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Abstract
Objectives: Early identification of fracture risk in osteoporosis patients is essential. In recent years, machine 
learning methods have been gradually introduced into this field; however, their predictive value remains 
controversial. Therefore, we conducted this systematic review and meta-analysis to explore the predictive value 
of machine learning on fracture risk in patients with osteoporosis.
Setting:Eligible studies were collected from four databases (PubMed, Embase, Cochrane Library and Web of 
Science) until June. 20th, 2022. A meta-analysis of the C-index was performed using random-effects models, 
while bivariate mixed-effects models were used for sensitivity and specificity. In addition, a subgroup analysis 
was performed according to the types of machine learning models and fracture sites.
Participants:Patients were diagnosed with osteoporosis,ML was applied to predict fracture risk and at least one 
measure of model performance (discrimination or calibration) was reported.
Primary and secondary outcome measures: Outcome variables were measured as C index or AUC ,
sensitivity(%), specificity(%).
Results:Forty-six studies were included in our meta-analysis, involving 8,869,283 patients, 89 prediction 
models specifically developed for osteoporosis populations, and 39 validation sets. These models’ most 
commonly used predictors were age, fracture history, body mass index (BMI), bone mineral density (BMD), 
radiomics data, weight, height, bone mineral density T-score, history of falls, gender, and other chronic diseases. 
Overall, the C-index of machine learning was 0.76 (95% CI: 0.73,0.79) and 0.74 (95% CI: 0.71,0.77) in the 
training set and validation set, respectively; and the sensitivity was 0.81 (95% CI: 0.75,0.86) ) and 0.82 (95% CI: 
0.75,0.87); and the specificity was 0.76 (95% CI: 0.80,0.81) and 0.83 (95% CI: 0.72,0.90), respectively.
Conclusions:Machine learning has an ideal predictive value on fracture risk in patients with osteoporosis and 
can be used as a potential tool for early identification of fracture risk in osteoporosis patients. 
Keywords  Osteoporosis  Machine learning  Fractures  Meta-Analysis

Strengths and limitations of this study
 Rigorous literature search and methodology followed to provide reliable estimates.
 We performed a quantitative synthesis to enhance the comparability of ML models.
 ML has an ideal predictive value for fracture risk in patients with osteoporosis.
 Most of the included studies (64%) had a high risk of bias.

Introduction
Osteoporosis is a systemic metabolic bone disease characterized by decreased bone mass and degraded 

bone tissue microarchitecture, leading to an increased risk of bone fragility and fracture (WHO,1994)[1]. 
Osteoporosis features low quality of life, high cost, high disability rate and high morbidity rate[2]. It has become 
a global health problem that threatens human health. According to the World Health Organization, osteoporosis 
is the second-most serious health issue after cardiovascular diseases[3].

Machine learning (ML) is a subfield of artificial intelligence, which enables computers to "learn" through 
programs[4].ML models have been applied in the field of osteoporosis and provided new opportunities for 
fracture prediction. A review by Ferizi et al. (2019) summarized relevant researches on the application of 
artificial intelligence to the prediction of osteoporosis. It drew a conclusion that new methods for automatic 
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image segmentation and fracture risk prediction showed promising clinical value[5]. A systematic review by 
Smets et al. (2021) reviewed the state-of-the-art ML methods and their application in osteoporosis diagnosis and 
fracture prediction[6]. Another review by Anam et al. (2021) explored the prediction of ML for osteoporosis in 
trabecular bone. This paper presented a detailed systematic review of ML prediction for trabecular bone diseases 
using magnetic resonance imaging (MRI) both from a methodology-driven and application perspective[7]. Most 
studies focused on the role of ML either to predict an indicator of osteoporosis, such as BMD or fractures, or as 
a tool for automatic segmentation of the images of patients at risk of osteoporosis, rather than predicting 
osteoporotic fractures.

The present study evaluated the predictive value of ML for fracture risk in osteoporosis patients and 
provided an evidence-based medical basis for the application of ML in clinical practice.
Materials and methods

This study was conducted in accordance with the Preferred Items of Systematic Review and Meta Analysis 
(PRISMA) statement (Table S1)[8]. The protocol was registered on the international prospective register of 
systematic reviews (PROSPERO) (Registration No. CRD42022346896).Relevant studies were retrieved from 
Pubmed, Embase, Cochrane Library, and Web of Science, and the retrieval was as of June 20, 2022. Two 
researchers independently searched the literature, the search strategy is shown in Table S2. 

Inclusion criteria were as follows: (1) patients were diagnosed with osteoporosis (OP); (2) ML was applied 
to predict fracture risk; (3) at least one measure of model performance (discrimination or calibration) was 
reported; (4) study population included adult patients older than 18 years, mainly including adults, the elderly 
and postmenopausal women.Exclusion criteria were as follows: (1) studies that only analyzed risk factors 
without building complete ML models; (2) studies that only included osteoporosis but did not mention fracture 
risk; (3) studies without available full text (or only abstract available) or data; (4) meta-analyses, reviews, case 
reports,editorial materials, letters, protocols, errata, and notes.

Two researchers independently extracted data using standardized tables. Any studies excluded after 
full-text review have been recorded with reasons for their exclusion. The list of extracted items was based on the 
CHARMS checklist [9], and two data extraction sheets were prepared for developed and validated models. 
Finally, the extracted data involved the first author, year of publication, country, study design, data 
source,population group, gender, age, fracture sites, types of predictive models, number of predictors, and 
outcomes.The risk of bias was assessed using the Prediction Model Risk Of Bias Assessment Tool (PROBAST). 
The PROBAST contained a large number of questions in four distinct domains: participants, predictors, 
outcomes, and statistical analysis, reflecting the overall risk of bias and usability[10]. 

A meta-analysis of the metrics (C-index and accuracy) was performed to evaluate ML models. If the 
C-index did not report 95% confidence intervals (CI) and standard errors, we estimated the standard errors in 
reference to the study by Debray TP et al.[11]. A C-index of 0.5 indicates that a model performs no better than 
chance; 0.6 to 0.7 is considered modest discrimination; 0.71 to 0.8 indicates very good discrimination; and 
greater than 0.8 is considered strong [12]. When there was a lack of accuracy in the original studies, we 
calculated it based on the sensitivity and specificity in combination with the number of samples in each 
subgroup and the number of modeling samples[11]. Considering the differences in variables, ML models and 
variation parameters included in the studies, the random effects model was preferred for the meta-analysis of 
C-index, and the bivariate mixed effects model was used for the meta-analysis of sensitivity and specificity.Our 
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meta-analysis were performed using the software Stata 15.1 (Stata Corporation, College Station, TX, USA) and 
R4.2.0 (R Development Core Team, Vienna, http://www.R-project.org). A p value less than 0.05 was 
considered statistically significant.
Results

A total of 6,851 studies(1395 from PubMed, 2644 from Embase Database, 157 from Cochrane Library, and 
2655 from Web of Science) were searched from the databases. After removing duplicates and screening titles 
and abstracts, 340 articles remained. According to a full-text review, 46 articles[13-58] were eligible. Forty-four 
articles presented the development of one or more prediction models for osteoporotic fracture, and twenty-four 
articles described the validation of one or more models. The search process is shown in Figure 1. 

Forty-six studies were ultimately included in our meta-analysis, involving 8,869,283 patients and 
2,611,525 fracture cases. The majority of studies were conducted in U.S.(n = 10) and Canada (n = 6), and most 
studies were cohort studies (n = 40) or case-control studies (n = 6). The median age of osteoporosis patients was 
69 years (ranging from 48.5 to 84). Most study samples covered postmenopausal women (n = 15). The fracture 
sites included hip fracture (n = 12), vertebral fracture (n = 11) and multi-site fracture (n = 23). Most studies were 
based on clinical hospital data (n=14), while some used questionnaire collection data (n=9), osteoporosis 
registry data (n=9), electronic health records(n=6), and administrative data (n=6). Only 11 articles elucidated the 
cross-validation method used by their models. The baseline characteristics are shown in Table 1.

A total of 89 prediction models were specifically developed for the osteoporosis population in 44 articles, 
and 39 validation sets were performed in 24 studies. For most of these models, the C-index or the area under the 
receiver operating characteristic curve (AUC) ranged from 0.58 to 0.98. Table S3 shows all model-development 
and validation studies on the ML models for outcome prediction in patients with osteoporosis. The number of 
participants ranged from 28 to 6,329,986 (median 1026), and the number of fracture events varied from 14 to 
2468694 (median 143). Among all the identified prediction models, the logistic regression (35%) was the most 
commonly studied model, followed by the survival model (17%).  

 
Table 1.  Characteristics of included studies in meta-analysis
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Author Year Country Data source Sample population 
type

Average 
age,years Fracture site ML 

models

Wu, Q[23] 2020 USA gene database older men 74.8 multiple fractures

LR
ANN
RF
BT

Villamor, E[24] 2020 Spain clinical hospital data postmenopausal 
women 81.4 hip fracture

LR
SVM
ANN
RF

Van Geel, Tacm[25] 2011 Netherlands questionnaire collection 
data

postmenopausal 
women 62 vertebral fracture SM

Ulivieri, F. M[26] 2021 Italy clinical hospital data patient 48.5 vertebral fracture ANN

Yoda, T[27] 2021 Japan clinical hospital data patient 77.6 vertebral fracture CNN

Jiang, X. Z[28] 2013 USA clinical hospital data older women 61.4 multiple fractures LR

Schousboe, J. T[29] 2014  USA clinical hospital data older women 75 vertebral fracture LR

Sandhu, S. K[30] 2010 Australia electronic health record 
data patient 74 multiple fractures LR

Rubin, K. H[31] 2018 Denmark administrative data inhabitant 61.4 multiple fractures LR

Pluskiewicz, W[32] 2010 Poland osteoporosis registry 
data

postmenopausal 
women 68.5 multiple fractures LR

Jang, E. J[33] 2016 Korea questionnaire collection 
data inhabitant 61 multiple fractures LR

Barret A. 
Monchka[34] 2021 Canada osteoporosis registry 

data inhabitant 75 vertebral fracture CNN

Mehta, S. D[35] 2020 USA clinical hospital data patient 69 vertebral fracture SVM

Langsetmo, L[36] 2011 Canada questionnaire collection 
data inhabitant 67.6 multiple fractures SM

Ioannidis, G[37] 2017  Canada electronic health record 
data elderly 61 multiple fractures DT

LR
K. K. 

