Supporting Information for : Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles.

Théophile Tchakoua,[†] Tim Jansen,[†] Youri van Nies,[†] Rebecca F. A. van den Elshout ,[‡] Bart A. B. van Boxmeer,[¶] Saskia P. Poort,[‡] Michelle G. Ackermans,[‡] Gabriel Spiller Beltrão,[‡] Stefan A. Hildebrand,[†] Steijn E. J. Beekman,[†] Thijs van der Drift,[†] Sam Kaart,[†] Anthonie Šantić,[†] Esmee E. Spuijbroek,[‡] Nick Gerrits,[†]

Mark F. Somers, † and Geert-Jan Kroes *,†

†Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands

[‡]Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands

¶University of Antwerp, Faculty of Applied Engineering, Groenenborgerlaan 171, 2020 Antwerpen, Belgium

> E-mail: *g.j.kroes@chem.leidenuniv.nl Phone: +31 71 527 4396

> > $\mathbf{S1}$

Metal	Ag	Cu	Ir	Ni	Pt	R	lu
	a	a	a	a	a	a	c
Experimental	4.062^{1}	3.597^{1}	3.831^{1}	3.499^{1}	3.912^{1}	2.703^{2}	4.274^{2}
			$\mathrm{SRP}\boldsymbol{x}$				
PBE	4.147	3.635	3.873	3.518	3.968	2.721	4.293
x = 0.1	4.153	3.639	3.874	3.521	3.970	2.722	4.295
x = 0.2	4.159	3.644	3.875	3.524	3.972	2.723	4.297
x = 0.3	4.165	3.648	3.877	3.528	3.974	2.725	4.299
x = 0.4	4.172	3.652	3.878	3.531	3.976	2.726	4.301
$x\!=\!0.5$	4.178	3.657	3.880	3.535	3.979	2.727	4.303
x = 0.6	4.185	3.661	3.882	3.539	3.981	2.728	4.305
$x\!=\!0.7$	4.191	3.666	3.883	3.542	3.983	2.730	4.307
x = 0.8	4.198	3.670	3.885	3.546	3.985	2.731	4.308
$x\!=\!0.9$	4.205	3.675	3.886	3.550	3.988	2.732	4.310
RPBE	4.213	3.679	3.888	3.553	3.990	2.733	4.312
			$\mathrm{SRP}\boldsymbol{x}\mathrm{sol}$				
PBEsol	4.035	3.559	3.822	3.454	3.902	2.683	4.237
$x\!=\!0.1$	4.051	3.570	3.828	3.464	3.910	2.688	4.244
x = 0.2	4.067	3.581	3.834	3.473	3.918	2.693	4.252
x = 0.3	4.083	3.593	3.841	3.482	3.927	2.698	4.260
x = 0.4	4.099	3.604	3.847	3.492	3.935	2.704	4.268
$x\!=\!0.5$	4.117	3.616	3.854	3.502	3.944	2.709	4.275
x = 0.6	4.134	3.628	3.860	3.512	3.953	2.714	4.283
$x\!=\!0.7$	4.152	3.641	3.867	3.522	3.962	2.719	4.290
$x\!=\!0.8$	4.172	3.653	3.874	3.532	3.971	2.723	4.298
$x\!=\!0.9$	4.192	3.666	3.881	3.543	3.980	2.728	4.305
RPBE	4.213	3.679	3.888	3.553	3.990	2.733	4.312

Table **S1**: Measured zero-point-energy-corrected and computed equilibrium lattice constants a of the fcc metals Ag, Cu, Ir, Ni, and Pt, and a and c of the hcp metal Ru are presented. The computed values have been calculated with the SRP \boldsymbol{x} and SRP \boldsymbol{x} sol DFs varying \boldsymbol{x} by steps $\Delta \boldsymbol{x}$ of 0.1.

Table **S2**: Calculated barrier heights E_b computed with limiting forms of the mixed DFs are shown for the 16 systems present in the SBH16 database, as calculated for the PBE, the RPBE, the PBEsolc, the PBE-vdW1, the PBE-vdW2, and the PBE α -vdW1 DF with α =0.57. Also presented are the values of the charge excitation parameter ΔE_{CT} =WF-EA. The systems are arranged with the charge transfer parameter increasing from top to bottom.

