Development of Allosteric NIK Ligands from Fragment-Based NMR Screening

Jared J. Anderson,[†] Michael J. Grillo,[§] Daniel A. Harki^{†,§,*}

[†]Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, United States.

[§]Department of Medicinal Chemistry, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States.

*<u>Contact Information:</u> Daniel A. Harki, University of Minnesota, Department of Medicinal Chemistry, 2231 6th Street SE, Minneapolis, MN, 55455, United States 612-625-8687 <u>daharki@umn.edu</u>

Table of Contents for Supporting Information

I.	Chemistry	S2-S55
	A. General	S2
	B. Procedures	S2-S17
	C. ¹ H and ¹³ C Spectra	S18-S55
II.	Supplementary Tables	S56-S59
111.	Assay Procedures	S60-S62
IV.	. SPR Sensorgrams	S63-S69
V.	References	S70

Chemistry - General. All air or moisture sensitive reactions were conducted in oven-dried glassware under inert argon atmosphere. Reactions were stirred with Teflon-coated stir bars. Solvents THF and CH₂Cl₂ were dried using an MBraun solvent purification system. Other solvents were purchased as ACS grade and were used as received. All reagents were purchased from commercial suppliers and were used without further purification. Water for reverse phase purification and SPR assays was purified using a MilliQ system (MilliporeSigma). Silica gel chromatography was performed using RediSep[®] R_f high performance silica gel columns (Teledyne-Isco) on a Combiflash NextGen 300+ instrument (Teledyne-Isco). C18 chromatography was performed using RediSep[®] high performance C18 columns (Teledyne-Isco) on a Combiflash NextGen 300+ instrument (Teledyne-Isco). ¹H and ¹³C NMR spectra were collected on a Bruker Advance 500 MHz spectrometer at room temperature. Chemical shifts (δ) are reported in parts per million (ppm) and the residual solvent peak is used as a reference. Coupling constants (J) are reported in Hertz (Hz). High resolution mass spectrometry was performed on an Orbitrap HRMS LC-MS instrument at the Analytical Biochemistry Core Facility at the University of Minnesota Masonic Cancer Center. All assayed compounds were determined to be \geq 95% purity at 215 nm and 254 nm by analytical reverse-phase HPLC analysis on an Agilent 1200-series instrument equipped with a diode array detector and a Luna C18 column (5 µm, 100 Å, 4.6 × 150 mm, Phenomenex). The analysis method (1.0 mL/min flow rate) involved isocratic H₂O (90% H₂O: 10% CH₃CN: 0-2 min) followed by a linear gradient to 85% CH₃CN (2-24 min) and finally a linear gradient to 95% CH₃CN (24-26 min). Safety statement: No unexpected or abnormally high safety hazards were encountered.

Chemistry – Procedures.

3-chloro-1-(4-chloro-2-hydroxyphenyl)propan-1-one (3a)

3a was prepared according to modification of prior report.¹ A mixture of m-chlorophenol (2.00 g, 15.6 mmol) and 3-chloropropionyl chloride (1.98 g, 15.6 mmol) were stirred at 110 °C for 45 minutes. The reaction mixture was cooled to room temperature and aluminum chloride (4.15g, 31.1 mmol) was added in portions. The reaction mixture was stirred at 90 °C for 2 hours. The reaction mixture was cooled to room temperature at 90 °C for 2 hours. The reaction mixture was cooled to room temperature and quenched with crushed ice. The solution was partitioned between CH_2CI_2 (100 mL) and H_2O (100 mL), the organic phase separated, washed with brine (75 mL), dried over anhydrous Na_2SO_4 and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **3a** as a pale

yellow solid (1.63 g, 48%): ¹H NMR (500 MHz, CDCl₃) δ 12.15 (s, 1H), 7.65 (d, *J* = 5.0 Hz, 1H), 7.02 (d, *J* = 2.5 Hz, 1 H), 6.91 (dd, *J* = 8.5, 2.0 Hz, 2 H), 3.91 (t, *J* = 6.5 Hz, 1 H), 3.46 (t, *J* = 6.7 Hz, 2 H).

3-chloro-1-(2-hydroxy-6-methylphenyl)propan-1-one (3b)

3b was prepared according to modification of prior report.¹ A mixture of m-cresol (1.00 g, 9.25 mmol) and 3-chloropropionyl chloride (1.17 g, 9.25 mmol) were stirred at 110 °C for 45 minutes. The reaction mixture was cooled to room temperature and aluminum chloride (3.70g, 27.7 mmol) was added in portions. The reaction mixture was stirred at 90 °C for 2 hours. The reaction mixture was cooled to room temperature and quenched with crushed ice. The solution was partitioned between CH₂Cl₂ (100 mL) and H₂O (100 mL), the organic phase separated, washed with brine (75 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **3b** as a pale yellow solid (781 mg, 43%): ¹H NMR (500 MHz, CDCl₃) δ 11.44 (s, 1H), 7.29 (t, *J* = 7.5 Hz, 1 H), 6.84 (d, *J* = 8.3 Hz, 1 H), 6.74 (d, *J* = 7.5 Hz, 1 H), 3.92 (t, *J* = 6.7 Hz, 2 H), 3.44 (t, *J* = 6.7 Hz, 2 H), 2.59 (s, 3 H). ¹³C NMR (500 MHz, CDCl₃) δ 204.6, 162.0, 138.8, 134.7, 123.4, 121.9, 116.5, 47.0, 38.8, 24.2. HRMS (ESI⁻) *m/z* calcd for C₁₀H₁₁O₂Cl (M-H⁺): 197.0375, found: 197.0373.

3-chloro-1-(2-hydroxy-5-methylphenyl)propan-1-one (3c)

3c was prepared according to modification of prior report.¹ A mixture of p-cresol (2.00 g, 18.5 mmol) and 3-chloropropionyl chloride (2.35 g, 18.5 mmol) were stirred at 80 °C for 45 minutes. The reaction mixture was cooled to room temperature and aluminum chloride (4.93 g, 37.0 mmol) was added in portions. The reaction mixture was stirred at 120 °C for 24 hours. The reaction mixture was cooled to room temperature and aluminum chloride (4.93 g, 37.0 mmol) was added in portions. The reaction mixture was stirred at 120 °C for 24 hours. The reaction mixture was cooled to room temperature and quenched with crushed ice. The solution was partitioned between CH₂Cl₂ (100 mL) and H₂O (100 mL), the organic phase separated, washed with brine (75 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **3c** as a pale yellow solid (2.63 g, 72%): ¹H NMR (500 MHz, CDCl₃) δ 11.85 (s, 1H), 7.50 (s, 1H), 7.31 (dd, *J* = 8.6, 2.3 Hz, 1H), 6.91 (d, *J* = 8.6 Hz, 1H), 3.92 (t, *J* = 6.7 Hz, 2H), 3.49 (t, *J* = 6.7 Hz, 2H), 2.32 (s, 3H).