Nishiyama[38] 2013 Canada questionnaire collection 
data

postmenopausal 
women 73 multiple fractures SVM

Kruse, C[39] 2017 Denmark administrative data inhabitant 60.8 hip fracture DT
NB

Kolanu, N[40] 2021 Australia electronic health record 
data patient 73.4 multiple fractures ANN

Kim, H. Y[41] 2016 Korea administrative data inhabitant 60 multiple fractures SM

Hsieh, C. I[42] 2021 China clinical hospital data patient 72.2 hip fracture LR

Hong, N[43] 2021 Korea clinical hospital data older women 73 hip fracture
SM 
BT

SVM

Ho-Le, T. P[44] 2017 Australia osteoporosis registry 
data

postmenopausal 
women 69.1 hip fracture

ANN
LR

KNN
SVM

Henry, M. J[45] 2011 Australia osteoporosis registry 
data older women 74 multiple fractures LR

Galassi, A[46] 2020 Spain electronic health record 
data

postmenopausal 
women 81.4 hip fracture

DT
LR
RF

SVM

FitzGerald, G[47] 2014 California questionnaire collection 
data

postmenopausal 
women 67 multiple fractures SM

Ferizi, U[48] 2019 USA osteoporosis registry 
data

postmenopausal 
women 62 multiple fractures LR
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Enns-Bray, W. 
S[49] 2019 USA clinical hospital data older women 77.2 hip fracture LR

Engels, A[50] 2020 Germany administrative data patient 75.6 hip fracture

SVM
RF
LR
BT

De Vries, B. C. 
S[51] 2021 The 

Netherlands clinical hospital data patient 68 multiple fractures
ANN
RF
SM

Cheung, E. Y[52] 2012  China electronic health record 
data

postmenopausal 
women 62 multiple fractures SM

Chanplakorn, P[53] 2021 Thailand osteoporosis registry 
data

postmenopausal 
women 68.5 vertebral fracture SM

Bredbenner, T. 
L[54] 2014 USA clinical hospital data older men 65 hip fracture LR

Beyaz, S[55] 2020 Turkey osteoporosis registry 
data patient 74.9 multiple fractures ANN

Berry, S. D[56] 2018 USA administrative data inhabitant 84 hip fracture SM

Beaudoin, C[57] 2021 Canada administrative data elderly 75.1 multiple fractures SM

Baleanu, F[58] 2022  Belgium clinical hospital data postmenopausal 
women 70.1 multiple fractures LR

Almog, Y. A[59] 2020 USA electronic health record 
data patient 50 vertebral fracture ANN

Zagorski, P[60] 2021 Poland questionnaire collection 
data

postmenopausal 
women 65.2 hip fracture LR

Diez-Perez, A[61] 2007  Spain questionnaire collection 
data

postmenopausal 
women 72.3 multiple fractures SM

Lix, L. M[62] 2018  Canada osteoporosis registry 
data older women 65.6 multiple fractures LR

Li, Q. J[63] 2021 China clinical hospital data patient 70 multiple fractures LR

Lee, S[64] 2008 Korea osteoporosis registry 
data older women 65 multiple fractures SVM

Jacobs, J. W. G[65] 2010 Portugal questionnaire collection 
data inhabitant 66 vertebral fracture LR

Eller-Vainicher, 
C[66] 2011  Italy questionnaire collection 

data
postmenopausal 

women 68 vertebral fracture ANN
LR

Zhong, B. Y[67] 2017 China clinical hospital data patient 72 vertebral fracture SM

Xiao, X[68] 2021 USA gene database postmenopausal 
women 64.5 hip fracture SM

*LR: Logistic Regression;ANN:artifificial neural network;SVM = support-vector machine; CNN = convolutional neural network; kNN = 

k-nearest neighbors; RF = random forests;DT=decision tree;NB=Naive Bayes;BT=Boosted tree;SM=Survival model;AUC=area under the 

receiver operating characteristic curve;ROC=receiver operating characteristic;PPV=positive predictive value;NPV=negative predictive 

value.
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We roughly classified the fracture risk predictors into seven types: demographics/fracture history, physical 
examination, lifestyle, comorbidity, drug and nutrient intake, radiomics, and mental state. The classification of 
fracture risk predictors is presented in Table 2. The most commonly used predictors in these models were age 
(n=59), past fracture history (n=32), body mass index (BMI) (n=31), bone mineral density (BMD) (n=25), 
radiomics data (n=23), weight (n=23), height (n=21), bone mineral density T-score (n=20), history of falls 
(n=22), gender (n=17) and other chronic diseases (n=12).

Table 2. Main sorts of predictors included in 89 developed models for osteoporosis patients

Predictors Number of models

Demographics and fracture history
Age 59

History of falls 22
Past fracture history 32

Sex 17
Women's menopause age 6
Genetic risk score (GRS) 5

Physical examination
Body mass index,BMI 31

Bone mineral density，BMD 25
Weight 23
Height 21

Bone mineral density t-score 20
Grip 1

Transfer ability 1
Lifestyle

Alcohol consumption 7
Smoking 6

Physical activity index 4
Frequent sun exposure 3

Lack of physical exercise 1
Vagrant event 1

Comorbidity
Other chronic diseases 12

Osteoporosis 8
Rheumatoid arthritis 6

Fracture type 4
Backache 2

Drug and nutrient intake
Use of hormonal drugs 6
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Calcium intake 3
Intake of other drugs 2

Radiomics
Radiomic data 23

Mental state
Cognitive performance 3

Anxiety/depression 2

The risk of bias assessment of the model-development studies is summarized in Figure 2. More than half 
of these studies had a high risk of bias (n=48; 64%). The risk of bias in most studies was low in terms of 
participants, predictors and outcome. However, a high or unclear risk of bias in the statistical analysis was 
observed in all model development and validation studies. More details are shown in Table S4.

Thirty-nine studies involving 89 models were included in the meta-analysis of the C-index. Since 
substantial heterogeneity was present, we performed subgroup analyses based on fracture site and model type. 
Table 3 shows the results of the meta-analysis of C-index for ML models in patients with osteoporosis. The 
forest plot of C-index is presented in Figure 3. The pooled C-index was 0.76 (95 % CI: 0.73, 0.79) ( I2 = 99.8%, 
P < 0.001) in the training set and 0.74 (95 % CI: 0.71, 0.77) ( I2 = 99.8%, P < 0.001) in the validation set. In the 
training set, Naive Bayes showed the highest predictive performance (pooled C-index = 0.92), followed by 
artificial neural network (pooled C-index = 0.82), decision trees (pooled C-index = 0.78) and logistic regression 
(pooled C-index = 0.77). Furthermore, models for vertebral fracture (pooled C-index = 0.79) and hip fracture 
(pooled C-index = 0.78) performed better than those for multi-site fracture (pooled C-index = 0.72). However, 
in the validation set, logistic regression (pooled C-index = 0.82) showed the best performance, closely followed 
by support vector machines (pooled C-index = 0.78), artificial neural network (pooled C-index = 0.73) and 
boosted tree (pooled c-index = 0.70). Models for vertebral fracture (pooled C-index = 0.84) performed better 
than those for hip fracture (pooled C-index = 0.73) and multi-site fracture (pooled C-index = 0.71).Across these 
studies, we extracted 53 estimates of balanced accuracy (the average of the reported sensitivity and specificity), 
ranging from 0.66 to 1.00. As presented in Table 4 , the mean sensitivity and specificity of models in the 
training set were 0.81 (95 % CI: 0.75, 0.86) ( I2 = 99.0%, P < 0.001) and 0.82 (95 % CI: 0.75, 0.87) ( I2 = 99.9%, 
P < 0.001), respectively. Moreover, the mean sensitivity and specificity of models in the validation set were 
0.76 (95 % CI: 0.80, 0.81) ( I2 = 98.9%, P < 0.001)and 0.83 (95 % CI: 0.72, 0.90) ( I2 = 99.9%, P < 0.001), 
respectively. 
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Table 3.  Results of meta-analysis of C-index statistics for subgroup analysis by fracture site and machine 
learning type

Training dataset Validation dataset
subgroup 

N  C-statistic(95% CI) N  C-statistic(95% CI)

Fracture site

Vertebral fracture 13 0.79(0.74,0.85) 5 0.84(0.67,1.00)

Hip fracture 20 0.78(0.73,0.84) 9 0.73(0.65,0.81)

 Multi-site fracture 26 0.72(0.70,0.74) 16 0.71(0.65,0.77)

Model type

LR 27 0.77(0.72,0.82) 8 0.82(0.75,0.88)

ANN 6 0.82(0.74,0.90) 4 0.73(0.56,0.91)

RF 3 0.70(0.68,0.72) 3 0.66(0.59,0.73)

SVM 4 0.76(0.61,0.91) 3 0.78(0.59,0.96)

DT 2 0.78(0.56,0.99) 1 0.69(0.67,0.70)

NB 1 0.92(0.90,0.95) -

Survival model 11 0.69(0.67,0.71) 8 0.68(0.67,0.69)

Boosted tree 5 0.73(0.71,0.74) 3 0.70(0.69,0.71)

Overall 59 0.76(0.73,0.79) 30 0.74(0.71,0.77)

Table 4.  Results of sensitivity and specificity subgroup analysis by fracture site and machine learning type

Training dataset Validation dataset
subgroup 

N Sensitivity(95% CI) Specificity(95% CI) N Sensitivity(95% CI) Specificity(95% CI)

Fracture site

Vertebral fracture 9 0.73(0.59,0.83) 0.92(0.86,0.95) 4 0.87(0.70.0.95) 0.97(0.94,0.98)

Hip fracture 13 0.90（0.82,0.94） 0.82(0.75,0.88) 6 0.84（0.77,0.89） 0.85(0.80,0.89)

 Multi-site 
fracture 15 0.76(0.65,0.84) 0.72(0.57,0.83) 8 0.66（0.61,0.70） 0.69(0.53,0.81)

Model type

LR 18 0.72(0.64,0.78) 0.77(0.69,0.84) 6 0.74(0.64,0.83) 0.80(0.59,0.92)

ANN 7 0.89(0.77,0.95) 0.92(0.81,0.97) 4 0.82(0.69,0.90) 0.89(0.78,0.95)
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Discussion
The present systematic review provides an overview of all currently available fracture risk prediction 

models developed or validated in the osteoporosis population to assess the overall ML models for fracture risk. 
The most commonly used predictors in these models are age, gender, weight, height, BMI, past fracture history, 
BMD, radiomics data, bone mineral density T-score, history of falls, and other chronic diseases. In general, 
most predictors included in model-development studies are traditional risk factors. A recent study showed that 
the most common risk factors for fragility fractures contained decreased bone mineral density, age, gender, low 
BMI, history of fragility fractures, family history of hip fractures, history of glucocorticoid therapy, smoking, 
excessive alcohol consumption,lack of vitamin D, early menopause and immobility[59]. This is consistent with 
some of the common fracture predictors identified in our study. Our study also finds that radiomics data are 
frequently used as fracture predictors in ML models for osteoporosis. A retrospective, single-center, preliminary 
investigation by Lim et al. reported that the predictive performance of ML analysis with radiomics features and 
Abdomen-pelvic CT to diagnose osteoporosis showed high validity with more than 93% accuracy, specificity, 
and negative predictive value[60].

In terms of the models in the training sets, Naive Bayes performs best (pooled C-index = 0.92), followed 
by artificial neural network(ANN), decision trees, and logistic regression. As Naive Bayesian algorithm is not 
affected by missing data and requires less training data set, it is widely used in the medical field as one of the 
most effective learning algorithms in data mining[61]. The Naive Bayes algorithm can be used to analyze a 
large number of unknown data. Bayesian models are the statistical method of choice when resource settings are 
low, especially when sample size and budget are limited[62]. Additionally, ANN is widely used in radiation, 
urology, inspection, and cardiovascular fields. With its computer processing techniques, ANN can assist in 
diagnosing various diseases and provide guidance for clinical medication[63-64].

