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SUPPLEMENTAL METHODS 

 

Sample Size Estimate Calculations 

A threshold of 67% for per-interval sensitivity was chosen as continuous monitoring 

provides multiple opportunities to detect periods of suspected AF. For example, If AF 

occurs over two 15-min intervals then the effective sensitivity is 89%, which increases to 

96% when there are 3 AF-positive 15-minute intervals (or a single 45-min episode). A 

minimum of 90% was set for per-interval specificity as that would yield approximately 4 

false-positive notifications per day, which would be 4 additional ECG prompts per day. 

This was viewed as an acceptable upper limit for a prescription-only device in subjects 

that have been diagnosed with or are vulnerable to developing AF. These thresholds 

served as the basis for our primary endpoints. 

 

Sample size estimates are based on the difference between the primary endpoint 

thresholds described above (67% sensitivity and 90% specificity) and the expected 

performance of our test device (80% sensitivity, 95% Specificity), where differences in 

sensitivity and specificity are measured at the interval-level and intervals are clustered 

by subject. We assumed 470 intervals captured per subject containing sufficient quality 

PPG data based on a projected average wear time per subject of 14 hours/day (4 

intervals/hour x 14 hours/day x 14 days = 784 intervals. We assumed that 60% of 

intervals will have sufficient quality PPG data resulting in 470 intervals (784 x 0.6). An 



average of 17% of captured intervals per subject were projected to be reference 

positive, based on previous studies of subjects with AF. Prior data was also used to 

estimate an intracluster correlation coefficient (ICC) of r = 0.5, which is a measuring of 

AF occurrences within-subject vs. across-subject.   Finally, we assumed 10% loss of 

subjects that results in unevaluable data, as a result of loss to follow-up, non-

compliance or device error. 

 

The effective sample size is based on a formula30 that penalizes the nominal sample 

size calculation on an estimated design-effect: 

 n_c = n * [1 + (s - 1) * r] where, 

● n_c (effective sample size) = the number of intervals required for the study 

accounting for clustering 

● n (nominal sample size) = the number of positive or negative intervals that would 

be required if these intervals were truly independent based on providing 80% 

Power (at one-sided alpha = 2.5%) 

● [1 + (s - 1) * r] represents the design effect/variance inflation factor, where 

● s = average cluster size. This is the average number of ref+ or ref- intervals per 

subject that will have sufficient quality test/reference data. 

● r = the proportion of total variance explained by across-cluster (e.g. subject) 

variance. Measured using prior clinical data.  

 

Allowing for multiple dependent intervals per subject and based on the assumptions 

above (i.e. r = 0.50, AF burden = 17%), approximately 110 evaluable subjects are 



required to provide 80% power to detect a difference in specificity of 5%. This same 

number of evaluable subjects would provide >90% power to detect a difference in 

sensitivity of 13%. Accounting for study loss, up to 140 subjects were estimated to be 

needed to obtain this number of evaluable subjects. 

 

Logistic Mixed-Effect Regression Models to Estimate Accuracy 

Estimates of accuracy were calculated across intervals, while accounting for clustering 

of intervals within-subject. Logistic mixed-effect regression models, with a random effect 

added to account for the effect of clustering, were used to estimate sensitivity, 

specificity, PPV, and NPV.  The correlation of repeated measurements on the same 

individual was specified by including the 𝜸 vector of random effects and then specifying 

the structure of the variance-covariance matrix of the random effects. We used an 

unstructured covariance, which estimates unique correlations for each pair of intervals. 

However, no term was included that accounts for correlation of intervals with lagged 

versions of those same intervals (autocorrelation). 

 

Confidence Interval Estimation 

For all estimates of accuracy at the interval level, 95% Confidence Intervals (CIs) were 

provided using bootstrap methods (‘cluster’ or ‘block’ bootstrap) where the correlation 

structure is preserved, taking into account the fact that repeat intervals are nested within 

subjects (i.e. individual). Standard bootstrapping procedures require identically 

distributed and independent responses, which is not the case with such nested data.  