3-chloro-1-(2-hydroxy-4-methylphenyl)propan-1-one (3d)

3d was prepared according to modification of prior report.¹ A mixture of m-cresol (1.00 g, 9.25 mmol) and 3-chloropropionyl chloride (1.17 g, 9.25 mmol) were stirred at 110 °C for 45 minutes. The reaction mixture was cooled to room temperature and aluminum chloride (3.70 g, 27.7 mmol) was added in portions. The reaction mixture was stirred at 90 °C for 2 hours. The reaction mixture was cooled to room temperature and quenched with crushed ice. The solution was partitioned between CH₂Cl₂ (100 mL) and H₂O (100 mL), the organic phase separated, washed with brine (75 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **3d** as a pale yellow solid (342 mg, 19%): ¹H NMR (500 MHz, CDCl₃) δ 12.05 (s, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 6.80 (s, 1H), 6.73 (d, *J* = 8.1 Hz, 1H), 3.91 (t, *J* = 6.9 Hz, 2H), 3.45 (t, *J* = 6.7 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 201.9, 162.8, 148.7, 129.7, 120.6, 118.8, 117.1, 40.8, 38.4, 22.1. HRMS (ESI⁻) *m/z* calcd for C₁₀H₁₁O₂Cl (M-H⁺): 197.0375, found: 197.0374.

3-chloro-1-(2-hydroxy-3-methylphenyl)propan-1-one (3e)

3e was prepared according to modification of prior report.¹ A mixture of o-cresol (2.00 g, 18.5 mmol) and 3-chloropropionyl chloride (2.35 g, 18.5 mmol) were stirred at 80 °C for 45 minutes. The reaction mixture was cooled to room temperature and aluminum chloride (4.93 g, 37.0 mmol) was added in portions. The reaction mixture was stirred at 120 °C for 24 hours. The reaction mixture was cooled to room temperature and aluminum chloride (4.93 g, 37.0 mmol) was added in portions. The reaction mixture was stirred at 120 °C for 24 hours. The reaction mixture was cooled to room temperature and quenched with crushed ice. The solution was partitioned between CH₂Cl₂ (100 mL) and H₂O (100 mL), the organic phase separated, washed with brine (75 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **3e** as a pale yellow solid (912 mg, 25%): ¹H NMR (500 MHz, CDCl₃) δ 12.33 (s, 1H), 7.58 (d, *J* = 8.3 Hz, 1H), 7.37 (d, *J* = 7.2 Hz, 1H), 6.83 (t, *J* = 7.6 Hz, 1H), 3.92 (t, *J* = 6.8 Hz, 2H), 3.50 (t, *J* = 6.7 Hz, 2H), 2.27 (s, 3H).

3-chloro-1-(4-chloro-2-hydroxy-6-methylphenyl)propan-1-one (3f)

3f was prepared according to modification of prior report.¹ A mixture of 5-chloro-3-cresol (1.51 g, 10.6 mmol) and 3-chloropropionyl chloride (1.34 g, 10.6 mmol) were stirred at 110 °C for 45 minutes. The reaction mixture was cooled to room temperature and aluminum chloride (4.24 g, 31.8 mmol) was added in portions. The reaction mixture was stirred at 90 °C for 2 hours. The reaction mixture was cooled to room temperature and aluminum chloride (4.24 g, 31.8 mmol) was added in portions. The reaction mixture was stirred at 90 °C for 2 hours. The reaction mixture was cooled to room temperature and quenched with crushed ice. The solution was partitioned between CH₂Cl₂ (100 mL) and H₂O (100 mL), the organic phase separated, washed with brine (75 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **3f** as a pale yellow solid (834 mg, 34%): ¹H NMR (500 MHz, CDCl₃) δ 11.92 (s, 1H), 6.88 (s, 1H), 6.74 (s, 1H), 3.91 (t, *J* = 6.9 Hz, 2H), 3.42 (t, *J* = 6.7 Hz, 2H), 2.58 (s, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 204.0, 163.4, 140.7, 140.6, 123.8, 120.2, 116.8, 47.1, 38.7, 24.5. HRMS (ESI⁻) *m/z* calcd for C₁₀H₁₀O₂Cl₂ (M-H⁺): 230.9985, found: 230.9982.

1-(4-chloro-2-hydroxy-6-methylphenyl)ethan-1-one (3g)

3g was prepared according to modification of prior report.¹ A mixture of 3-chloro-5-methylphenol (1.82 g, 12.8 mmol) and acetyl chloride (1.00 g, 12.8 mmol) were stirred at 110 °C for 45 minutes. The reaction mixture was cooled to room temperature and aluminum chloride (5.11 g, 38.3 mmol) was added in portions. The reaction mixture was stirred at 90 °C for 2 hours. The reaction mixture was cooled to room temperature and aluminum chloride (5.11 g, 38.3 mmol) was added in portions. The reaction mixture was stirred at 90 °C for 2 hours. The reaction mixture was cooled to room temperature and quenched with crushed ice. The solution was partitioned between CH_2Cl_2 (100 mL) and H_2O (100 mL), the organic phase separated, washed with brine (75 mL), dried over anhydrous Na_2SO_4 and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **3g** as a pale yellow solid (984 mg, 42%): ¹H NMR (500 MHz, CDCl₃) δ 12.64 (s, 1H), 6.86 (s, 1H), 6.72 (s, 1H), 2.66 (s, 3H), 2.58 (s, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 205.5, 164.1, 141.3, 140.6, 123.5, 120.1, 116.8, 33.5, 24.6. HRMS (ESI⁻) *m/z* calcd for C₉H₉O₂Cl (M-H⁺): 183.0218, found: 183.0212.

7-chlorochroman-4-one (4a)

4a was prepared according to modification of prior report.² A mixture of **3a** (1.35 g, 6.16 mmol) and K₂CO₃ (1.70 g, 12.3 mmol) in anhydrous EtOH (40 mL) was stirred at room temperature under argon for 24 hours. The suspension was filtered and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **4a** as a white solid (688 mg, 61%): ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 9.0 Hz, 1H), 7.01-6.98 (m, 2H), 4.55 (t, *J* = 6.3 Hz, 2H), 2.81 (t, *J* = 6.7 Hz, 2H).