In the validation sets, logistic regression (pooled C-index = 0.82) performed best, closely followed by 
support vector machines (SVM), ANN and boosted tree. Possibly because logistic regression is very efficient 
and easy to implement, it's easy to understand, and it outputs calibrated predicted probabilities. An article on 
prediction models for the outcomes in patients with chronic obstructive pulmonary disease also revealed that 
logistic regression (n=111; 72%) was the most frequently used modeling method[65]. This is the same as recent 
findings reported by Kushan et al.[66], their ML models with logistic regression outperformed those with 

RF 1 0.84 0.91 1 0.70 0.47

SVM 5 0.86(0.72,0.94) 0.84(0.61,0.95) 3 0.79(0.72,0.85) 0.89(0.79,0.94)

DT 2 0.97(0.53,1.00) 0.70(0.67,0.73) -

NB 1 0.88 0.81 -

kNN 1 1.00 0.83 1 0.81 0.79

Survival model 1 0.81 0.52 -

Boosted tree 1 0.59 0.67 1 0.70 0.95

Overall 37 0.81(0.75,0.86) 0.82(0.75,0.87) 16 0.76(0.80,0.81) 0.83(0.72,0.90)
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random forest and decision trees. Moreover, SVM adapts well to small samples and high-dimensional data with 
a low misclassification rate, and therefore can be used for classification and regression analysis[67].

Most included studies reported multiple metrics, such as sensitivity, specificity, AUC and ROC. The mean 
sensitivity and specificity of the models in the training set model were 0.81 (95 % CI: 0.75, 0.86) and 0.82 (95 
% CI: 0.75, 0.87), respectively, greater than that of the models in the validation set. Therefore, fracture risk 
prediction using ML models still has promotion space in external validation. However, a single performance 
metric such as AUC or ROC is insufficient to recommend the application of ML models into clinical practice[6], 
and it is necessary to combine other multiple metrics.

This systematic review and meta-analysis summarized a large number of studies to comprehensively 
evaluate the predictive value of ML on fracture risk in patients with osteoporosis. It elucidated the 
characteristics of the established models and validation studies on existing models. We performed a quantitative 
synthesis that was never done in previous studies, enhancing the comparability of these models. Furthermore, 
only the C-index was reported in most predictive models[65,68], but our study used bivariate mixed-effects 
models for sensitivity and specificity analyses. In the training dataset, sensitivity of hip fracture (pooled 

C-index = 0.90), performed best, closely followed by multi-site fracture, vertebral fracture. For patients 
with hip fractures, missed and misdiagnosed radiographs can lead to poor prognosis[69]. ML models have been 
increasingly used to identify hip fracture risk with high accuracy[29]. ML has a stronger ability to recognize 
images and can provide a diagnostic scheme with high accuracy for inexperienced physicians to refer to.

 Some limitations still need to be considered in the present study. The risk of bias assessment 

demonstrated that most studies （ 64% ） had a high risk of bias, whether they involved the development or 

external validation of a prediction model for the osteoporosis population. The main bias came from the analysis, 
because most studies did not properly handle continuous and categorical variables and reported no method for 
processing missing values. Only two articles reported the use of median imputation to deal with missing 
values[13,29], while others did not mention how to deal with missing values. These shortcomings in the 
methodological quality may be due to a lack of guidelines for the standard reporting of risk prediction studies at 
that time. In addition, some models were reported with little information that was insufficient for external 
validation by other researchers, let alone to be implemented in clinical practice. For example, only 11 articles 
used the K-fold cross-validation method to improve the accuracy of their 
algorithms[13,14,17,25,28,29,32,34,40,44,45], but most of the eligible articles did not. Models without stringent 
validation offer limited applicability[66]. Furthermore, we observed large between study heterogeneity in the 
meta-analyses of C statistics. Potential sources of heterogeneity could be the differences in patients’s 
characteristics, data sources and analysis methods across the validation studies. More than 30% of the research 
data in included studies came from clinical studies, and clinical data are heterogeneous and usually imbalanced. 
At last, most ML models did not report balanced accuracy, lack calibration or external validation or decision 
curves that the generalization of the models need to be further verified, so we suggest that subsequent research 
can be further refined.

Although our findings lack some evidence due to the limitations mentioned above, the present study can 
still provide meaningful recommendations for future research and practice. First, as existing ML models for 
fracture prediction focus on populations in Western countries, more external validation studies on other 
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populations are needed to widen their application. Second, ML models can identify valuable evidence to support 
clinicians in making more accurate judgments in highly complex decision-making processes and have certain 
clinical application value[67]. Future researches need to be more rigorous, robust, and comprehensive when 
assessing the quality of its clinical application and impact on clinicians and patients. Third, the advances in 
emerging technologies such as ML have opened a new era of clinical medical research, providing new directions 
for solving intricate problems with classical statistical methods. However, clinicians currently are not skillful in 
using such emerging technologies. Therefore, clinicians should be encouraged to improve their ability to use 
ML so that medical research can become more accurate with the help of ML. 

In conclusion, ML has an ideal predictive value for fracture risk in patients with osteoporosis and can be 
used as a potential tool for early identification of fracture risk in patients with osteoporosis. Therefore, in the 
future, we can try to construct multi-racial cases, including machine learning of predictors of living habits, 
eating habits and social background, and then rely on machine learning to develop simple risk assessment tools 
adapted to multiple races.
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Figure legends

Figure 1 The flow chart of retrieval process

Figure 2 Risk of bias assessment (using PROBAST) based on four domains across 

88 machine learning models

Figure 3 Forest plots for C-index statistics for subgroup analysis by fracture site and machine 

learning type
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Section and
Topic

Item
# Checklist item Location where

item is reported
TITLE
Title 1 Identify the report as a systematic review. 1
ABSTRACT
Abstract 2 See the PRISMA 2020 for Abstracts checklist. 1
INTRODUCTION
Rationale 3 Describe the rationale for the review in the context of existing knowledge. 2-4
Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses. 4
METHODS
Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. 5
Information
sources

6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies.
Specify the date when each source was last searched or consulted.

4-5

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. Table S2
Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each

record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.
5-6，Figure 1

Data collection
process

9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked
independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in
the process.

6

Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in
each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.

6

10b List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe
any assumptions made about any missing or unclear information.

Table S3

Study risk of bias
assessment

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed
each study and whether they worked independently, and if applicable, details of automation tools used in the process.

6-7，Figure 2

Effect measures 12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results. 7
Synthesis
methods

13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics
and comparing against the planned groups for each synthesis (item #5)).

7

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data
conversions.

7

13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. 7
13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the

model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.
7-8

13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). Table3,Table4
13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. 7

Reporting bias
assessment

14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). 6-7

Certainty
assessment

15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. 7

RESULTS
Study selection 16a Describe the results of the search and selection process, from the number of records identified in the search to the number of studies

included in the review, ideally using a flow diagram.
8

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. Figure 1
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Section and
Topic

Item
# Checklist item Location where

item is reported
Study
characteristics

17 Cite each included study and present its characteristics. 7-8,Table 1

Risk of bias in
studies

18 Present assessments of risk of bias for each included study. 9,Figure 2,Table
S4

Results of
individual studies

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its
precision (e.g. confidence/credible interval), ideally using structured tables or plots.

9-10，Table S2

Results of
syntheses

20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. 10-11
20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision

(e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.
10，Figure 3,Table
3

20c Present results of all investigations of possible causes of heterogeneity among study results. 10-11,Table 3
20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. 10-11，Figure

4,Table 4
Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. 9,Figure 2
Certainty of
evidence

22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. Table 3,Table 4

DISCUSSION
Discussion 23a Provide a general interpretation of the results in the context of other evidence. 11-15

23b Discuss any limitations of the evidence included in the review. 14-15
23c Discuss any limitations of the review processes used. 14
23d Discuss implications of the results for practice, policy, and future research. 15

OTHER INFORMATION
Registration and
protocol

24a Provide registration information for the review, including register name and registration number, or state that the review was not registered. 4,Registration No.
CRD42022346896

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared. The protocol was
registered on
PROSPERO

24c Describe and explain any amendments to information provided at registration or in the protocol. NA
Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. 15
Competing
interests

26 Declare any competing interests of review authors. 16

Availability of
data, code and
other materials

27 Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from
included studies; data used for all analyses; analytic code; any other materials used in the review.

Table1,Table S3

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi:
10.1136/bmj.n71
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Table S2 Literature search strategy
1.Pubmed
Search
number Query Results

#1 "Osteoporosis"[Mesh] 59,962

#2

"Osteoporosis"[Title/Abstract] OR "Osteoporoses"[Title/Abstract] OR "bone loss age
related"[Title/Abstract] OR "age related bone loss"[Title/Abstract] OR "age related bone
losses"[Title/Abstract] OR "bone loss age related"[Title/Abstract] OR ((("bone and bones"[MeSH
Terms] OR ("Bone"[All Fields] AND "bones"[All Fields]) OR "bone and bones"[All Fields] OR
"Bone"[All Fields]) AND "Losses"[All Fields]) AND "Age-Related"[Title/Abstract])

77,866

#3

"Osteoporosis"[MeSH Terms] OR ("Osteoporosis"[Title/Abstract] OR "Osteoporoses"[Title/Abstract]
OR "bone loss age related"[Title/Abstract] OR "age related bone loss"[Title/Abstract] OR "age related
bone losses"[Title/Abstract] OR "bone loss age related"[Title/Abstract] OR ((("bone and
bones"[MeSH Terms] OR ("Bone"[All Fields] AND "bones"[All Fields]) OR "bone and bones"[All
Fields] OR "Bone"[All Fields]) AND "Losses"[All Fields]) AND "Age-Related"[Title/Abstract]))

95,574

#4 "Machine Learning"[Mesh] 41,875

#5

"machine learning"[Title/Abstract] OR "transfer learning"[Title/Abstract] OR "deep
learning"[Title/Abstract] OR "prediction model"[Title/Abstract] OR "artificial
intelligence"[Title/Abstract] OR "random forest"[Title/Abstract] OR "artificial neural
network"[Title/Abstract] OR "ANN"[Title/Abstract] OR "support vector machine"[Title/Abstract] OR
"SVM"[Title/Abstract] OR "gradient boosting machine"[Title/Abstract] OR "GBM"[Title/Abstract]
OR "Nomogram"[Title/Abstract] OR "XGboost"[Title/Abstract] OR "Logistic"[Title/Abstract] OR
"decision tree"[Title/Abstract] OR "external validation"[Title/Abstract]

554,732

#6

"Machine Learning"[MeSH Terms] OR "Machine Learning"[Title/Abstract] OR "transfer
learning"[Title/Abstract] OR "deep learning"[Title/Abstract] OR "prediction model"[Title/Abstract]
OR "artificial intelligence"[Title/Abstract] OR "random forest"[Title/Abstract] OR "artificial neural
network"[Title/Abstract] OR "ANN"[Title/Abstract] OR "support vector machine"[Title/Abstract] OR
"SVM"[Title/Abstract] OR "gradient boosting machine"[Title/Abstract] OR "GBM"[Title/Abstract]
OR "Nomogram"[Title/Abstract] OR "XGboost"[Title/Abstract] OR "Logistic"[Title/Abstract] OR
"decision tree"[Title/Abstract] OR "external validation"[Title/Abstract]

