 2 

Bakker et al. (91) 1 trialregister.nl 3662 2 2 

Luo et al. (104) 2   2 2 

Luo et al. (104) 2   2 2 

Barch et al. (92) 1 ClinicalTrials.gov NCT02076425 2 2 

Barch et al. (92) 1 ClinicalTrials.gov NCT02076425 2 2 

Kujawa et al. (101) 2   2 2 

Langenecker et al. (103) 2   2 2 

Bertocci et al. (93) 2   2 2 

Swartz et al. (109) 2   2 2 

Goldstein et al. (112) 2   2 2 

Burani et al. (95) 2   2 2 

Mackin et al. (105) 2   2 2 

Kujawa et al. (102) 2   2 2 

Walsh et al. (111) 2   2 2 

Queirazza et al. (107) 2   2 2 

Greenberg et al. (98) 1 PubMed 
PMC6100771, 
PMC5485858 2 2 

Admon et al. (18) 2   2 2 

Stringaris et al. (79) 2   21 21 

Bress et al. (94) 2   2 2 

Morgan et al. (106) Early 
Puberty 2   2 2 

Morgan et al. (106) Late 
Puberty 2   2 2 

Telzer et al. (110) 2   2 2 

Hasler et al. (99) 2   2 2 

1DMN and GO’C disagreed about these ratings since information on data access 
(https://imagen-europe.com/resources/imagen-dataset/) and code (https://github.com/imagen2) 
is available online, but was not referenced in the publication.
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Table S6: Summary of predictive meta-analytic hypotheses of treatment effects. 

Modality Specificity Design k  r (95% CI) z p i2 Worst r Worst z Worst p 

fMRI Striatum Treat 2        

EEG RewP Treat 6 -0.16 [-0.27,  -0.05] -2.85 0.0044 25.62% -0.13 -1.89 0.059 

fMRI Global Treat 6 0.36 [0.18,  0.52] 4.30  54.53% 0.28 2.86  

EEG Global Treat 6 0.20 [0.10, 0.29] 3.88  24.75% 0.18 2.93  

The “global” results are best-case analyses taking the absolute value of strongest effect from any 
reward-related analysis to define the upper bounds of the relationship between reward processing 
and future changes in depression. p-values are not given because significant difference from 0 is 
trivial after taking the absolute value. The least significant results from a leave-one-out analysis 
are shown in the “worst” columns. No meta-analysis was done on striatal fMRI predicting 
treatment outcomes because only two studies were found. 
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Table S7: Test-retest reliability of fMRI measures of neural reward processing based on 
information collated in Elliott et al. (8). 

Study Task 
Interval 
(days) n Thresholded Reliability 

Chase et al., (113) Reward 7 37 No 0.284 

Fliessbach et al., (114) Reward (adapted MID) 8 25 No 0.136 

Fliessbach et al., (114) Reward (box guessing) 8 25 No 0.286 

Fliessbach et al., (114) Reward (number guessing) 8 25 No 0.29 

Holiga et al., (115) MID 14 30 No 0.58 

Plitcha et al., (116) 
Monetary reward 
anticipation 15 25 No 0.591 

Schlagenhauf, (117) MID 28 10 No 0.502 

Keren et al., (118) MID 80 18 Yes 0.801 

Elliott et al., (8) MID 79 20 No 0.45 
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Table S8: Test-retest reliability of clinical symptom measures found by informal review. 
Interval is the interval between assessments in days. 

Study Assessment Population r n 
Interval 
(days) 

Langvik, E. et al. (119) SHAPS psychology students 0.71 94 70 

Watson, D (120) IDAS-II-Dysphoria college students 0.74 841 14 

Sprinkle et al. (121) BDI-II 
undergraduates with initial 
appointment at a clinic 0.96 46 3.2 

Harvey, P.D et al. (122) ALS-anxiety-depression undergraduate female students 0.57 28 28 

Harvey, P.D et al. (122) ALS-anxiety-depression undergraduate male students 0.81 26 28 

Gerson et al. (123) CALS 
inpatients of child and 
adolescent psychiatric... 0.68 35 14 

Gerson et al. (123) CALS students suburban school 0.89 72 14 

CF Saylor et al (124) CDI school students 5th-6th graders 0.38 69 7 

CF Saylor et al (124) CDI children with emotional problems 0.87 30 7 

CF Saylor et a.l (124) CDI children with emotional problems 0.59 24 42 

Smucker, M.R et al. (125) CDI 
female elementary school 
students 0.74 78 21 

Smucker, M.R et al. (125) CDI male elementary school students 0.77 77 21 

Achenbach TM (126) 
YSR(6-18)-internalizing 
subscale non referred children 0.8 89 8 
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Supplemental Figures 

 
Figure S1: Schematic of reward processing and the Monetary Incentive Delay (MID) Task.  