5-methylchroman-4-one (4b)

4b was prepared according to modification of prior report.² A mixture of **3b** (198 mg, 997 µmol) and K₂CO₃ (276 mg, 1.99 mmol) in anhydrous EtOH (10 mL) was stirred at room temperature under argon for 24 hours. The suspension was filtered and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **4b** as a white solid (45.8 mg, 28%): ¹H NMR (500 MHz, CDCl₃) δ 7.30 (t, *J* = 7.5 Hz, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.79 (d, *J* = 7.5 Hz, 1H), 4.48 (t, *J* = 6.3 Hz, 2H), 2.80 (t, *J* = 6.4 Hz, 2H), 2.64 (s, 3H).

6-methylchroman-4-one (4c)

4c was prepared according to modification of prior report.² A mixture of **3c** (1.12 g, 5.64 mmol) and K₂CO₃ (1.56 g, 11.3 mmol) in anhydrous EtOH (50 mL) was stirred at room temperature under argon for 24 hours. The suspension was filtered and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **4c** as a white solid (672 mg, 73%): ¹H NMR (500 MHz, CDCl₃) δ 7.69 (s, 1H), 7.28 (dd, *J* = 8.5, 2.4 Hz, 1H), 6.87 (d, *J* = 8.6 Hz, 1H), 4.51 (t, *J* = 6.1 Hz, 2H), 2.79 (t, *J* = 6.6 Hz, 2H), 2.31 (s, 3H).

7-methylchroman-4-one (4d)

4d was prepared according to modification of prior report.² A mixture of **3d** (780 mg, 3.93 mmol) and K₂CO₃ (1.09 g, 7.85 mmol) in anhydrous EtOH (25 mL) was stirred at room temperature under argon for 24 hours. The suspension was filtered and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **4d** as a white solid (368 mg, 58%): ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.9 Hz, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 6.77 (s, 1H), 4.51 (t, *J* = 6.3 Hz, 2H), 2.78 (t, *J* = 6.6 Hz, 2H), 2.35 (s, 3H).

8-methylchroman-4-one (4e)

4e was prepared according to modification of prior report.² A mixture of **3e** (785 mg, 3.95 mmol) and K₂CO₃ (1.09 g, 7.90 mmol) in anhydrous EtOH (25 mL) was stirred at room temperature under argon for 24 hours. The suspension was filtered and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **4e** as a white solid (328 mg, 51%): ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 7.3 Hz, 1H), 6.91 (t, *J* = 7.7 Hz, 1H), 4.56 (t, *J* = 6.1 Hz, 2H), 2.80 (t, *J* = 6.7 Hz, 2H), 2.24 (s, 3H).

7-chloro-5-methylchroman-4-one (4f)

4f was prepared according to modification of prior report.² A mixture of **3f** (558 mg, 2.39 mmol) and K₂CO₃ (662 mg, 4.79 mmol) in anhydrous EtOH (16 mL) was stirred at room temperature under argon for 24 hours. The suspension was filtered and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **4f** as a white solid (263 mg, 56%): ¹H NMR (500 MHz, CDCl₃) δ 6.86 (s, 1H), 6.80 (s, 1H), 4.48 (t, *J* = 6.3 Hz, 2H), 2.78 (t, *J* = 6.6 Hz, 2H), 2.62 (s, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 192.5, 163.4, 144.1, 140.2,

125.0, 118.6, 116.1, 66.9, 39.1, 23.0. HRMS (ESI⁻) *m/z* calcd for C₁₀H₉O₂Cl (M-H⁺): 195.0218, found: 195.0219.

7-chloro-4-methylchroman-4-ol (5)

To a solution of **4a** (100 mg, 548 µmol) in anhydrous THF (2.74 mL, 0.20 M) was added MeMgBr (979 µL of 1.4 M solution in (1:3) THF:Toluene) at 0 °C under argon gas. The reaction was allowed to warm to room temperature as it stirred for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **5** as a white solid (86.7 mg, 79%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.46 (d, *J* = 8.4 Hz, 1H), 6.92 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.79 (d, *J* = 2.2 Hz, 1H), 5.20 (s, 1H), 4.26-4.15 (m, 2H), 1.98-1.87 (m, 2H), 1.45 (s, 3H). ¹³C NMR (500 MHz, DMSO-*d*₆) δ 154.3, 131.9, 129.3, 128.8, 120.1, 115.8, 64.4, 63.6, 37.2, 29.7. HRMS (ESI⁻) *m/z* calcd for C₁₀H₁₁O₂Cl (M-H⁺): 197.0375, found: 197.0375.

7-chloro-4-ethylchroman-4-ol (6)

To a solution of **4a** (100 mg, 548 µmol) in anhydrous THF (2.74 mL, 0.20 M) was added EtMgBr (1.37 mL of 1.0 M solution in THF) at 0 °C under argon gas. The reaction was allowed to warm to room temperature as it stirred for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **6** as a white solid (49.3 mg, 42%): ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 8.4 Hz, 1H), 6.90 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.84 (d, *J* = 2.1 Hz, 1H), 4.26-4.24 (m, 2H), 2.15-1.86 (m, 4H), 1.74 (s, 1H), 0.90 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 155.3, 134.2, 127.6, 126.1, 121.0, 117.3, 68.5, 63.4, 34.0, 33.9, 8.38. HRMS (ESI⁻) *m/z* calcd for C₁₁H₁₃O₂Cl (M-H⁺): 211.0531, found: 211.0528.

7-chloro-4-cyclopropylchroman-4-ol (7)

To a solution of **4a** (105 mg, 575 µmol) in anhydrous THF (2.88 mL, 0.20 M) was added *cyclo*PrMgBr (1.15 mL of 1.0 M solution in 2-methyl THF) at 0 °C under argon gas. The reaction was transferred to an oil bath and was refluxed under argon gas for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by reverse phase C18 chromatography on a gradient of MeCN:H₂O (1:9) to (9:1) to give **7** as a white solid (78.0 mg, 60%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.53 (d, *J* = 8.4 Hz, 1H), 6.92 (dd, *J* = 8.4, 2.3 Hz, 1H), 6.81 (d, *J* = 2.3 Hz, 1H), 4.90 (s, 1H), 4.32-4.24 (m, 2H), 1.97-1.86 (m, 2H), 1.05-1.00 (tt, *J* = 8.3, 5.4 Hz, 1H), 0.70-0.65 (dtd, *J* = 8.9, 5.7, 4.0 Hz, 1H), 0.52-0.46 (tdd, *J* = 8.7, 5.8, 3.9 Hz, 1H), 0.37-0.32 (dtd, *J* = 8.8, 5.8, 4.0 Hz, 1H), 0.29-0.23 (tdd, *J* = 8.7, 5.8, 4.0 Hz, 1H). ¹³C NMR (500 MHz, DMSO-*d*₆) δ 154.5, 132.2, 129.3, 128.4, 119.7, 115.7, 64.1, 63.3, 36.0, 20.9, -1.42, -0.97. HRMS (ESI⁻) *m/z* calcd for C₁₂H₁₃O₂CI (M-H⁺): 223.0531, found: 223.0531.