560,576

#7 "fractures, bone"[MeSH] 198,823

#8
"fractures bone"[Title/Abstract] OR "broken bones"[Title/Abstract] OR "bone broken"[Title/Abstract]
OR "bones broken"[Title/Abstract] OR "broken bone"[Title/Abstract] OR "Fractures"[Title/Abstract]
OR "Fracture"[Title/Abstract]

282,444

#9
"fractures, bone"[MeSH Terms] OR "fractures bone"[Title/Abstract] OR "broken
bones"[Title/Abstract] OR "bone broken"[Title/Abstract] OR "bones broken"[Title/Abstract] OR
"broken bone"[Title/Abstract] OR "Fractures"[Title/Abstract] OR "Fracture"[Title/Abstract]

325,361

#10 #3AND #6 AND #9 1,395

2.Cochrane
Search
number Query Results

#1 MeSH descriptor: [Osteoporosis] explode all trees 4,308

#2 (Osteoporosis):ti,ab,kw OR (Osteoporoses):ti,ab,kw OR (Bone Loss, Age-Related):ti,ab,kw OR
(Age-Related Bone Loss):ti,ab,kw OR (Age-Related Bone Losses):ti,ab,kw 11,404

#3 (Bone Loss, Age Related):ti,ab,kw OR (Bone Losses, Age-Related):ti,ab,kw 510
#4 #1 OR #2 OR #3 11,690
#5 MeSH descriptor: [Machine Learning] explode all trees 200
#6 (machine learning):ti,ab,kw OR (Transfer Learning):ti,ab,kw OR (Deep learning):ti,ab,kw OR 8,873
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(Prediction model):ti,ab,kw OR (artificial intelligence):ti,ab,kw

#7 (random forest):ti,ab,kw OR (artificial neural network):ti,ab,kw OR (ANN):ti,ab,kw OR (Support
vector machine):ti,ab,kw OR (SVM):ti,ab,kw 3,025

#8 (Gradient Boosting Machine):ti,ab,kw OR (GBM):ti,ab,kw OR (Nomogram):ti,ab,kw OR
(XGboost):ti,ab,kw OR (Logistic):ti,ab,kw 29,213

#9 (Decision tree):ti,ab,kw OR (External validation):ti,ab,kw 1,737
#10 #5 OR #6 OR #7 OR #8 OR #9 39,732
#11 MeSH descriptor: [Fractures, Bone] explode all trees 6,688

#12 (Fractures, Bone):ti,ab,kw OR (Broken Bones):ti,ab,kw OR (Bone, Broken):ti,ab,kw OR (Bones,
Broken):ti,ab,kw OR (Broken Bone):ti,ab,kw 8,663

#13 (Fractures):ti,ab,kw OR (Fracture):ti,ab,kw 25,188
#14 #11 OR #12 OR #13 25,283
#15 #4 AND #10 AND #14 157

3.Embase
Search
number Query Results

#1 'osteoporosis'/exp 144,364

#2
'osteoporosis':ab,ti OR 'osteoporoses':ab,ti OR 'bone loss, age-related':ab,ti OR 'age-related bone
loss':ab,ti OR 'age-related bone losses':ab,ti OR 'bone loss, age related':ab,ti OR 'bone losses,
age-related':ab,ti

115,173

#3 #1 OR #2 167,079
#4 'machine learning'/exp 300,972

#5

'machine learning':ab,ti OR 'transfer learning':ab,ti OR 'deep learning':ab,ti OR 'prediction
model':ab,ti OR 'artificial intelligence':ab,ti OR 'random forest':ab,ti OR 'artificial neural
network':ab,ti OR ann:ab,ti OR 'support vector machine':ab,ti OR svm:ab,ti OR 'gradient boosting
machine':ab,ti OR gbm:ab,ti OR nomogram:ab,ti OR xgboost:ab,ti OR logistic:ab,ti OR 'decision
tree':ab,ti OR 'external validation':ab,ti

814,126

#6 #4 OR #5 1,002,289
#7 'fracture'/exp 362,337

#8 'fractures, bone':ab,ti OR 'broken bones':ab,ti OR 'bone, broken':ab,ti OR 'bones, broken':ab,ti OR
'broken bone':ab,ti OR 'fractures':ab,ti OR 'fracture':ab,ti 343,893

#9 #7 OR #8 445,516
#10 #3 AND #6 AND #9 2,644

4.Web of science
Search
number Query Results

#1 Osteoporosis (Topic) or Osteoporoses (Topic) or Bone Loss, Age-Related (Topic) or Age-Related
Bone Loss (Topic) or Age-Related Bone Losses (Topic) or Bone Loss, Age Related (Topic) or 104,281
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Bone Losses, Age-Related (Topic)

#2

machine learning (Topic) or Transfer Learning (Topic) or Deep learning (Topic) or Prediction
model (Topic) or artificial intelligence (Topic) or random forest (Topic) or artificial neural network
(Topic) or ANN (Topic) or Support vector machine (Topic) or SVM (Topic) or Gradient Boosting
Machine (Topic) or GBM (Topic) or Nomogram (Topic) or XGboost (Topic) or Logistic (Topic) or
Decision tree (Topic) or External validation (Topic)

1,950,484

#3 Fractures, Bone (Topic) or Broken Bones (Topic) or Bone, Broken (Topic) or Bones, Broken
(Topic) or Broken Bone (Topic) or Fractures (Topic) or Fracture (Topic) 575,668

#4 #1 AND #2 AND #3 2,655
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Table S3 Methodological characteristics of machine learning models developed for outcome prediction in patients with Osteoporosis

Author Year Data set Gender Fracture site Events Sample
size Model type C-index Sensitivity Specificity

Wu, Q 2020 Train M Multiple
fractures 361 4104 LR

Wu, Q 2020 Train M Multiple
fractures 361 4104 RF

Wu, Q 2020 Train M Multiple
fractures 361 4104 BT

Wu, Q 2020 Train M Multiple
fractures 361 4104 ANN

Wu, Q 2020 Test M Multiple
fractures 90 1026 LR 0.6410 0.7610 0.4420

Wu, Q 2020 Test M Multiple
fractures 90 1026 RF 0.7005 0.7000 0.4670

Wu, Q 2020 Test M Multiple
fractures 90 1026 BT 0.7100 0.5650 0.6930

Wu, Q 2020 Test M Multiple
fractures 90 1026 ANN 0.6910 0.7120 0.5980

Villamor, E 2020 Train F Hip fracture 65 101 LR

Villamor, E 2020 Train F Hip fracture 65 101 SVM

Villamor, E 2020 Train F Hip fracture 65 101 ANN

Villamor, E 2020 Train F Hip fracture 65 101 RF

Villamor, E 2020 Test F Hip fracture 65 101 LR

Villamor, E 2020 Test F Hip fracture 65 101 SVM

Villamor, E 2020 Test F Hip fracture 65 101 ANN

Villamor, E 2020 Test F Hip fracture 65 101 RF

van Geel, Tacm 2011 Train F Vertebral
fracture 382 2372 SM

Ulivieri, F. M 2021 Train F Vertebral
fracture 56 90 ANN 0.8300 0.7500 0.8372

Yoda, T 2021 Train M+F Vertebral
fracture 28 50 CNN 0.9670 0.9250 0.9490
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Author Year Data set Gender Fracture site Events Sample
size Model type C-index Sensitivity Specificity

Yoda, T 2021 Test M+F Vertebral
fracture 21 47 CNN 0.9840 0.9810 0.9490

Jiang, X. Z 2013 Train F Multiple
fractures 15 615 LR 0.7600 0.8100 0.4700

Schousboe, J. T 2014 Train F Vertebral
fracture 2883 7233 LR 0.6790

Sandhu, S. K 2010 Train F Multiple
fractures 47 144 LR 0.8400 0.7800 0.8000

Sandhu, S. K 2010 Train M Multiple
fractures 18 56 LR 0.7600 0.7400 0.8000

Rubin, K. H 2018 Train F Multiple
fractures 11898 647103 LR 0.7500 0.7520 0.5650

Rubin, K. H 2018 Train M Multiple
fractures 11851 647103 LR 0.7520 0.6450 0.6090

Rubin, K. H 2018 Test F Multiple
fractures 4762 600567 LR 0.8740 0.6000 0.6990

Rubin, K. H 2018 Test M Multiple
fractures 4776 600566 LR 0.8510 0.6300 0.5840

Pluskiewicz, W 2010 Train F Hip fracture 1599 2012 LR 0.850 0.7590 0.7370

Pluskiewicz, W 2010 Train F Multiple
fractures 1704 2012 LR 0.8790 0.7390 0.5980

Jang, E. J 2016 Train M Multiple
fractures 36 363 LR 0.7390

Jang, E. J 2016 Train F Multiple
fractures 50 405 LR 0.7180

Barret A.
Monchka 2021 Train M+F Vertebral

fracture 1470 8920 CNN 0.9500 0.8240 0.9430

Mehta, S. D 2020 Train M+F Vertebral
fracture 86 246 SVM 0.9258 0.8950 0.9560

Mehta, S. D 2020 Test M+F Vertebral
fracture 22 61 SVM 0.8963 0.8180 0.9740

Langsetmo, L 2011 Test M Multiple
fractures 139 1606 SM 0.7000

Langsetmo, L 2011 Test F Multiple
fractures 672 4152 SM 0.6900

Ioannidis, G 2017 Train M+F Multiple
fractures 3858 22386 DT 0.6690

Ioannidis, G 2017 Test M+F Multiple
fractures 1294 7462 DT 0.6870
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Author Year Data set Gender Fracture site Events Sample
size Model type C-index Sensitivity Specificity

K. K.
Nishiyama 2013 Train F Multiple

fractures 44 88 SVM 0.6800 0.5280 0.7970

K. K.
Nishiyama 2013 Test F Multiple

fractures 14 28 SVM 0.8000 0.6880 0.8850

Kruse, C 2017 Train F Hip fracture 293 4722 NB 0.9200 0.8800 0.8100

Kruse, C 2017 Train M Hip fracture 47 717 DT 0.8900 1.0000 0.6900

Kolanu, N 2021 Train M+F Multiple
fractures 433 5089 ANN 0.9900 0.9950

Kolanu, N 2021 Test M+F Multiple
fractures 97 327 ANN 0.6960 0.9500

Kim, H. Y 2016 Train M Multiple
fractures 4889 185127 SM 0.6800

Kim, H. Y 2016 Train F Multiple
fractures 14951 174126 SM 0.6500

Kim, H. Y 2016 Test M+F Multiple
fractures 19915 359255 SM 0.6650

Hsieh, C. I 2021 Train M+F Hip fracture 2254 5164 LR 0.9700 0.8820 0.9140

Hsieh, C. I 2021 Test M+F Hip fracture 922 2060 LR 0.9600 0.8990 0.9200

Hsieh, C. I 2021 Train M+F Vertebral
fracture 530 57662 LR 0.9700 0.6960 0.9790

Hsieh, C. I 2021 Test M+F Vertebral
fracture 922 3346 LR 0.9400 0.7400 0.9730

Hong, N 2021 Train F Hip fracture 143 433 RF 0.7840

Hong, N 2021 Train F Hip fracture 143 433 BT 0.7680

Hong, N 2021 Train F Hip fracture 143 433 SVM 0.7590

Hong, N 2021 Train F Hip fracture 143 433 BT 0.7580

Hong, N 2021 Test F Hip fracture 34 2029 SM 0.8400

Ho-Le, T. P 2017 Train F Hip fracture 54 700 ANN 0.8890 0.8610

Ho-Le, T. P 2017 Train F Hip fracture 54 700 LR 0.9070 0.8640
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Author Year Data set Gender Fracture site Events Sample
size Model type C-index Sensitivity Specificity