 



Cluster bootstrapping, modifies the standard bootstrapping procedure with regard to the 

resampling process as follows:  

● Define: J = cluster unit = subject, where multiple observation units (intervals) may 

be observed 

● The sampling is based on the total number of J clusters.  

○ The first step is to randomly select J number of clusters with replacement  

○ For each cluster selected (with some clusters selected more than once 

and others not selected at all), all observations within that cluster are 

selected. Original cluster sizes are maintained. 

○ Sensitivity or specificity (θ) are computed using the bootstrapped sample 

and the process is repeated B number of times. Our analysis used B = 

10,000. 

● Non-parametric confidence intervals were derived based on the 2.5% and 97.5% 

quantiles of the resulting bootstrap distribution (i.e. of the ordered distribution of 

θs). 

● Point estimates for sensitivity and specificity were based on model estimates of 

the proportions, whereas 95% CIs were based on the bootstrap distribution. 

 

Clopper-Pearson intervals were used only as noted when cluster-bootstrap intervals 

could not be calculated due to low error counts (i.e. non-convergence). In such cases 

within-subject correlations are not accounted for. In all other cases cluster-bootstrap 

intervals are used. 

 

Model Architecture 



The on-watch AF detection algorithm is a Convolution Neural Network (CNN) based 

model that learns features from PPG signal. Compared to using detected beats which 

are susceptible to noise or motion from PPG, these extracted features are more likely to 

maintain signal morphology and yield robust prediction results even when signals are 

noisy. The entire model for on-board prompting is designed compactly such that it can 

be integrated into the Study Watch firmware, consisting of 7 convolutional layers 

including an additional fully connected output layer. 

The AF burden estimation algorithm is based on a patented encoder-decoder scheme. 

A CNN-based model serves as an encoder on-watch, and a residual neural network 

(ResNet) as a decoder that is run server-side instead of the firmware, using PPG 

features that are outputted from the encoder on the firmware and transmitted from the 

device. This approach allows for a computationally lighter 3-layer model to run on the 

firmware, while a more complex model is run server-side, incorporating 8 residual 

blocks with two convolutional layers each, totalling 17 convolutional layers including an 

additional fully connected layer. 

 

Algorithm Development 

Training 

To train the algorithms, we created a dataset of over 400,000 30-second PPG strips by 

simulating synthetic PPG waveforms from 30-second modified lead II ECG strips 

enriched with a variety of arrhythmia from the Zio population. Each of these ECG strips 

was reviewed by Certified Cardiographic Technicians (CCTs) to obtain the 

corresponding rhythm labels. Synthetic noise was also added to simulate electrical 



noise and motion artifacts present in real PPG signals, augmenting the dataset. Each 

PPG strip was preprocessed (i.e., resampled, filtered, and normalized) and fed as input 

for model training. 

Tuning 

The tuning process employed a bootstrapping approach to ensure that the algorithms 

are generalizable for use with the intended population. Both algorithms aggregate 

prediction results over an interval of time and output AF and unanalyzable prediction 

probabilities for on-wrist intervals. These probabilities are compared against a threshold 

to determine if the interval will be labeled unanalyzable, AF, or not AF. The thresholds 

were determined using ambulatory PPG and corresponding ECG-based rhythm labels 

from Study Watch Atrial Fibrillation (AF) Detection Investigation (SWAFDI; 

NCT04074434), a previously run study independent from the current evaluation study 

“Study Watch AF Detection At Home” (NCT04546763).  



Table S1. PPG interbeat interval variability comparison for false positive and true 

negative results (Two subjects with highest counts vs. remaining false positive 

individuals). 