7-chloro-4-phenylchroman-4-ol (8)

To a solution of **4a** (100 mg, 548 µmol) in anhydrous THF (2.74 mL, 0.20 M) was added PhMgBr (602 µL of 1.0 M solution in THF) at 0 °C under argon gas. The reaction was allowed to warm to room temperature as it stirred for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by reverse phase C18 chromatography on a gradient of MeCN:H₂O (1:9) to (9:1) to give **8** as a white solid (36.2 mg, 25%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.34-7.22 (m, 5H), 6.92 (s, 1H), 6.87 (s, 2H), 6.00 (s, 1H), 4.36-4.31 (ddd, *J* = 11.1, 9.8, 2.8 Hz, 1H), 4.14-4.10 (ddd, *J* = 11.1, 5.7, 3.5 Hz, 1H), 2.25-2.19 (ddd, *J* = 14.0, 9.8, 3.7 Hz, 1H), 2.10-2.05 (ddd, *J* = 14.1,

5.6, 2.9 Hz, 1H). ¹³C NMR (500 MHz, DMSO-*d*₆) *δ* 155.2, 147.7, 132.4, 131.2, 128.1, 127.8, 126.7, 126.3, 120.1, 116.0, 69.5, 63.1, 38.8. HRMS (ESI⁻) *m/z* calcd for C₁₅H₁₃O₂Cl (M-H⁺): 259.0531, found: 259.0529.

7-chloro-4-methoxychromane (9)

1 (223 mg, 1.21 mmol) was dissolved in anhydrous THF (5 mL) and was slowly added to a suspension of NaH (72.5 mg, 1.81 mmol, 60% dispersion in mineral oil) in anhydrous THF (5 mL) at room temperature under argon gas. The reaction was stirred for 30 minutes. Methyl iodide (171 mg, 1.21 mmol) was slowly added at room temperature under argon gas and the reaction was stirred for 3 hours. The reaction was quenched with crushed ice, the mixture was partitioned between EtOAc (25 mL) and sat. aq. NaHCO₃ solution (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **9** as a clear liquid (164 mg, 68%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.16 (d, *J* = 8.1 Hz, 1H), 6.88-6.85 (m, 2H), 4.29-4.21 (m, 3H), 3.42 (s, 3H), 2.16-1.98 (m, 2H). ¹³C NMR (500 MHz, DMSO-*d*₆) δ 155.6, 134.9, 131.6, 120.4, 120.3, 117.3, 71.4, 62.4, 56.0, 27.1. HRMS (ESI⁻) *m*/z calcd for C₁₀H₁₁O₂Cl (M-H⁺): 197.0375, found: 197.0374.

5-methylchroman-4-ol (10)

10 was prepared according to modification of prior report.³ To a solution of **4b** (36.3 mg, 224 µmol) in anhydrous MeOH (678 µL, 0.33 M) was added NaBH₄ (9.31 mg, 246 µmol) at 0 °C. The reaction was stirred at 0 °C for 2 hours. The reaction was quenched by addition of H₂O (5 mL), the mixture was transferred to a separatory funnel and extracted with CH₂Cl₂ (10 mL x 3), then the combined organic phases were washed with 25 mL of brine. The organic phase was separated, dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by reverse phase C18 chromatography on a gradient of MeCN:H₂O (1:9) to (9:1) to give **10** as a white solid (22.8 mg, 62%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.03(t, *J* = 8.1 Hz, 1H), 6.70 (d, *J* = 7.4 Hz, 1H), 6.59 (d, *J* = 8.2 Hz, 1H), 5.08 (d, *J* = 5.4 Hz, 1H), 4.64 (m, 1H), 4.19-4.07 (m, 2H), 2.33 (s, 3H), 1.92-1.83 (m, 2H). MS (ESI⁻) *m/z* calcd for C₁₀H₁₂O₂ (M-H⁺): 163.1, found: 163.1.

11 was prepared according to prior report.³ To a solution of **4c** (624 mg, 3.85 mmol) in anhydrous MeOH (11.7 mL, 0.33 M) was added NaBH₄ (160 mg, 4.23 mmol) at 0 °C. The reaction was stirred at 0 °C for 2 hours. The reaction was quenched by addition of H₂O (10 mL), the mixture was transferred to a separatory funnel and extracted with CH₂Cl₂ (10 mL x 3), then the combined organic phases were washed with 25 mL of brine. The organic phase was separated, dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by reverse phase C18 chromatography on a gradient of MeCN:H₂O (1:9) to (9:1) to give **11** as a white solid (418 mg, 66%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.09 (s, 1H), 6.92 (dd, *J* = 8.2, 2.4 Hz, 1H), 6.62 (d, *J* = 8.3 Hz, 1H), 5.27 (d, *J* = 5.4 Hz, 1H), 4.56 (q, *J* = 5.0 Hz, 1H), 4.16-4.09 (m, 2H), 2.20 (s, 3H), 1.99-1.80 (m, 2H). MS (ESI⁻) *m/z* calcd for C₁₀H₁₂O₂ (M-H⁺): 163.1, found: 163.1.

7-methylchroman-4-ol (12)

12 was prepared according to modification of prior report.³ To a solution of **4d** (345 mg, 2.13 mmol) in anhydrous MeOH (6.45 mL, 0.33 M) was added NaBH₄ (88.5 mg, 2.34 mmol) at 0 °C. The reaction was stirred at 0 °C for 2 hours. The reaction was quenched by addition of H₂O (10 mL), the mixture was transferred to a separatory funnel and extracted with CH₂Cl₂ (10 mL x 3), then the combined organic phases were washed with 25 mL of brine. The organic phase was separated, dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by reverse phase C18 chromatography on a gradient of MeCN:H₂O (1:9) to (9:1) to give **12** as a white solid (212 mg, 61%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.15 (d, *J* = 7.8 Hz, 1H), 6.67 (d, *J* = 7.8 Hz, 1H), 6.55 (s, 1H), 5.23 (d, *J* = 5.4 Hz, 1H), 4.56 (q, *J* = 4.9 Hz, 1H), 4.17-4.11 (m, 2H), 2.21 (s, 3H), 1.98-1.80 (m, 2H). MS (ESI⁻) *m/z* calcd for C₁₀H₁₂O₂ (M-H⁺): 163.1, found: 163.1.