Ho-Le, T. P 2017 Train F Hip fracture 54 700 KNN 1.0000 0.8330

Ho-Le, T. P 2017 Train F Hip fracture 54 700 SVM 0.9240 0.9690

Ho-Le, T. P 2017 Test F Hip fracture 36 467 ANN 0.8330 0.8770

Ho-Le, T. P 2017 Test F Hip fracture 36 467 LR 0.7780 0.8180

Ho-Le, T. P 2017 Test F Hip fracture 36 467 KNN 0.8060 0.7930

Ho-Le, T. P 2017 Test F Hip fracture 36 467 SVM 0.8060 0.8160

Henry, M. J 2011 Train F Multiple
fractures 125 600 LR 0.7000 0.6420 0.6620

Galassi, A 2020 Train F Hip fracture 62 96 LR 0.7033 0.7146

Galassi, A 2020 Train F Hip fracture 62 96 SVM 0.9367 0.6292

Galassi, A 2020 Train F Hip fracture 62 96 DT 0.5967 0.7446

Galassi, A 2020 Train F Hip fracture 62 96 RF 0.8330 0.9231

FitzGerald, G 2014 Train F Multiple
fractures 2638 47429 SM 0.6670

Ferizi, U 2019 Train F Multiple
fractures 32 92 BT 0.6400 0.5880 0.6670

Ferizi, U 2019 Train F Multiple
fractures 32 92 LR 0.6500 0.5490 0.7010

Ferizi, U 2019 Train F Multiple
fractures 32 92 LR 0.6700 0.5210 0.7010

Enns-Bray, W. S 2019 Train F Hip fracture 95 254 LR 0.7270

Engels, A 2020 Train M+F Hip fracture 6115 20456 LR 0.7140

Engels, A 2020 Train M+F Hip fracture 6115 20456 RF 0.6860

Engels, A 2020 Train M+F Hip fracture 6115 20456 SVM 0.6600

Engels, A 2020 Train M+F Hip fracture 6115 20456 BT 0.7110
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Author Year Data set Gender Fracture site Events Sample
size Model type C-index Sensitivity Specificity

Engels, A 2020 Train M+F Hip fracture 6115 20456 LR 0.7220 1.0000

Engels, A 2020 Train M+F Hip fracture 6115 20456 BT 0.7250

Engels, A 2020 Test M+F Hip fracture 1529 57618 LR 0.6950 1.0000

Engels, A 2020 Test M+F Hip fracture 1529 57618 RF 0.6850

Engels, A 2020 Test M+F Hip fracture 1529 57618 SVM 0.6500

Engels, A 2020 Test M+F Hip fracture 1529 57618 BT 0.7020

Engels, A 2020 Test M+F Hip fracture 1529 57618 LR 0.6980

Engels, A 2020 Test M+F Hip fracture 1529 57618 BTt 0.7030

de Vries, B. C. S 2021 Train M+F Multiple
fractures 805 7578 SM 0.6970

de Vries, B. C. S 2021 Train M+F Multiple
fractures 805 7578 ANN 0.6700

de Vries, B. C. S 2021 Train M+F Multiple
fractures 805 7578 RF 0.6870

de Vries, B. C. S 2021 Test M+F Multiple
fractures 165 1770 SM 0.6250

de Vries, B. C. S 2021 Test M+F Multiple
fractures 165 1770 ANN 0.5880

de Vries, B. C. S 2021 Test M+F Multiple
fractures 165 1770 RF 0.5930

Cheung, E. Y 2012 Train F Multiple
fractures 106 2266 SM 0.7300 0.8080 0.5170

Chanplakorn, P 2021 Train F Vertebral
fracture 179 617 LR 0.6500 0.4300 0.8600

Bredbenner, T. L 2014 Train M Hip fracture 45 472 LR 0.9300

Beyaz, S 2020 Train M+F Multiple
fractures 235 2106 CNN 0.8250 0.6930

Berry, S. D 2018 Train M Hip fracture 3541 119874 SM 0.6922

Berry, S. D 2018 Train F Hip fracture 11012 299794 SM 0.7106

Page 32 of 36

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Author Year Data set Gender Fracture site Events Sample
size Model type C-index Sensitivity Specificity

Berry, S. D 2018 Test M+F Hip fracture 28050 858636 SM 0.6800

Beaudoin, C 2021 Train M+F Multiple
fractures 57678 307909 SM 0.6810

Beaudoin, C 2021 Test M+F Multiple
fractures 21809 273372 SM 0.6790

Baleanu, F 2022 Train F Multiple
fractures 410 3560 LR 0.7300

Almog, Y. A 2020 Train M+F Vertebral
fracture 2468694 6329986 ANN 0.8120 0.8120

Almog, Y. A 2020 Test M+F Vertebral
fracture 295479 3476219 ANN 0.6680 0.7070

Zagorski, P 2021 Train F Hip fracture 49 389 LR 0.8840 0.9390 0.7120

Diez-Perez, A 2007 Train F Multiple
fractures 363 5201 SM 0.6720

Lix, L. M 2018 Train F Multiple
fractures 749 31999 LR 0.7060

Li, Q. J 2021 Train F Multiple
fractures 49 403 LR 0.8820

Li, Q. J 2021 Test F Multiple
fractures 17 159 LR 0.8690

Lee, S 2008 Train F Multiple
fractures 47 94 SVM 0.8500 0.4900

Jacobs, J. W. G 2010 Train M Vertebral
fracture 58 109 LR 0.5100

Jacobs, J. W. G 2010 Train F Vertebral
fracture 98 205 LR 0.7400 0.6700 0.7100

Eller-Vainicher,
C 2011 Train F Vertebral

fracture 33 372 LR 0.8230 0.3730 0.9030

Eller-Vainicher,
C 2011 Train F Vertebral

fracture 33 372 ANN 0.6990 0.7480 0.8780

Zhong, B. Y 2017 Train M+F Vertebral
fracture 33 256 SM 0.7800

Zhong, B. Y 2017 Test M+F Vertebral
fracture 23 165 SM 0.7200

Xiao, X 2021 Train F Hip fracture 25 699 SM 0.8040

*M:Male;F:Female;LR: Logistic Regression;ANN:artifificial ANN;SVM = support-vector machine; CNN = convolutional ANN; kNN = k-nearest neighbors; RF = random
forests;DT=decision tree;BT=Boosted tree;SM=Survival model.

.
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Table S4 Risk of bias assessment grading of the machine learning predictive modelling studies of osteoporosis populations as per the PROBAST criteria

Study Participants bias Predictors bias Outcome bias Analysis bias Overall bias rating

Wu, Q low low low high high

Wu, Q low low low high high

Wu, Q low low low high high

Wu, Q low low low high high

Villamor, E high unclear unclear high high

Villamor, E high unclear unclear high high

Villamor, E high unclear unclear high high

Villamor, E high low unclear high high

Van Geel, Tacm low low low high high

Van Geel, Tacm low low low high high

Ulivieri, F. M low low low high high

Yoda, T low low low high high

Jiang, X. Z low low low high high

Schousboe, J. T high low low unclear high

Sandhu, S. K high unclear unclear high high

Rubin, K. H low low low unclear unclear

Pluskiewicz, W high low low unclear high

Jang, E. J low low low high high

Barret A. Monchka high low low unclear high

Mehta, S. D high unclear unclear high high

Langsetmo, L low low low unclear unclear

Ioannidis, G high low low unclear high

K. K. Nishiyama low low low high high

Kruse, C low low low unclear unclear

Kruse, C low low low unclear unclear

Kolanu, N high low low unclear high

Kim, H. Y low low low unclear unclear

Hsieh, C. I low low low unclear unclear
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Hong, N low low low unclear unclear

Hong, N low low low unclear unclear

Hong, N low low low unclear unclear

Hong, N low low low unclear unclear

Hong, N low low low unclear unclear

Ho-Le, T. P low low low high high

Ho-Le, T. P low low low high high

Ho-Le, T. P low low low high high

Ho-Le, T. P low low low high high

Henry, M. J low low low unclear unclear

Galassi, A low low low high high

Galassi, A low low low high high

Galassi, A low low low high high

Galassi, A low low low high high

FitzGerald, G low low low unclear unclear

Ferizi, U high unclear unclear high high

Ferizi, U high unclear unclear high high

Ferizi, U high unclear unclear high high

Enns-Bray, W. S high low low high high

Engels, A low low low unclear unclear

Engels, A low low low unclear unclear

Engels, A low low low unclear unclear

Engels, A low low low unclear unclear

Engels, A low low low unclear unclear

Engels, A low low low unclear unclear

de Vries, B. C. S high low low unclear high

de Vries, B. C. S high low low unclear high

de Vries, B. C. S high low low unclear high

Cheung, E. Y low low low unclear unclear

Chanplakorn, P high low low unclear high

Bredbenner, T. L high unclear unclear high high
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Beyaz, S high low low unclear high

Berry, S. D low low low unclear unclear

Beaudoin, C high low low unclear high

Baleanu, F low low low unclear unclear

Baleanu, F low low low unclear unclear

Almog, Y. A high low low unclear unclear

Zagorski, P low low low high high

Diez-Perez, A low low low unclear unclear

Lix, L. M low low low unclear unclear

Li, Q. J high low low high high

Lee, S high unclear low high high

Jacobs, J. W. G low low low unclear unclear

Eller-Vainicher, C low low low high high

Eller-Vainicher, C low low low high high

Zhong, B. Y high low low high high

Xiao, X low low low high high
*When a single study included multiple models, risk of bias concerns were assessed for each model.
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Abstract
Objectives: Early identification of fracture risk in patients with osteoporosis is essential. Machine learning (ML) 
has emerged as a promising technique to predict the risk, whereas its predictive performance remains 
controversial. Therefore, we conducted this systematic review and meta-analysis to explore the predictive 
efficiency of ML for the risk of fracture in patients with osteoporosis.
Methods: Relevant studies were retrieved from four databases (PubMed, Embase, Cochrane Library, and Web 
of Science) until May 31, 2023. A meta-analysis of the C-index was performed using a random-effects model, 
while a bivariate mixed-effects model was used for the meta-analysis of sensitivity and specificity. In addition, 
subgroup analysis was performed according to the types of ML models and fracture sites.
Results: Fifty-three studies were included in our meta-analysis, involving 15,209,268 patients, 86 prediction 
models specifically developed for the osteoporosis population, and 41 validation sets. The most commonly used 
predictors in these models encompassed age, BMI, past fracture history, bone mineral density T-score, history of 
falls, BMD, radiomics data, weight, height, gender, and other chronic diseases. Overall, the pooled C-index of 
ML was 0.75 (95% CI: 0.72,0.78) and 0.75 (95% CI: 0.71,0.78) in the training set and validation set, 
respectively; the pooled sensitivity was 0.79 (95% CI: 0.72,0.84) and 0.76 (95% CI: 0.80,0.81) in the training 
set and validation set, respectively; and the pooled specificity was 0.81 (95% CI: 0.75,0.86) and 0.83 (95% CI: 
0.72,0.90) in the training set and validation set, respectively.
Conclusions: ML has a favorable predictive performance for fracture risk in patients with osteoporosis. 
However, most current studies lack external validation. Thus, external validation is required to verify the 
reliability of ML models.