System	\mathbf{E}_{b}^{PBE}	\mathbf{E}_{b}^{RPBE}	$\mathbf{E}_{b}^{PBEsolc}$	$\mathbf{E}_{b}^{PBE-vdW1}$	$\mathbf{E}_{b}^{PBE-vdW2}$	$E_b^{PBE\alpha-vdW1}$	WF-EA
$N_2 + \operatorname{Ru}(10\overline{1}0)$	-0.096	0.469	-0.999	-0.023	0.247	-0.314	6.582
$N_2 + Ru(0001)$	1.532	1.965	0.896	1.688	1.746	1.314	7.382
$H_2 + Ag(111)$	1.132	1.457	0.643	1.442	1.569	1.275	7.685
$H_2 + Cu(110)$	0.639	0.874	0.346	0.914	0.996	0.792	7.715
$H_2 + Cu(100)$	0.584	0.905	0.095	0.894	1.024	0.731	7.885
$H_2 + Cu(111)$	0.463	0.760	0.026	0.771	0.886	0.617	8.055
$H_2 + Ni(111)$	0.026	0.170	-0.097	-0.006	0.085	-0.076	8.395
$H_2 + Ru(0001)$	0.014	0.108	-0.050	-0.049	0.002	-0.096	8.555
$H_2 + Pt(111)$	0.018	0.169	-0.103	-0.005	0.063	-0.079	9.065
$CH_4+Ni(211)$	0.675	0.973	0.349	0.603	0.777	0.448	10.72
$CH_4+Ni(100)$	0.912	1.259	0.491	0.843	1.020	0.664	10.92
$CH_4+Ni(111)$	1.010	1.349	0.594	0.962	1.156	0.785	10.99
$CH_4+Ru(0001)$	0.856	1.164	0.456	0.760	0.989	0.603	11.15
$CH_4 + Pt(211)$	0.489	0.789	0.092	0.484	0.618	0.316	11.39
$CH_4+Ir(111)$	0.875	1.186	0.495	0.714	0.894	0.550	11.53
$CH_4+Pt(111)$	0.819	1.151	0.414	0.775	0.898	0.604	11.66

Table S3: Calculated barrier heights E_b computed with limiting forms of the mixed DFs are shown for the 16 systems present in the SBH16 database, as calculated for the the PBE α vdW1 DF with α =0.57, the RPBE-vdW1 DF, the RPBE-vdW2 DF, and the PBEsol-vdW2 DF. Also presented are the values of the charge excitation parameter ΔE_{CT} =WF-EA. The systems are arranged with the charge transfer parameter increasing from top to bottom.

System	$E_b^{PBE\alpha-vdW2}$	$\mathbf{E}_{b}^{RPBE-vdW1}$	$E_b^{RPBE-vdW2}$	$\mathbf{E}_{b}^{PBEsol-vdW2}$	WF-EA
$N_2 + Ru(10\overline{1}0)$	-0.044	0.525	0.801	-0.568	6.582
$N_2 + Ru(0001)$	1.529	2.133	2.367	1.113	7.382
$H_2 + Ag(111)$	1.403	1.758	1.885	1.114	7.685
$H_2 + Cu(110)$	0.887	1.144	1.239	0.714	7.715
$H_2 + Cu(100)$	0.859	1.205	1.332	0.564	7.885
$H_2 + Cu(111)$	0.736	1.064	1.183	0.470	8.055
$H_2 + Ni(111)$	-0.002	0.134	0.209	-0.045	8.395
$H_2 + Ru(0001)$	-0.044	0.043	0.095	-0.052	8.555
$H_2 + Pt(111)$	-0.012	0.145	0.211	-0.044	9.065
$CH_4 + Ni(211)$	0.613	0.907	1.076	0.433	10.72
$CH_4 + Ni(100)$	0.829	1.188	1.352	0.607	10.92
$CH_4 + Ni(111)$	0.949	1.305	1.473	0.713	10.99
$CH_4+Ru(0001)$	0.775	1.063	1.235	0.565	11.15
$CH_4 + Pt(211)$	0.474	0.790	0.939	0.232	11.39
$CH_4+Ir(111)$	0.730	1.030	1.210	0.501	11.53
$CH_4+Pt(111)$	0.726	1.107	1.262	0.529	11.66

Table S4: The optimal mixing coefficient \boldsymbol{x} is shown for the mixed DFs SRP \boldsymbol{x} , SRP \boldsymbol{x} sol, SRP \boldsymbol{x} -vdW1, and SRP \boldsymbol{x} -vdW2. Also presented are the values of the charge excitation parameter ΔE_{CT} =WF-EA. The systems are arranged with the charge transfer parameter increasing from top to bottom.