 

PPG IBI 
intervals 

Subject #1 
(1,148 

intervals) 

Subject #2 
(951 

intervals) 

All other 43 
subjects 
with FPs 
(33,834 

intervals) 

All FPs 
(1,599 
FPs) 

All TNs 
(8,2972 

TNs) 

All TPs  
(7,000 
TPs) 

SDNN (ms) 191.0 ± 
49.2 

157.6 ± 
61.6 

148.8 ±   
75.9 

176.90 ±  
53.90 

130.45 ±  
72.33 

205.09 ± 
45.49 

RMSSD 
(ms) 

261.8 ± 
60.3 

203.3 ± 
87.2 

191.4 ±  
110.2 

241.25 ±  
71.49 

163.78 ± 
100.73 

270.74 ±  
58.33 

 
SDNN: Standard Deviation of NN intervals; RMSSD: stands for Root Mean Square of 

Successive Differences; SD: standard deviation; IBI: Interbeat interval variability (mean ± SD); 

FP: false positive; TN: true negative; TP: true positive   



Table S2. Sensitivity analysis to assess the impact of un-analyzable and off-wrist test 

intervals on performance. 

 

 

Assuming un-analyzable + off-wrist test intervals are: 

Test-Positive Test-Negative 
Matches 

Reference 

Does Not 
Match 

Reference 

Per interval 
Sensitivity  
(95% CI) 

97.2% 
[94.8%, 98.5%] 

69.2% 
[60.5%, 76.5%] 

97.2% 
[94.8%, 98.5%] 

69.2% 
[60.5%, 76.5%] 

Per Interval 
Specificity  
(95% CI) 

68.8% 
[65.8%, 71.7%] 

 

98.7% 
[98.1%, 99.3%] 

98.7% 
[98.1%, 99.3%] 

68.8% 
[65.8%, 71.7%] 

 

 

  



Table S3. Unanalyzable intervals by activity level. 

 

Activity 
Level 

# of intervals 
with Ziopatch 

data 

# of 
unanalyzable 

intervals 

% of unanalyzable 
intervals per 
activity level 

% of all unanalyzable 
intervals                

(27,115 intervals) 

Light 105,146 17,078 16.2% 63.0% 

Moderate 12,043 8,457 70.2% 31.2% 

Vigorous 1,783 1,580 88.6% 5.8% 

  



Table S4. Unanalyzable intervals by arm hair index. 

 

Arm Hair Index # of unanalyzable 
intervals 

% of unanalyzable 
intervals within the 

subgroup 

% of all unanalyzable 
intervals          

(27,115 intervals) 

1 (N = 47) 11,379 23.0% 42.0% 

2 (N = 32) 7,473 22.7% 28.2% 

3 (N = 29) 7,649 23.1% 27.6% 

4 (N = 3) 614 17.9% 2.2% 

  



Table S5. Unanalyzable intervals by Fitzpatrick skin tone. 

 

Skin Tone # of unanalyzable 
intervals 

% of unanalyzable 
intervals within the 

subgroup 

% of all unanalyzable 
intervals (27,115 

intervals) 

I (N = 10) 1,696 14.3% 6.2% 

II (N = 17) 3,600 18.8% 13.3% 

III (N = 42) 8,610 20.0% 31.8% 

IV (N = 26) 6,257 22.6% 23.1% 

V/VI (N = 16) 6,952 40.2% 25.6% 

  



Figure S1. Example of false positive PPG interval with high IBI. The filtered PPG and patch 

ECG waveforms from a 15-min interval from Subject # 1 in Table S1 (one minute of data per 

row). The SDNN from PPG-derived interbeat intervals (IBIs) is 166.9 ms and RMSSD is 264.5 

ms. 



Figure S2. Example of false negative PPG interval with low AF burden. The filtered PPG 

and patch ECG waveforms from a 15-min interval with aggregated AF duration of 103 seconds 

highlighted in red. There is one minute of data per row. The SDNN from PPG-derived interbeat 

intervals (IBIs) is 114.7 ms and RMSSD is 88.7 ms. 

 
  



Figure S3. Distribution of patients across percentiles of un-analyzable intervals. 

 

 
 

 