Keywords: Osteoporosis; Machine learning; Fractures; Meta-Analysis

Strengths and limitations of this study
 The latest systematic review and meta-analysis conducted to assess ML models for fracture risk.
 We performed a quantitative synthesis to enhance the comparability of ML models.
 C-index, sensitivity and specificity was performed to evaluate the performance of ML models.
 Several studies were included in the systematic review but excluded from subsequent meta-analyses.
 Most of the included studies lack external validation.

Introduction
Osteoporosis is a systemic metabolic bone disease characterized by decreased bone mass and degraded 

bone microarchitecture, leading to an increased risk of bone fragility fracture (WHO,1994) [1]. Due to high 
disability and morbidity rates, high treatment costs, and low quality of life of patients, it has emerged as a global 
health concern [2]. According to the World Health Organization, osteoporosis is the second-most serious health 
issue after cardiovascular diseases [3]. This condition may cause fragility fractures that commonly occur in the 
wrist, spine, and hip. Spine and hip fractures may lead to disability, which not only affects the quality of life and 
longevity of patients, but also causes enormous medical expenses and a heavy burden of care [4, 5].

Machine learning (ML), a subfield of artificial intelligence, enables computers to "learn" through programs. 
Compared with traditional statistical methods, ML emphasizes more on the accuracy of prediction and can 
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detect regularities in multi-dimensional data sets. ML algorithms can be basically divided into supervised 
learning and unsupervised learning [6]. ML has been applied in the field of osteoporosis, providing a novel 
method for the prediction of fracture risk. A review by Ferizi et al. (2019) summarized relevant studies on the 
application of artificial intelligence to the prediction of osteoporosis. It drew a conclusion that ML methods for 
automatic image segmentation and fracture risk prediction showed a promising clinical value [7]. A systematic 
review by Smets et al. (2021) reviewed the state-of-the-art ML methods and their application in osteoporosis 
diagnosis and fracture prediction [8]. Another review by Anam et al. (2021) explored the prediction 
performance of magnetic resonance imaging for osteoporosis in trabecular bone from a methodology-driven and 
application perspective [9]. Most studies focused on the role of ML in the prediction of osteoporosis indicators, 
such as bone mineral density (BMD), or in the automatic segmentation of the images of patients at risk of 
osteoporosis. However, the efficiency of ML in predicting osteoporotic fractures is understudied.

The present study evaluated the predictive performance of ML for fracture risk in osteoporosis patients, 
providing an evidence-based medical basis for the application of ML in clinical practice.

Materials and methods
This study was conducted in accordance with the Preferred Items of Systematic Review and Meta-Analysis 

(PRISMA) statement (Supplemental Table S1) [10]. The protocol was registered on the international 
prospective register of systematic reviews (PROSPERO) (Registration No. CRD42022346896). Relevant 
studies were retrieved from Pubmed, Embase, Cochrane Library, and Web of Science, and the retrieval was as 
of May 31, 2023. Two researchers independently searched the literature. The search strategy is shown in 
Supplemental Table S2. 

Inclusion criteria were as follows: (1) Patients were diagnosed with osteoporosis; (2) ML was applied to 
predict fracture risk; (3) At least one measure of model performance (discrimination or calibration) was reported; 
(4) Study population included adult patients older than 18 years, mainly including adults, older people, and 
postmenopausal women. Exclusion criteria were as follows: (1) Studies that only analyzed risk factors without 
building complete ML models; (2) Studies that only included osteoporosis but did not mention fracture risk; (3) 
Studies without available full text (or only abstract available) or data; (4) Meta-analyses, reviews, case reports, 
editorial materials, letters, protocols, errata, and notes.

Two researchers independently extracted data using standardized tables. Any studies excluded after 
full-text review have been recorded with reasons for their exclusion. The list of extracted items was based on the 
CHARMS checklist [11], and two data extraction sheets were prepared for developed and validated models, 
respectively. Finally, the extracted data included the first author, year of publication, country, study design, data 
source, population group, gender, age, fracture sites, types of predictive models, number of predictors, and 
outcomes. The risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST). 
The PROBAST contained a large number of questions in four distinct domains: participants, predictors, 
outcomes, and statistical analysis, reflecting the overall risk of bias and applicability [12]. 

Meta-analysis of C-index, sensitivity and specificity was performed to evaluate the performance of ML 
models. If the C-index did not report 95% confidence intervals (CI) and standard errors, we estimated the 
standard errors in reference to the study by Debray TP et al. [13]. A C-index of 0.5 indicates low discrimination; 
0.6 to 0.7 indicates modest discrimination; 0.71 to 0.8 indicates very good discrimination; and greater than 0.8 
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indicates strong discrimination [14]. When original studies did not report the accuracy, we calculated it based on 
the sensitivity, specificity, the number of samples in each subgroup, and the number of modeling samples [13]. 
Given the differences in variables, ML algorithms, and parameters across the studies, the random-effects model 
was preferred for the meta-analysis of C-index, and the bivariate mixed-effects model was used for the 
meta-analysis of sensitivity and specificity. Heterogeneity was quantified using I2 statistics. Sensitivity analysis 
was performed to further identify the source of heterogeneity by removing each study and re-calculating the 
pooled effect size of the remaining studies. The meta-analysis was performed using the software Stata 15.1 
(Stata Corporation, College Station, TX, USA) and R4.2.0 (R Development Core Team, Vienna, 
http://www.R-project.org). A p value less than 0.05 was considered statistically significant.
Patient and Public Involvement
No patient involved.

Results
A total of 12,468 studies were searched from the databases, including 2409 from PubMed, 4387 from 

Embase, 170 from Cochrane Library, and 5502 from Web of Science. After removing duplicates and screening 
titles and abstracts, 378 articles remained. According to a full-text review, 53 articles [13-67] were included. 
Fifty-three articles presented the development of one or more prediction models for osteoporotic fracture, while 
twenty-six articles described the validation of one or more models. The search process is shown in Figure 1. 

Fifty-three studies were ultimately included in our meta-analysis, involving 15,209,268 patients. Many 
studies originated from U. S. (n = 11),European(n = 11),and China (n = 8). Most studies were cohort studies (n 
= 46), and the rest were case-control studies (n = 7). The median age of osteoporosis patients was 68.8 years 
(ranging from 48.5 to 84). The study population in most studies covered women (n = 24). The fracture sites 
included multi-site (n = 26), vertebra (n = 14), hip (n = 12), and femur (n = 1). Most studies were based on 
clinical hospital data (n=19), while some used questionnaire collection data (n=10), osteoporosis registry data 
(n=9), electronic health records(n=7), and administrative data (n=6). Only 13 articles elucidated the 
cross-validation method. The baseline characteristics of the included studies are shown in Supplemental Table 
S3.

There were 86 prediction models specifically developed for the osteoporosis population and 41 validation 
sets. Ninety-eight ML models reported the C-index or the area under the receiver operating characteristic curve 
(AUC), ranging from 0.50 to 0.98. Supplemental Table S4 shows all studies on the development and validation 
of ML models for outcome prediction in patients with osteoporosis. Among all the identified prediction models, 
the logistic regression (31.4%) was the most commonly used algorithm, followed by the survival model (18%). 

The most commonly used predictors in ML models were age (n=72), body mass index (BMI) (n=40), past 
fracture history (n=35), bone mineral density T-score (n=33), history of falls (n=29), bone mineral density 
(BMD) (n=28), radiomics data (n=25), weight (n=24), height (n=23), gender (n=20), and other chronic diseases 
(n=20) (Table 1).
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Table 1. Main sorts of predictors included in developed models for osteoporosis patients

Predictors Number of models

Demographics 
Age 72

History of falls 29
Sex 20

Women's menopause age 8
Family genetic history 6

Race 5
Physical examination

Body mass index,BMI 40
Bone mineral density t-score 33

Bone mineral density，BMD 28
Weight 24

Height 23

Motor ability 10
Lifestyle

Alcohol consumption 13
Smoking 11

Physical activity 10
Lack of physical exercise 7

Daily activities 5
Limited physical activity 4

Frequent sun exposure 3
Comorbidity

Past fracture history 35

Other chronic diseases 20

Osteoporosis 8

Rheumatoid arthritis 7

Genetic risk score (GRS) 5
Fracture type 4

Backache 2

Drug and nutrient intake
Use of hormonal drugs 8

Calcium intake 8

Nutritional status 6

Intake of other drugs 4

Radiomics
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Radiomic data 25

Mental state

Cognitive performance 3

Anxiety/depression 2

Note: BMD (g/cm2)

The risk of bias assessment of the included studies is summarized in Figure 2. More than half of these 
studies had a high risk of bias (67%). The risk of bias in most studies was low in terms of participants, 
predictors, and outcome. However, a high or unclear risk of bias in the statistical analysis was observed in all 
studies. More details are shown in Supplemental Table S5. 

Sixty-six training datasets and 32 validation datasets were included in the meta-analysis of the C-index. 
Since substantial heterogeneity was present, we performed subgroup analyses based on fracture site and model 
type. Table 2 shows the results of the meta-analysis of C-index of ML models in predicting osteoporosis. 
Logistic regression is the most widely used method. The forest plot of C-index is presented in Supplemental 
Figure S1 and Figure S2. The pooled C-index was 0.75 (95 % CI: 0.72, 0.78) (I2 = 99.7%, P < 0.001) in the 
training set and 0.75 (95 % CI: 0.71, 0.78) (I2 = 99.8%, P < 0.001) in the validation set. In the training set, other 
deep learning method showed the highest predictive performance (pooled C-index = 0.97), followed by 
convolutional neural network (CNN) (pooled C-index = 0.94), decision trees (pooled C-index = 0.78), and 
logistic regression (pooled C-index = 0.75). Furthermore, models for vertebral fracture (pooled C-index = 0.80) 
and hip fracture (pooled C-index = 0.76) outperformed those for multi-site fracture (pooled C-index = 0.70). 
However, in the validation set, CNN (pooled C-index = 0.98) showed the best performance, closely followed by 
other deep learning method (pooled C-index = 0.82), logistic regression (pooled C-index = 0.80), and support 
vector machines (pooled C-index = 0.78). Models for vertebral fracture (pooled C-index = 0.87) outperformed 
those for hip fracture (pooled C-index = 0.73) and multi-site fracture (pooled C-index = 0.71). Across these 
studies, we extracted 57 estimates of balanced accuracy (the average of the reported sensitivity and specificity), 
ranging from 0.59 to 1.00. As presented in Table 3, the mean sensitivity and specificity of models were 0.79 (95 
% CI: 0.72, 0.84) (I2 = 99.2%, P < 0.001) and 0.81 (95 % CI: 0.75, 0.86) in the training set (I2 = 99.9%, P < 
0.001), and 0.76 (95 % CI: 0.80, 0.81) (I2 = 98.9%, P < 0.001) and 0.83 (95 % CI: 0.72, 0.90) in the validation 
set (I2 = 99.9%, P < 0.001), respectively. The results of sensitivity analysis show that ML models built for 
different fracture sites have stable performance in the training and validation sets (Supplemental Figure 
S3-S8).
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Table 2.  Results of subgroup analysis of C-index by fracture site and machine learning type