8-methylchroman-4-ol (13)

13 was prepared according to modification of prior report.³ To a solution of **4e** (332 mg, 2.05 mmol) in anhydrous MeOH (6.20 mL, 0.33 M) was added NaBH₄ (85.2 mg, 2.25 mmol) at 0 °C. The reaction was stirred at 0 °C for 2 hours. The reaction was quenched by addition of H₂O (10 mL), the mixture was transferred to a separatory funnel and extracted with CH₂Cl₂ (10 mL x 3), then the combined organic phases were washed with 25 mL of brine. The organic phase was separated, dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by reverse phase C18 chromatography on a gradient of MeCN:H₂O (1:9) to (9:1) to give **13** as a white solid (185 mg, 55%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.12 (d, *J* = 7.7 Hz, 1H), 7.00 (d, *J* = 7.3 Hz, 1H), 6.75 (t, *J* = 7.5 Hz, 1H), 5.27 (d, *J* = 4.8 Hz, 1H), 4.59 (q, *J* = 4.6 Hz, 1H), 4.25-4.17 (m, 2H), 2.09 (s, 3H), 2.00-1.83 (m, 2H). MS (ESI⁻) *m/z* calcd for C₁₀H₁₂O₂ (M-H⁺): 163.1, found: 163.1.

7-chlorochroman-4-ol (1)

1 was prepared according to prior report.³ To a solution of **4a** (535 mg, 2.93 mmol) in anhydrous MeOH (8.88 mL, 0.33 M) was added NaBH₄ (122 mg, 3.22 mmol) at 0 °C. The reaction was stirred at 0 °C for 2 hours. The reaction was quenched by addition of H₂O (10 mL), the mixture was transferred to a separatory funnel and extracted with CH₂Cl₂ (10 mL x 3), then the combined organic phases were washed with 25 mL of brine. The organic phase was separated, dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **1** as a white solid (408 mg, 75%): ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, *J* = 8.3 Hz, 1H), 6.90 (dd, *J* = 8.1, 2.2 Hz, 1H), 6.86 (d, *J* = 2.2 Hz, 1H), 4.77 (q, *J* = 4.6 Hz, 1H), 4.30-4.25 (m, 2H), 2.15-2.00 (m, 2H), 1.78 (d, *J* = 5.1 Hz, 1H). MS (ESI⁻) *m/z* calcd for C₁₀H₁₂O₂ (M-H⁺): 183.0, found: 183.0.

7-chloro-5-methylchroman-4-ol (14)

To a solution of **4f** (44.8 mg, 228 µmol) in anhydrous MeOH (691 µL, 0.33 M) was added NaBH₄ (9.48 mg, 251 µmol) at 0 °C. The reaction was stirred at 0 °C for 2 hours. The reaction was quenched by addition of H₂O (5 mL), the mixture was transferred to a separatory funnel and extracted with CH₂Cl₂ (10 mL x 3), then the combined organic phases were washed with 25 mL of brine. The organic phase was separated, dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by reverse phase C18 chromatography on a gradient of MeCN:H₂O (1:9) to (9:1) to give **14** as a white solid (34.5 mg, 76%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.79 (d, *J* = 2.9 Hz, 1H), 6.68 (d, *J* = 2.5 Hz, 1H), 5.18 (s, 1H), 4.63 (s, 1H), 4.23-4.08 (m, 2H), 2.33 (s, 3H), 1.92-1.82 (m, 2H). ¹³C NMR (500 MHz, DMSO-*d*₆) δ 155.2, 141.1, 132.1, 122.2, 121.4, 113.8, 60.8, 57.8, 31.0, 17.8. HRMS (ESI⁻) *m/z* calcd for C₁₀H₁₁O₂Cl (M-H⁺): 197.0375, found: 197.0372.

7-chloro-4,5-dimethylchroman-4-ol (15)

To a solution of **4f** (102 mg, 519 µmol) in anhydrous THF (2.59 mL, 0.20 M) was added MeMgBr (929 µL of 1.4 M solution in (1:3) THF:Toluene) at 0 °C under argon gas. The reaction was allowed to warm to room temperature as it stirred for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **15** as a white solid (78.4 mg, 71%): ¹H NMR (500 MHz, CDCl₃) δ 6.71 (s, 1H), 6.67 (s, 1H), 4.20-4.10 (m, 2H), 2.57 (s, 3H), 2.17-2.05 (m, 2H), 1.69 (s, 1H), 1.66 (s, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 155.5, 140.3, 133.4, 125.4, 124.7, 115.3, 68.6, 63.9, 41.5, 28.5, 21.7. HRMS (ESI⁻) *m/z* calcd for C₁₁H₁₃O₂Cl (M-H⁺): 211.0531, found: 211.0532.

7-chloro-4-ethyl-5-methylchroman-4-ol (16)

To a solution of **4f** (105 mg, 534 µmol) in anhydrous THF (2.67 mL, 0.20 M) was added EtMgBr (1.33 mL of 1.0 M solution in THF) at 0 °C under argon gas. The reaction was allowed to warm to room temperature as it stirred for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **16** as a white solid (58.9 mg, 49%): ¹H NMR (500 MHz, CDCl₃) δ 6.72 (s, 1H), 6.69 (s, 1H), 4.17-4.05 (m, 2H), 2.54 (s, 3H), 2.29-2.24 (m, 1H), 2.06-1.89 (m, 3H), 1.71 (s, 1H), 0.86 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 156.2, 140.4, 133.4, 124.9, 124.7, 115.4, 70.8, 63.3, 37.1, 32.2, 21.8, 8.20. HRMS (ESI⁻) *m/z* calcd for C₁₂H₁₅O₂Cl (M-H⁺): 225.0688, found: 225.0685.