 

(A) depicts an everyday example of reward processing. A child sees a chocolate wrapper on her 
kitchen table and forms the expectation that there is chocolate nearby. In other words, she forms 
a prediction and anticipates that she will find chocolate. The orange line represents her 
expectation of the reward. The child decides to investigate a nearby candy jar on the kitchen table. 
She then tries to open it based on her prediction that it may contain chocolate. Here, the child 
acts and expends effort to obtain a reward. The child finds one chocolate left and receives hedonic 
pleasure, which constitutes the consummatory component of reward processing. The child 
experiences what is termed a positive reward prediction error (RPE), because the experienced 
value of the chocolate is greater than the expected value. RPEs are thought to underlie reward-
related learning, which for this example, would increase the likelihood that the child looks into the 
candy jar for chocolate in the future. (B) depicts the structure of the MID task, the most commonly 
used task for accessing reward processing. In this task participants are first presented one of 
three symbols indicating that the trial is a loss, gain, or neutral trial, in this case a gain trial is 
illustrated. They are then shown a fixation cross, and after a variable interval, they are presented 
with a target. The subject must respond within a certain amount of time in order to win the reward 
on a gain trial or avoid losing money on a loss trial. The last component of the trial is feedback, in 
which they are shown the result of the trial. 
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Figure S2: Forest plot for random effects meta-analysis of observational EEG studies 
reporting a reward positivity (RewP) effect for the correlation with change in depressive 
symptoms. We found that the mean effect size was -0.17 [-0.30, -0.04]. The size of the marker 
corresponds to the number of participants in the study. The error bars indicate the 95% confidence 
interval of the estimated correlation based on the sample size. 
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Figure S3: Forest plot for random effects meta-analysis of observational fMRI studies 
reporting any effect for the correlation with change in depressive symptoms. We found that 
the mean effect size was 0.17 [0.09, 0.24]. The size of the marker corresponds to the number of 
participants in the study. The error bars indicate the 95% confidence interval of the estimated 
correlation based on the sample size. The results in lighter blue represent null effects where the 
effect-size was imputed via MetaNSUE. Since we were comparing across activation, 
psychophysiological interactions, and changes in connectivity, we took the absolute value of the 
reported effects. p-values should be disregarded because significant difference from 0 is trivial 
after taking the absolute value. 1 indicates statistics reported for the entire study population, not 
for the subgroup upon which displayed prediction is based. 
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Figure S4: Forest plot for random effects meta-analysis of observational EEG studies any 
effect for the correlation with change in depressive symptoms.  We found that the mean 
effect size was 0.20 [0.04, 0.34]. Since we were comparing across multiple signals and analyses, 
we took the absolute value of the reported effects. p-values should be disregarded because 
significant difference from 0 is trivial after taking the absolute value. The error bars indicate the 
95% confidence interval of the estimated correlation based on the sample size. 
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Figure S5: Forest plot for random effects meta-analysis of treatment studies with EEG 
reporting a reward positivity (RewP) effect for the correlation with change in depressive 
symptoms. We found that the mean effect size was -0.16 [-0.27, -0.05]. The size of the marker 
corresponds to the number of participants in the study. The error bars indicate the 95% confidence 
interval of the estimated correlation based on the sample size. The results in lighter blue represent 
null effects where the effect-size was imputed via MetaNSUE. 
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Figure S6: Forest plot for random effects meta-analysis of treatment studies with fMRI 
reporting any effect for the correlation with change in depressive symptoms. We found that 
the mean effect size was 0.36 [0.18, 0.52]. Since we were comparing across activation, 
psychophysiological interactions, and changes in connectivity, we took the absolute value of the 
reported effects. p-values should be disregarded because significant difference from 0 is trivial 
after taking the absolute value. The size of the marker corresponds to the number of participants 
in the study. The error bars indicate the 95% confidence interval of the estimated correlation 
based on the sample size. The results in lighter blue represent null effects where the effect-size 
was imputed via MetaNSUE. 
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Figure S7: Forest plot for random effects meta-analysis of treatment studies with EEG 
reporting any effect for the correlation with change in depressive symptoms. We found that 
the mean effect size was 0.20 [0.10, 0.29]. Since we were comparing across activation, 
psychophysiological interactions, and changes in connectivity, we took the absolute value of the 
reported effects. p-values should be disregarded because significant difference from 0 is trivial 
after taking the absolute value. 
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Figure S8: Impact of fMRI test-retest reliability on expected effect size in planned studies 
assuming a higher test-retest reliability of depression measures. in our meta-analysis of 
observational studies of the association between striatal fMRI signal and change in depression 
symptoms, we found a correlation of -0.10 [-0.18, -0.03] (Figure 2, Table 1). If we planned a new 
study, our estimate of the observed effect size would depend on our belief about the reliability of 
the studies used to estimate the effect, and the test-retest reliability of both fMRI and depression 
measures in our planned study. This figure depicts the correlation of change in depression and 
reward processing we would expect to observe given different estimates for the test-retest 
reliability of the studies in our meta-analysis at different levels of reliability in the planned study. 
We estimated the test-retest reliability of fMRI reward processing tasks to be 0.44 [0.28, 0.57] 
from nine studies (Table S7).  The minimum and maximum values in these studies are the limits 
of x-axis. For this figure, we assume a depressive symptom measurement reliability of 0.9 instead 
of the 0.77 [0.67,0.84] based on eight studies (Table S8) that we depict in Figure 4. The most 
optimistic case (dotted line) is that these previous studies were at the lower end of this range of 
reliability with a test-retest reliability of 0.28, and that our planned study will have a reliability of 
0.8. In this situation we would expect to observe a correlation between reward processing and 
change in depressive symptoms of -0.33 [-0.61, 0.01] and required sample size of 67 to have 
80% power to detect with a two-sided test for Pearson correlation difference from 0. A second 
case (solid line) is that previous studies had a reliability of 0.44 and our planned study will 
increase this 0.7, resulting in an observed correlation of -0.19 [-0.37, 0.01] and requiring a sample 
size of 217. Finally, a pessimistic case (dashed line) is that previous studies had a reliability of 
0.57 and that our planned study will have a reliability of 0.6, resulting in an observed correlation 
of -0.12 [-0.24, -0.003] and requiring a sample size of 507. 
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Figure S9: Diversity of tasks and contrasts in studies reviewed by Ng et al. (11), Keren, 
O’Callaghan et al. (1), and Zhang et al. (9). The majority of task/contrast combinations in the 
literature have appeared in only a single study (54 out of 69). Classification of the task as 
assessing anticipation or feedback is based on the information reported in each meta-analysis. 
Tasks are sorted by the frequency of report. Contrasts within tasks are also sorted by the 
frequency of report. MID: Monetary Incentive Delay task; EEfRT: Effort-Expenditure for Rewards 
Task; RPE: Reward Prediction Error 
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Figure S10: PRISMA diagram for review of longitudinal studies of reward processing and 
depression. 
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Supplemental Boxes 