Training dataset Validation dataset
subgroup 

N  C-statistic(95% CI) N  C-statistic(95% CI)

Fracture site

Vertebral fracture 15 0.80(0.74,0.87) 6 0.87(0.71,1.00)

Hip fracture 20 0.76(0.72,0.81) 9 0.73(0.65,0.81)

 Multi-site fracture 31 0.70(0.67,0.72) 17 0.71(0.65,0.76)

Model type

LR 26 0.75(0.72.0.78) 7 0.80(0.73,0.87)

ANN 4 0.73(0.64,0.82) 3 0.66(0.62,0.70)

CNN 2 0.95(0.94,0.96) 1 0.98(0.94,1.00)

RF 3 0.70(0.68,0.72) 3 0.66(0.59,0.73)

SVM 5 0.72(0.60,0.85) 3 0.78(0.59,0.96)

DT 2 0.78(0.56,0.99) 1 0.69(0.67,0.70)

NB 2 0.74(0.39,1.00) -

kNN 1 0.51(0.46,0.55) -

Survival model 13 0.70(0.69,0.74) 9 0.68(0.67,0.69)

Boosted tree 5 0.71(0.69,0.74) 3 0.70(0.69,0.71)

     Enseble learning 1 0.72(0.71,0.73)

Other DL 2 0.97(0.96,0.97) 1 0.82(0.77,0.87)

Overall 66  0.75（0.72,0.78） 32 0.75(0.71,0.78)
Note: LR:Logistic Regression;ANN:artificial neural network;CNN: convolutional neural network;RF:random 
forests;SVM:support-vector machine;DT:decision tree;NB:Naive Bayes;kNN:k-nearest neighbors;DL:deep 
learnimg model.

Table 3.  Results of subgroup analysis of sensitivity and specificity by fracture site and machine learning type

Training dataset Validation dataset
subgroup 

N Sensitivity
(95% CI)

Specificity
(95% CI) N Sensitivity

(95% CI)
Specificity
(95% CI)

Fracture site

Vertebral fracture 10 0.73(0.61,0.82) 0.91(0.86,0.95) 3 0.87(0.70.0.95) 0.97(0.94,0.98)

Hip fracture 13  0.90（0.82,0.94） 0.82(0.75,0.88) 5 0.84(0.77,0.89) 0.85(0.80,0.89)
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Discussion
ML is a popular research method that provides new tools for early detection of diseases. This study 

systematically explored the application of the latest ML methods in predicting fracture risk in osteoporosis. The 
most commonly used predictors in ML models are age, BMI, past fracture history, bone mineral density T-score, 
history of falls, BMD, radiomics data, weight, height, gender, and other chronic diseases. In general, most 
predictors included in model-development studies are traditional risk factors. A recent study showed that the 
most common risk factors for fragility fractures encompassed decreased bone mineral density, age, gender, low 
BMI, history of fragility fractures, family history of hip fractures, history of glucocorticoid therapy, smoking, 
excessive alcohol consumption, lack of vitamin D, early menopause, and immobility [68]. This is consistent 
with some common fracture predictors identified in our study. Our study also finds that radiomics data are 
frequently used as a fracture predictor in ML models for osteoporosis. A retrospective, single-center, 
preliminary investigation by Lim et al. reported ML based on radiomics features and Abdomen-pelvic CT for 
diagnosing osteoporosis showed high predictive performance, with accuracy, specificity, and negative predictive 
value exceeding 93% [69].

The present study found that ML methods commonly used in the field of osteoporosis included logistic 
regression, decision tree, random forest, survival model, support vector machine (SVM), ensemble learning, 
artificial neural network (ANN), CNN, and the latest deep learning technology. ML has a good performance in 
the prediction and identification of osteoporosis and fracture. In terms of the models in the training sets, the 
prediction efficiency of other deep learning method is optimal, followed by CNN, decision trees, and logistic 
regression. In the validation sets, CNN showed the best performance, closely followed by other deep learning 

 Multi-site fracture
18 0.71(0.59,0.81) 0.72(0.60,0.81) 8 0.66(0.61,0.70) 0.69(0.53,0.81)

Model type

LR 17 0.70(0.63,0.77) 0.73(0.67,0.79) 4 0.66(0.55,0.75) 0.65(0.50,0.77)

ANN 4 0.91(0.70,0.98) 0.93(0.75,0.98) 3 0.78(0.71,0.83) 0.85(0.71,0.93)

CNN 3 0.83(0.81,0.84) 0.91(0.79,0.96) 1 0.98 0.95

RF 1 0.84 0.91 1 0.70 0.46

SVM 6 0.81(0.63,0.92) 0.63(0.13,0.95) 3 0.79(0.72,0.85) 0.89(0.79,0.94)

DT 2 0.97(0.53,1.00) 0.70(0.67,0.73) -

NB 2 0.63(0.13,0.95) 0.76（0.70,0.81） -

kNN 2   0.95（0.39,1.00）0.80（0.77,0.83） 1 0.81 0.79

Survival model 1 0.81 0.52 -

Boosted tree 1 0.59 0.67 1 0.70 0.95

Other DL 2 0.81(0.72,0.87) 0.96(0.93,0.98) 2  0.83(0.74,0.90) 0.95(0.92,0.97)

Overall 41 0.79(0.72,0.84) 0.81(0.75,0.86) 16 0.76(0.80,0.81) 0.83(0.72,0.90)
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method, logistic regression, and SVM. Deep learning is more powerful than traditional machine learning 
algorithms, with a wide range of coverage. Its performance increases with the amount of data [70]. Deep 
learning has been successfully applied to assist in the diagnosis and prediction of osteoporotic fractures [34, 63]. 
CNN, a core algorithm of deep learning, is widely used in the field of data analysis and disease prediction with 
high accuracy [71]. CNN techniques can effectively predict the risk of osteoporotic fractures, enabling clinicians 
to take timely treatment measures, thereby reducing the occurrence of fractures [19, 23, 47]. Additionally, 
logistic regression is an efficient, simple, and easy-to-operation ML method that outputs calibrated predicted 
probabilities. An article on prediction models for the outcomes in patients with chronic obstructive pulmonary 
disease revealed that logistic regression was the most frequently used modeling method [72]. This is the same as 
recent findings reported by Kushan et al. [73]. Their ML models based on logistic regression outperformed 
those based on random forest and decision trees. Moreover, SVM adapts well to small samples and 
high-dimensional data with a low misclassification rate, and therefore can be used for classification and 
regression analysis [74].

Most included studies report multiple outcomes, such as sensitivity, specificity, AUC, and ROC. The mean 
sensitivity of the models in the training set model is 0.79 (95 % CI: 0.72, 0.84), greater than that of the models 
in the validation set. Most models are internally validated in the same population database and lack external 
validations in other populations. Only ML models in six articles were externally validated [32, 34, 36, 48, 55, 
67]. Therefore, external validations of ML models for predicting fracture risk are needed. However, a single 
performance measure such as AUC or ROC is insufficient to recommend the application of ML models into 
clinical practice [8], and multiple measures of performance should be combined.

This systematic review and meta-analysis summarized a large number of studies to comprehensively 
evaluate the predictive performance of ML for fracture risk in patients with osteoporosis. The characteristics of 
the established and validated models were described. We performed a quantitative synthesis that was never done 
in previous studies to compare these models. Furthermore, the meta-analysis of C-index was performed using 
the random-effects model, since the C-index was reported in most predictive models [72, 75]. Meanwhile, the 
bivariate mixed-effects model was used for the meta-analysis of sensitivity and specificity. In the training 
dataset, the sensitivity of hip fracture was the highest, closely followed by multi-site fracture and vertebral 
fracture. For patients with hip fractures, radiographs may cause missed diagnosis and misdiagnosis, leading to 
poor prognosis [76]. ML models have been increasingly used to identify hip fracture risk with high accuracy 
[31]. ML has a stronger power to recognize images and can assist inexperienced clinicians in a highly accurate 
diagnosis.

 Some limitations still need to be considered in the present study. Due to incomplete reporting of indicators, 
several studies were only included in the systematic review and were excluded from subsequent meta-analyses 
[61, 63]. Studies conducted in either Western or Asian populations lack external validation, and thus external 
validations in other populations are needed to widen the application of ML models. The risk of bias assessment 

demonstrated that most studies （ 67% ） had a high risk of bias, regardless of whether they involved the 

development or external validation of a prediction model for the osteoporosis population. The main bias came 
from the statistical analysis, because most studies did not properly handle continuous and categorical variables 
and reported no method for processing missing values. Only three articles reported the use of median imputation 
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or multiple interpolation method to deal with missing values [15, 31, 66], while others did not mention how to 
deal with missing values. These shortcomings in the methodology may be due to a lack of guidelines for the 
standard reporting of risk prediction studies at that time. In addition, some models were reported with little 
information, making it unable for other researchers to perform external validation, much less the application in 
clinical practice. For example, only 12 articles used the K-fold cross-validation method to improve the accuracy 
of their algorithms [15, 16, 19, 27, 30, 31, 34, 36, 42, 46, 47, 62], but most of the eligible articles did not. 
Models without stringent validation cannot be widely applied [73]. Many studies have limited applicability in 
clinical practice because of flawed methodologies or unrepresentative data sets. Future research should give 
priority to the development of practical algorithms. Furthermore, we observed large heterogeneity in the 
meta-analysis of C statistics. Potential sources of heterogeneity may be the differences in patients’ 
characteristics, data sources, and analysis methods across the studies. More than 30% of the research data came 
from clinical studies, and clinical data are heterogeneous and usually imbalanced. At last, most ML models did 
not report balanced accuracy and lacked calibration or external validation or decision curves. Thus, further 
research is required to address these issues, improving the generalization of the models.

Despite the limitations mentioned above, the present study can still provide meaningful recommendations 
for future research and practice. First, the major strength of our study is the rigorous literature search and 
methodology to provide reliable estimates. This is the latest systematic review and meta-analysis conducted to 
comprehensively assess ML models for fracture risk. Second, ML models can provide convincing evidence to 
assist clinicians in making more accurate judgments during highly complex decision-making processes, with 
certain clinical application values[74]. More rigorous, robust, and comprehensive research is warranted to assess 
its clinical application and impact on clinicians and patients. Third, the advances in emerging technologies such 
as ML have opened a new era of clinical medical research, providing new directions for solving intricate 
problems with classical statistical methods. However, clinicians currently are not skillful in using such emerging 
technologies. Therefore, it is advisable for clinicians to improve their ability to use ML to make more accurate 
diagnoses. 