7-chloro-4-cyclopropyl-5-methylchroman-4-ol (17)

To a solution of **4f** (87.2 mg, 443 µmol) in anhydrous THF (2.22 mL, 0.20 M) was added *cyclo*PrMgBr (887 µL of 1.0 M solution in 2-methyl THF) at 0 °C under argon gas. The reaction was transferred to an oil bath and was refluxed under argon gas for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by reverse phase C18 chromatography on a gradient of MeCN:H₂O (1:9) to (9:1) to give **17** as a white solid (72.3 mg, 68%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.71 (d, *J* = 2.5 Hz, 1H), 6.65 (d, *J* = 2.4 Hz, 1H), 4.93 (s, 1H), 4.25-4.14 (m, 2H), 2.53 (s, 3H), 2.02-1.93 (m, 2H), 1.15-1.10 (tt, *J* = 8.4, 5.5 Hz, 1H), 0.81-0.76 (dtd, *J* = 9.5, 5.7, 4.0 Hz, 1H), 0.59-0.53 (tdd, *J* = 8.8, 6.1, 4.0 Hz, 1H), 0.36-0.31 (tdd, *J* = 8.9, 5.8, 4.0 Hz, 1H), 0.27-0.22 (dtd, *J* = 9.2, 6.0, 4.0 Hz, 1H). ¹³C NMR (500 MHz, DMSO-*d*₆) δ 154.3, 140.2, 130.1, 126.0, 122.0, 112.9, 65.6, 62.0, 37.6, 21.1, 19.8, 3.54, -0.50. HRMS (ESI⁻) *m/z* calcd for C₁₃H₁₅O₂Cl (M-H⁺): 237.0688, found: 237.0684.

7-chloro-5-methyl-4-phenylchroman-4-ol (18)

To a solution of **4f** (88.3 mg, 449 µmol) in anhydrous THF (2.25 mL, 0.20 M) was added PhMgBr (898 µL of 1.0 M solution in THF) at 0 °C under argon gas. The reaction was allowed to warm to room temperature as it stirred for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by reverse phase C18 chromatography on a gradient of MeCN:H₂O (1:9) to (9:1) to give **18** as a white solid (83.1 mg, 67%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.31-7.20 (m, 5H), 6.80 (d, *J* = 2.5 Hz, 1H), 6.72 (d, *J* = 2.5 Hz, 1H), 5.93 (s, 1H), 4.20-4.15 (ddd, *J* = 11.2, 9.3, 2.6 Hz, 1H), 4.06-4.02 (ddd, *J* = 10.9, 6.2, 3.4 Hz, 1H), 2.20-2.15 (ddd, *J* = 14.2, 6.1, 2.6 Hz, 1H), 2.06-2.00 (ddd, *J* = 14.0, 9.5, 3.4 Hz, 1H), 1.78 (s, 3H). ¹³C NMR (500 MHz, DMSO-*d*₆) δ 156.8, 149.0, 142.2, 132.5, 128.4, 126.8, 126.3, 125.7, 123.8, 114.7, 70.6, 62.9, 43.5, 21.3. HRMS (ESI[°]) *m/z* calcd for C₁₆H₁₅O₂Cl (M-H⁺): 273.0688, found: 273.0685.

1-(4-chloro-2-methoxy-6-methylphenyl)ethan-1-one (19)

3g (496 mg, 2.69 mmol) was dissolved in anhydrous DMF (2 mL) and was added to a suspension of K_2CO_3 (408 mg, 2.96 mmol) in anhydrous DMF (3 mL) at room temperature under argon gas. The reaction was stirred for 30 minutes. Methyl iodide (419 mg, 2.96 mmol) was slowly added at room temperature under argon gas and the reaction was stirred overnight. The reaction was quenched with crushed ice, the mixture was partitioned between EtOAc (100 mL) and sat. aq. NaHCO₃ solution (75 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc/Hexanes (1:20) to (1:1) to give **19** as a white solid (465 mg, 87%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.03 (s, 1H), 6.94 (s, 1H), 3.81 (s, 3H), 2.40 (s, 3H), 2.13 (s, 3H). ¹³C NMR (500 MHz, DMSO-*d*₆) δ 203.6, 156.7, 136.5, 134.1, 129.6, 122.3, 109.6, 56.3, 31.9, 18.3. HRMS (ESI⁺) *m/z* calcd for C₁₀H₁₁O₂CI (M+H⁺): 199.0521, found: 199.0497.

2-(4-chloro-2-methoxy-6-methylphenyl)propan-2-ol (20)

To a solution of **19** (121 mg, 609 µmol) in anhydrous THF (3.05 mL, 0.20 M) was added MeMgBr (1.09 mL of 1.4 M solution in (1:3) THF:Toluene) at 0 °C under argon gas. The reaction was allowed to warm to room temperature as it stirred for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **20** as a white solid (98.3 mg, 75%): ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.87 (d, *J* = 2.4 Hz, 1H), 6.74 (d, *J* = 2.5 Hz, 1H), 4.73 (s, 1H), 3.75 (s, 3H), 2.53 (s, 3H), 1.52 (s, 6H). ¹³C NMR (500 MHz, DMSO-*d*₆) δ 157.7, 139.3, 134.5, 130.4, 124.6, 110.3, 73.5, 55.9, 30.8, 24.1. HRMS (ESI⁺) *m/z* calcd for C₁₁H₁₅O₂Cl (M+H⁺): 215.0834, found: 215.0470.

1-(4-chloro-2-methoxy-6-methylphenyl)-1-cyclopropylethan-1-ol (21)

To a solution of **19** (119 mg, 599 µmol) in anhydrous THF (3.00 mL, 0.20 M) was added *cyclo*PrMgBr (1.20 mL of 1.0 M solution in 2-methyl THF) at 0 °C under argon gas. The reaction was transferred to an oil bath and was refluxed under argon gas for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **21** as a white solid (87.3 mg, 61%): ¹H NMR (500 MHz, CDCl₃) δ 6.79 (s, 2H), 4.47 (s, 1H), 3.85 (s, 3H), 2.52 (s, 3H), 1.59 (s, 3H), 1.44-1.39 (tt, *J* = 8.3, 5.7 Hz, 1H), 0.60-0.39 (m, 4H). ¹³C NMR (500 MHz, CDCl₃) δ 158.3, 138.3, 133.0, 131.9, 125.8, 110.7, 75.6, 56.1, 28.8, 24.6, 22.2, 2.47, 2.06. HRMS (ESI⁺) *m/z* calcd for C₁₃H₁₇O₂Cl (M+H⁺): 241.0990, found: 241.0959.

1-(4-chloro-2-methoxy-6-methylphenyl)-1-phenylethan-1-ol (22)

To a solution of **19** (122 mg, 614 µmol) in anhydrous THF (3.07 mL, 0.20 M) was added PhMgBr (1.23 mL of 1.0 M solution in THF) at 0 °C under argon gas. The reaction was allowed to warm to room temperature as it stirred for 24 hours. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl solution (5 mL). The mixture was partitioned between CH₂Cl₂ (25 mL) and H₂O (25 mL), the organic phase separated, washed with brine (25 mL), dried over anhydrous Na₂SO₄ and the filtrate was evaporated under reduced pressure. The crude material was purified by silica gel flash column chromatography on a gradient of EtOAc:Hexanes (1:20) to (1:1) to give **22** as a white solid (112 mg, 66%): ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.27 (m, 4H), 7.22-7.18 (m, 1H), 6.81 (d, *J* = 2.3 Hz, 1H), 6.77 (d, *J* = 2.4 Hz, 1H), 4.77 (s, 1H), 3.57 (s, 3H), 2.26 (s, 3H), 1.95 (s, 3H). ¹³C NMR (500 MHz, CDCl₃) δ 158.6, 150.0, 138.9, 133.2, 132.7, 128.0, 126.6, 125.8, 124.9, 111.5, 78.3, 56.3, 31.4, 24.0. HRMS (ESI⁻) *m/z* calcd for C₁₆H₁₇O₂CI (M-H⁺): 277.0990, found: 277.0949.