System	WF-EA	$\mathrm{SRP}\boldsymbol{x}$	$\mathrm{SRP}\boldsymbol{x}\mathrm{sol}$	SRP x-vdW1	$SRP \boldsymbol{x}$ -vdW2
$N_2 + Ru(10\overline{1}0)$	6.582	0.88	0.95	0.77	0.27
$N_2 + Ru(0001)$	7.382	0.71	0.88	0.34	0.01
$H_2 + Ag(111)$	7.685	-0.15	0.53	-1.14	-1.55
$H_2 + Cu(110)$	7.715	0.64	0.84	-0.55	-0.91
$H_2 + Cu(100)$	7.885	0.49	0.79	-0.49	-0.91
$H_2 + Cu(111)$	8.055	0.55	0.82	-0.49	-0.88
$H_2 + Ni(111)$	8.395	-0.02	0.45	0.21	-0.42
$H_2 + Ru(0001)$	8.555	-0.09	0.34	0.57	0.02
$H_2 + Pt(111)$	9.065	-0.17	0.34	-0.02	-0.48
$CH_4 + Ni(211)$	10.72	0.08	0.57	0.32	-0.24
$CH_4 + Ni(100)$	10.92	-0.44	0.34	-0.24	-0.76
$CH_4 + Ni(111)$	10.99	0.01	0.56	0.27	-0.26
$\mathrm{CH}_4 + \mathrm{Ru}(0001)$	11.15	-0.18	0.48	0.13	-0.44
$CH_4 + Pt(211)$	11.39	0.23	0.67	0.32	-0.14
$CH_4 + Ir(111)$	11.53	-0.12	0.49	0.39	-0.18
$CH_4 + Pt(111)$	11.66	0.00	0.54	0.24	-0.17

Table S5: The optimal mixing coefficient \boldsymbol{x} is shown for the mixed DFs SRP \boldsymbol{x} sol-vdW2, SRP \boldsymbol{x} -vdW1-ext, and SRP \boldsymbol{x} -vdW2-ext. Also presented are the values of the charge excitation parameter ΔE_{CT} =WF-EA. The systems are arranged with the charge transfer parameter (see Table S4) increasing from top to bottom.

System	$\mathrm{SRP}\boldsymbol{x}$ sol-vdW2	$SRP \boldsymbol{x}$ -vdW1-ext	$\mathrm{SRP}\boldsymbol{x} ext{-}\mathrm{vdW2 ext{-}ext}$
$N_2 + Ru(10\overline{1}0)$	0.70	0.77	0.27
$N_2 + Ru(0001)$	0.66	0.34	0.01
$\mathrm{H}_2 + \mathrm{Ag}(111)$	-0.07	-0.90	-1.21
$H_2 + Cu(110)$	0.12	-0.46	-0.76
$\mathrm{H}_2 + \mathrm{Cu}(100)$	0.78	-0.42	-0.74
$\mathrm{H}_{2} + \mathrm{Cu}(111)$	0.21	-0.42	-0.72
$\mathrm{H}_2 + \mathrm{Ni}(111)$	0.25	0.21	-0.31
$\mathrm{H}_2 + \mathrm{Ru}(0001)$	0.34	0.57	0.02
$\mathrm{H}_2 + \mathrm{Pt}(111)$	0.15	-0.06	-0.42
$CH_4 + Ni(211)$	0.42	0.32	-0.22
$CH_4 + Ni(100)$	0.19	-0.23	-0.60
$CH_4 + Ni(111)$	0.45	0.27	-0.21
$\mathrm{CH}_4 + \mathrm{Ru}(0001)$	0.67	0.13	-0.38
$CH_4 + Pt(211)$	0.50	0.32	-0.15
$CH_4 + Ir(111)$	0.53	0.39	-0.19
$CH_4 + Pt(111)$	0.55	0.24	-0.21

Figure S1: The barrier heights E_b computed with the PBE α -vdW1 and PBE α -vdW2 DFs with α =0.57 are shown as a function of the charge transfer parameter for the 16 systems present in the SBH16 database. These DFs may be viewed as the lower-limit expressions given by Eqs. 6b and 7b, respectively.

Figure **S2**: The optimum fraction of RPBE exchange \boldsymbol{x} is shown as a function of ΔE_{CT} for the SRP \boldsymbol{x} -vdW1 DF (Eq.3). Values falling between the two horizontal dot-dashed black lines could be obtained by the interpolation procedure illustrated in Figure 5.

Figure S3: The optimum fraction of RPBE exchange \boldsymbol{x} is shown as a function of ΔE_{CT} for the SRP \boldsymbol{x} -vdW2 DF (Eq.4). Values falling between the two horizontal dot-dashed black lines could be obtained by the interpolation procedure illustrated in Figure 5.

Figure S4: The optimum mixing parameter \boldsymbol{x} is shown as a function of ΔE_{CT} for the SRP \boldsymbol{x} -vdW2-ext DF (Eq.7). Values falling between the two horizontal dot-dashed black lines could be obtained by the interpolation procedure illustrated in Figure 5.

References

- Haas, P.; Tran, F.; Blaha, P. Calculation of the lattice constant of solids with semilocal functionals. *Phys. Rev. B* 2009, *79*, 085104.
- (2) Arblaster, J. W. Crystallographic properties of ruthenium. *Platinum Met. Rev.* 2013, 57, 127–136.