 
 Box S1: Contextualizing effect sizes  

Throughout the paper we use three typically-employed metrics to help understand the magnitude and 
direction of the relationship between reward processing abnormalities (RPAs) and depression. As has 
recently been pointed out (127), even effect sizes that are typically considered small (e.g. correlation r = 
0.3), could have profound implications for behavior. We therefore contextualize effect sizes by providing 
some examples from outside psychology below,  

 
Pearson correlation r: We apply correlation correlation to quantify the relationship between RPAs 
and future depressive symptoms in Longitudinal Association. It represents a summary of the 
strength of the linear relationship between two variables. The magnitude is between 0 (no 
relationship) and 1 (perfect correlation) and the sign indicates the direction of the relationship.  
Cohen’s d: We apply this to the EEG portion of Cross-Sectional Association to quantify the 
difference in EEG responses to reward between depressed and healthy participants. The metric 
represents the mean difference between groups divided by the pooled standard deviation. A Cohen’s 
d of 1 corresponds to a difference of 1 standard deviation between groups. 
Area under the receiver operating characteristic curve (AUC): We use this in the Cross-
Sectional Association section to assess how well reward processing distinguishes depressed from 
non-depressed participants. The receiver operating characteristic curve is the plot of true positive 
rate versus false positive rate across the range of possible values of the independent variable. AUC 
may be between 0 and 1. An AUC of 0.5 corresponds to chance performance.  

Effect sizes of familiar associations: 
When assessing the magnitude of an effect size, it is helpful to consider some examples (7,127,128):  

● Effect of ibuprofen on pain reduction: r = 0.14, d = 0.28, AUC = 0.58 
● Gender and weight for US adults: r = 0.26, d = 0.54, AUC = 0.65 
● Weight and height for US adults: r = 0.44, d = 0.98, AUC = 0.76 
● Gender and height for US adults: r = 0.67, d = 1.81, AUC = 0.90 
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Box S2: Explanation versus prediction 

The two goals of this review highlight two different philosophical approaches to psychiatric, and medical 
research more generally: one concerned with discovering the causal chain of events, the other with 
predicting outcomes. We expand on these approaches below. 
 

Explanation: The first of the two approaches, in this context, seeks to answer whether reward 
processing abnormalities (RPAs) are a cause of depression. Many different models (see Figure 4) 
may fit a given set of observations better than the null model of no relationship. Therefore the 
strongest support of an a priori explanatory model will come from a demonstration that it is superior 
to both the null and to reasonable alternatives (129,130). 
Prediction: The other main approach seeks to determine if RPAs could be a clinical marker of future 
depression severity. This is a predictive question and does not depend on a mechanistic 
understanding of depression. Prediction is used here in a particular sense, namely as an to answer 
the question “How well could I predict depression severity in a new group of subjects (an out-of-
sample test)?” 
Incremental Validity: When testing if RPAs are useful for predicting depression severity, it is 
important to compare the predictive ability against a meaningful alternative, such as the baseline 
clinical scores. Demonstrating the incremental validity of a prediction demonstrates that the added 
predictors contribute useful additional information (129,131). 
 

Finally, it is important to note that explanatory and predictive analyses should inform each other. If RPAs 
were shown to be strongly predictive of changes in depression, then future explanatory studies should be 
designed to understand the structure of that relationship. 
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