S44

S48

Supplementary Tables

Compound	Structure	SPR K _d (µM) - AMP-PNP ^a SPR K _d (µM) + AMP-PNP	LE ^b
14	Me OH CI O	> 1 mM > 1 mM	_
15		> 1 mM > 1 mM	—
16		> 1 mM > 1 mM	_
17		> 1 mM > 1 mM	—
18		367 ± 23 717 ± 46	0.25

Table S1. Affinity and LE of compounds 14-18

 ${}^{a}K_{d}$ values shown represent the mean ± SEM of two determinations. ${}^{b}LE = 1.37 pK_{d}/HA$ (heavy atom count).

Compound	Structure	SPR K _d (µM) - AMP-PNP ^a SPR K _d (µM) + AMP-PNP	LE ^b
20	Me OH Me CI OMe	> 1 mM > 1 mM	
21	Me OH Me CI OMe	150 ± 53 143 ± 83	0.33
22		> 1 mM > 1 mM	_

Table S2. Affinity and LE of compounds 20-22

 ${}^{a}K_{d}$ values shown represent the mean ± SEM of two determinations. ${}^{b}LE = 1.37 pK_{d}/HA$ (heavy atom count).

Compound	Structure	HLB Number	SMILES
1	CI CI	HLB-0522184	OC2CCOc1cc(CI)ccc12
5	HO Me	HLB-0535152	CC2(O)CCOc1cc(Cl)ccc12
6		HLB-0535154	CCC2(O)CCOc1cc(CI)ccc12
7	HO	HLB-0535143	OC3(C1CC1)CCOc2cc(Cl)ccc23
8		HLB-0535139	OC3(c1ccccc1)CCOc2cc(CI)ccc23
9	OMe CI	HLB-0535153	COC2CCOc1cc(CI)ccc12
10	Me OH	HLB-0535140	Cc1cccc2OCCC(O)c12
11	Me OH	HLB-0535141	Cc2ccc1OCCC(O)c1c2
12	Me OH	HLB-0535142	Cc1ccc2c(c1)OCCC2O
13	OH U Me	HLB-0535144	Cc1cccc2c1OCCC2O

Table S3. Structures, HLB numbers, and SMILES of compounds 1, 5-18, 20-22

Compound	Structure	HLB Number	SMILES
14	CI OH	HLB-0535157	Cc1cc(Cl)cc2OCCC(O)c12
15	Me OH CI O	HLB-0535155	Cc1cc(CI)cc2OCCC(C)(O)c12
16		HLB-0535156	CCC2(O)CCOc1cc(Cl)cc(C)c12
17	Me OH CI O	HLB-0535158	Cc2cc(CI)cc3OCCC(O)(C1CC1)c23
18		HLB-0535159	Cc2cc(CI)cc3OCCC(O)(c1ccccc1)c23
20	Me OH Me Me CI OMe	HLB-0535160	COc1cc(Cl)cc(C)c1C(C)(C)O
21	Me OH Me CI OMe	HLB-0535161	COc1cc(Cl)cc(C)c1C(C)(O)C2CC2
22		HLB-0535162	COc1cc(Cl)cc(C)c1C(C)(O)c2ccccc2

HLB (Harki Lab) numbers are unique molecular identifiers for molecules reported by the Harki group and can be referenced in material transfer requests.

Assay Procedures

Fragment Library

The fragment library was purchased from Life Chemicals high-solubility fragment collection and consisted of 1056 fragments. The fragments were dissolved at 200 mM in DMSO- d_6 and dispensed into master plates. A portion of the 200 mM stocks was used to pool mixtures of 5 fragments at 40 mM in DMSO- d_6 (fragments were pooled by chemical compatibility).

NIK Protein for Assays

Human NIK protein was purchased from GenScript at \geq 80% purity (residues 336-686 with N-terminal 6xHis-tag and TEV cleavage site). The storage buffer for NIK protein consisted of 20 mM Tris (pH = 8.0), 300 mM NaCl, 40% glycerol, 0.25 mM TCEP. The 6xHis-tag was kept intact for all experiments. For CPMG NMR, the protein was directly diluted into buffer. For SPR, NIK was buffer exchanged into 40 mM KH₂PO₄/K₂HPO₄ (pH = 8), 100 mM KCl, 10 mM MgCl₂, 0.01% Tween-20 using Amicon Ultra-0.5 centrifugal filter units (MilliporeSigma, 3 kDa filter). NIK concentration was measured on a NanoDrop 2000 spectrophotometer (Thermo Scientific). EZ-Link NHS-PEG4-Biotin (Thermo Scientific) was dissolved in H₂O and added to the NIK protein at a 1:1 ratio. The mixture was incubated overnight at 4°C. The mixture was buffer exchanged into 40 mM KH₂PO₄/K₂HPO₄ (pH = 8.0), 100 mM KCl, 10 mM MgCl₂, 0.01% Tween-20 using Amicon Ultra-0.5 centrifugal filter units to remove the excess EZ-Link NHS-PEG4-Biotin reagent. The biotinylated NIK protein concentration was measured on a NanoDrop 2000 spectrophotometer to be used for all SPR assays.

CPMG NMR – General Parameters

One-dimensional ¹H-NMR binding assays using standard CPMG pulse sequence with T_2 filtering⁴ were run at the Minnesota NMR Center on a 700-MHz Bruker Avance I spectrometer equipped with a SampleJet autosampler. Assays were performed to measure the binding of fragments to the catalytic domain of human NIK. Buffer conditions used were 50 mM KH₂PO₄/K₂HPO₄ (pH = 8), 300 mM KCl, 10 mM MgCl₂, 10% D₂O in H₂O. All samples were made by diluting the fragments/pooled fragments (in DMSO-*d*₆) into buffer. The samples were run in 1.7 mm BioSpin NMR tubes (Bruker) at room temperature.

CPMG NMR – Screening Assay

While following the general parameters described above, in these experiments AMP-PNP (MilliporeSigma, 10102547001) was added to saturate the NIK orthosteric binding site. The autosampler was cooled to 4°C during the duration of the experiments to ensure protein stability while samples were waiting to be run. Two separate samples were made to record two spectra for each of the fragment mixtures. One sample contained five fragments at 100 μ M concentration in buffer. The other sample contained five fragments at 100 μ M, NIK protein at 10 μ M, and AMP-PNP at 1 mM in buffer. Fragments were considered to be hits if binding was observed (approximately 50% signal attenuation or greater).

CPMG NMR – Competition Assay

While following the general parameters described above, in these experiments the fragments were run individually and three spectra were recorded for each fragment: 1) Fragment at 100 μ M in buffer, 2) Fragment at 100 μ M and NIK at 10 μ M in buffer, 3) Fragment at 100 μ M, NIK at 10 μ M, and AMP-PNP at 1 mM in buffer. Fragments were considered hits if binding was observed, but competition with AMP-PNP was not observed (approximately 50% signal attenuation or greater for both 2 and 3 and greater signal attenuation for 3 than 2).

SPR Screening Assay

Surface plasmon resonance (SPR) was performed at the UMN Institute of Therapeutic Drug Discovery and Development (ITDD) High-Throughput Screening Laboratory. A Series S NeutrAvidin-coated sensor chip (Cytiva, 29407997) was docked into a Biacore S200 instrument. The running buffer consisted of 10 mM HEPES (pH = 7.4), 150 mM NaCl, 10 mM MgCl₂, 3 mM DTT, 0.5 mg/mL y-globulins, 0.005% (v/v) Tween20, 5% DMSO (when testing small molecules). Biotinylated human NIK protein at 100 µg/mL was injected over flow-cells 2 and 4 (flow-cells 1 and 3 were used for reference subtraction) with a contact time of 600 sec at a flow-rate of 5 µL/min. Observed immobilization levels were 5000-8000 response units (RU). To block the remaining NeutrAvidin sites, 100 µM solution of biocytin was injected over all flow-cells with a contact time of 300 sec at a flow-rate of 10 µL/min. Compounds were run at a top concentration of 500 µM. 2-fold serial dilutions were made from the top concentration to obtain 5-dose response series for screening and 7 or 9 dose-response series for confirming hits and testing analogues. 1 mM AMP-PNP was added to compound containing wells when determining affinities in the presence of AMP-PNP. The activity of the chip surface was monitored by including reference compound staurosporine (pan-kinase inhibitor) first and last in each run. The assay was stable for one day at room temperature. K_d values were determined using Biacore software with a steady-state fit. The mean ± SEM was calculated using Microsoft Excel (version 16.76).

qNMR Solubility Assay

Solubility assay was set up using a modification of a published protocol.⁵ A sample of 1 mM of maleic acid and 5 mM of **5** was made in assay buffer consisting of 50 mM K₂HPO₄ (pH = 7.4) in D₂O with 5% DMSO- d_6 . A qNMR pulse sequence was run where D1 was set to 60 s with 256 scans using a 90° pulse. The NMR spectra was worked up in MestReNova (version 14.2.2). Integration of the peaks correlated with **5** were compared to the known concentration standard of maleic acid and the concentration of **5** in solution was determined.

NMR Aggregation Assay

Aggregation assay was set up using a published protocol.⁶ The data was worked up in MestReNova (version 14.2.2).

Resazurin Redox Assay

Resazurin redox assay was set up using a published protocol.⁷ The data was worked up in Microsoft Excel (version 16.76) and graphed in Prism (version 9.3.1).

SPR Sensorgrams

Representative sensorgrams of **14** with and without AMP-PNP (one replicate shown, but two replicates were generated). This sensorgram is representative of all compounds that did not generate a K_d of less than 1 mM.

Representative sensorgrams of **6** with and without AMP-PNP (one replicate shown, but two replicates were generated).

Representative sensorgrams of **7** with and without AMP-PNP (one replicate shown, but two replicates were generated).

Representative sensorgrams of **8** with and without AMP-PNP (one replicate shown, but two replicates were generated).

Representative sensorgrams of **10** with and without AMP-PNP (one replicate shown, but two replicates were generated).

Representative sensorgrams of **18** with and without AMP-PNP (one replicate shown, but two replicates were generated).

Representative sensorgrams of **21** with and without AMP-PNP (one replicate shown, but two replicates were generated).

References

- 1. Buck, J. S.; Cutler, R. A.; Nachod, F. C.; Powles, R. G.; Rokoczy, R.; Slauson, T. J.; Tullar, B. F. Some Chlorinated 4-Indanols: Preparation and Proof of Structures. *J. Am. Chem. Soc.* **1957**, *79*, 3559.
- Mahalingam, P.; Takrouri, K.; Chen, T.; Sahoo, R.; Papadopoulos, E.; Chen, L.; Wagner, G.; Aktas, B. H.; Halperin, J. A.; Chorev, M. Synthesis of Rigidified eIF4E/eIF4G Inhibitor-1 (4EGI-1) Mimetic and Their in Vitro Characterization as Inhibitors of Protein-Protein Interaction. *J. Med. Chem.* 2014, *57*, 5094.
- 3. Alexander, J. R.; Ott, A. A.; Liu, E.; Topczewski, J. J. Kinetic Resolution of Cyclic Secondary Azides, Using an Enantioselective Copper-Catalyzed Azide-Alkyne Cycloaddition. *Org. Lett.* **2019**, *21*, 4355.
- Johnson, J. A.; Olson, N. M.; Tooker, M. J.; Bur, S. K.; Pomerantz, W. C.K. Combined Protein- and Ligand-Observed NMR Workflow to Screen Fragment Cocktails against Multiple Proteins: A Case Study Using Bromodomains. *Molecules* **2020**, *25*, 3949.
- 5. Bharti, S. K.; Roy, R. Quantitative ¹H NMR spectroscopy. *TrAC, Trends Anal. Chem.* **2012**, 35, 5.
- LaPlante, S. R.; Carson, R.; Gillard, J.; Aubry, N.; Coulombe, R.; Bordeleau, S.; Bonneau, P.; Little, M.; O'Meara, J.; Beaulieu, P. L. Compound Aggregation in Drug Discovery: Implementing a Practical NMR Assay for Medicinal Chemists. *J. Med. Chem.* **2013**, *56*, 5142.
- 7. Lor, L. A.; Schneck, J.; McNulty, D. E.; Diaz, E.; Brandt, M.; Thrall, S. H.; Schwartz, B. A Simple Assay for Detection of Small-Molecule Redox Activity. *J. Biomol. Screen.* **2007**, *12*, 881.