In conclusion, ML has a favorable predictive performance for fracture risk in patients with osteoporosis 
and can be used as a potential tool for early identification of fracture risk in this population. However, most 
current studies lack external validation. Therefore, future research is needed to validate and improve the existing 
predictive models for osteoporosis risk rather than developing new models.
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Figure legends

Figure 1 The flow chart of retrieval process

Figure 2 Risk of bias assessment (using PROBAST) based on four domains across 

all machine learning models
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Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were
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13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If
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13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. 3
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RESULTS

Study selection 16a Describe the results of the search and selection process, from the number of records identified in the

search to the number of studies included in the review, ideally using a flow diagram.

4

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why

they were excluded.
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studies
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and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured

tables or plots.
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Section and Topic Item

#
Checklist item

Location where item is

reported

DISCUSSION

Discussion 23a Provide a general interpretation of the results in the context of other evidence. 8-10

23b Discuss any limitations of the evidence included in the review. 8-10

23c Discuss any limitations of the review processes used. 8-10

23d Discuss implications of the results for practice, policy, and future research. 10

OTHER INFORMATION

Registration and

protocol

24a Provide registration information for the review, including register name and registration number, or state

that the review was not registered.

4,Registration No.

CRD42022346896

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared. The protocol was

registered on PROSPERO

24c Describe and explain any amendments to information provided at registration or in the protocol. NA

Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or

sponsors in the review.

10

Competing interests 26 Declare any competing interests of review authors. 11

Availability of data,

code and other

materials

27 Report which of the following are publicly available and where they can be found: template data

collection forms; data extracted from included studies; data used for all analyses; analytic code; any

other materials used in the review.

Table S3,Table S4

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ

2021;372:n71. doi: 10.1136/bmj.n71

Table S1 : PRISMA 2020 checklist
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Table S2 Literature search strategy

1.Pubmed
Search

number
Query Results

#1 "Osteoporosis"[Mesh] 62,328

#2

"Osteoporosis"[Title/Abstract] OR "Osteoporoses"[Title/Abstract] OR "bone loss age

related"[Title/Abstract] OR "age related bone loss"[Title/Abstract] OR "age related bone

losses"[Title/Abstract] OR "bone loss age related"[Title/Abstract] OR ((("bone and bones"[MeSH

Terms] OR ("Bone"[All Fields] AND "bones"[All Fields]) OR "bone and bones"[All Fields] OR

"Bone"[All Fields]) AND "Losses"[All Fields]) AND "Age-Related"[Title/Abstract])

82,879

#3

"Osteoporosis"[MeSH Terms] OR ("Osteoporosis"[Title/Abstract] OR "Osteoporoses"[Title/Abstract]

OR "bone loss age related"[Title/Abstract] OR "age related bone loss"[Title/Abstract] OR "age related

bone losses"[Title/Abstract] OR "bone loss age related"[Title/Abstract] OR ((("bone and

bones"[MeSH Terms] OR ("Bone"[All Fields] AND "bones"[All Fields]) OR "bone and bones"[All

Fields] OR "Bone"[All Fields]) AND "Losses"[All Fields]) AND "Age-Related"[Title/Abstract]))

100,673

#4 "Machine Learning"[Mesh] 55,536

#5

"machine learning"[Title/Abstract] OR "transfer learning"[Title/Abstract] OR "deep

learning"[Title/Abstract] OR "prediction model"[Title/Abstract] OR "artificial

intelligence"[Title/Abstract] OR "random forest"[Title/Abstract] OR "artificial neural

network"[Title/Abstract] OR "ANN"[Title/Abstract] OR "support vector machine"[Title/Abstract] OR

"SVM"[Title/Abstract] OR "gradient boosting machine"[Title/Abstract] OR "GBM"[Title/Abstract]

OR "Nomogram"[Title/Abstract] OR "XGboost"[Title/Abstract] OR "Logistic"[Title/Abstract] OR

"decision tree"[Title/Abstract] OR "external validation"[Title/Abstract]OR "cox"[Title/Abstract]

708,017

#6

"Machine Learning"[MeSH Terms] OR "Machine Learning"[Title/Abstract] OR "transfer

learning"[Title/Abstract] OR "deep learning"[Title/Abstract] OR "prediction model"[Title/Abstract]

OR "artificial intelligence"[Title/Abstract] OR "random forest"[Title/Abstract] OR "artificial neural

network"[Title/Abstract] OR "ANN"[Title/Abstract] OR "support vector machine"[Title/Abstract] OR

869,928
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"SVM"[Title/Abstract] OR "gradient boosting machine"[Title/Abstract] OR "GBM"[Title/Abstract]

OR "Nomogram"[Title/Abstract] OR "XGboost"[Title/Abstract] OR "Logistic"[Title/Abstract] OR

"decision tree"[Title/Abstract] OR "external validation"[Title/Abstract]OR "cox"[Title/Abstract]

#7 "fractures, bone"[MeSH] 299,700

#8

"fractures bone"[Title/Abstract] OR "broken bones"[Title/Abstract] OR "bone broken"[Title/Abstract]

OR "bones broken"[Title/Abstract] OR "broken bone"[Title/Abstract] OR "Fractures"[Title/Abstract]

OR "Fracture"[Title/Abstract]

343,051

#9

"fractures, bone"[MeSH Terms] OR "fractures bone"[Title/Abstract] OR "broken

bones"[Title/Abstract] OR "bone broken"[Title/Abstract] OR "bones broken"[Title/Abstract] OR

"broken bone"[Title/Abstract] OR "Fractures"[Title/Abstract] OR "Fracture"[Title/Abstract]

325,361

#10 #3AND #6 AND #9 2,409

2.Cochrane
Search

number
Query Results

#1 MeSH descriptor: [Osteoporosis] explode all trees 5,754

#2
(Osteoporosis):ti,ab,kw OR (Osteoporoses):ti,ab,kw OR (Bone Loss, Age-Related):ti,ab,kw OR

(Age-Related Bone Loss):ti,ab,kw OR (Age-Related Bone Losses):ti,ab,kw
11,868

#3 (Bone Loss, Age Related):ti,ab,kw OR (Bone Losses, Age-Related):ti,ab,kw 549

#4 #1 OR #2 OR #3 12,188

#5 MeSH descriptor: [Machine Learning] explode all trees 866

#6
(machine learning):ti,ab,kw OR (Transfer Learning):ti,ab,kw OR (Deep learning):ti,ab,kw OR

(Prediction model):ti,ab,kw OR (artificial intelligence):ti,ab,kw
10,742

#7
(random forest):ti,ab,kw OR (artificial neural network):ti,ab,kw OR (ANN):ti,ab,kw OR (Support

vector machine):ti,ab,kw OR (SVM):ti,ab,kw
3,194

#8
(Gradient Boosting Machine):ti,ab,kw OR (GBM):ti,ab,kw OR (Nomogram):ti,ab,kw OR

(XGboost):ti,ab,kw OR (Logistic):ti,ab,kw
32,161
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#9 (Decision tree):ti,ab,kw OR (External validation):ti,ab,kw 2,025

#10 #5 OR #6 OR #7 OR #8 OR #9 43,070

#11 MeSH descriptor: [Fractures, Bone] explode all trees 8,166

#12
(Fractures, Bone):ti,ab,kw OR (Broken Bones):ti,ab,kw OR (Bone, Broken):ti,ab,kw OR (Bones,

Broken):ti,ab,kw OR (Broken Bone):ti,ab,kw
9,471

#13 (Fractures):ti,ab,kw OR (Fracture):ti,ab,kw 27,252

#14 #11 OR #12 OR #13 27,386

#15 #4 AND #10 AND #14 170

3.Embase
Search

number
Query Results

#1 'osteoporosis'/exp 152,054

#2

'osteoporosis':ab,ti OR 'osteoporoses':ab,ti OR 'bone loss, age-related':ab,ti OR 'age-related bone

loss':ab,ti OR 'age-related bone losses':ab,ti OR 'bone loss, age related':ab,ti OR 'bone losses,

age-related':ab,ti

121,472

#3 #1 OR #2 176,124

#4 'machine learning'/exp 377,384

#5

'machine learning':ab,ti OR 'transfer learning':ab,ti OR 'deep learning':ab,ti OR 'prediction

model':ab,ti OR 'artificial intelligence':ab,ti OR 'random forest':ab,ti OR 'artificial neural

network':ab,ti OR ann:ab,ti OR 'support vector machine':ab,ti OR svm:ab,ti OR 'gradient boosting

machine':ab,ti OR gbm:ab,ti OR nomogram:ab,ti OR xgboost:ab,ti OR logistic:ab,ti OR 'decision

tree':ab,ti OR 'external validation':ab,ti OR 'cox':ab,ti

1,265,200

#6 #4 OR #5 1,485,765

#7 'fracture'/exp 383,399

#8
'fractures, bone':ab,ti OR 'broken bones':ab,ti OR 'bone, broken':ab,ti OR 'bones, broken':ab,ti OR

'broken bone':ab,ti OR 'fractures':ab,ti OR 'fracture':ab,ti
363,644
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#9 #7 OR #8 471,174

#10 #3 AND #6 AND #9 4,387

4.Web of science
Search

number
Query Results

#1

Osteoporosis (Topic) or Osteoporoses (Topic) or Bone Loss, Age-Related (Topic) or Age-Related

Bone Loss (Topic) or Age-Related Bone Losses (Topic) or Bone Loss, Age Related (Topic) or

Bone Losses, Age-Related (Topic)

210,210

#2

machine learning (Topic) or Transfer Learning (Topic) or Deep learning (Topic) or Prediction

model (Topic) or artificial intelligence (Topic) or random forest (Topic) or artificial neural network

(Topic) or ANN (Topic) or Support vector machine (Topic) or SVM (Topic) or Gradient Boosting

Machine (Topic) or GBM (Topic) or Nomogram (Topic) or XGboost (Topic) or Logistic (Topic) or

Decision tree (Topic) or External validation (Topic) or Cox (Topic)

3,698,410

#3
Fractures, Bone (Topic) or Broken Bones (Topic) or Bone, Broken (Topic) or Bones, Broken

(Topic) or Broken Bone (Topic) or Fractures (Topic) or Fracture (Topic)
1,302,805

#4 #1 AND #2 AND #3 5,502
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Table S3 Characteristics of included studies in meta-analysis

Author Year Country Data source Sample
population type

Mean
age,years

Fracture
site

Total
sample, n

Validation
Method

ML
method

Model
evaluation
metrics

Wu, Q[15] 2020 USA gene database men 74.8 multiple 5130 internal

LR
ANN
RF
BT

AUC
Sensitivity
Specificity
Accuracy

Villamor, E[16] 2020 Spain clinical hospital women 81.4 hip 137 internal

LR
SVM
ANN
RF

Accuracy

Van Geel,
Tacm[17] 2011 Netherla

nds
questionnaire
collection women 62 vertebral 2372 - SM AUC

Ulivieri, F.
M[18] 2021 Italy clinical hospital patient 48.5 vertebral 90 - ANN

Sensitivity
Specificity
Accuracy

Yoda, T[19] 2021 Japan clinical hospital patient 77.6 vertebral 97 internal CNN

ROC
AUC

Sensitivity
Specificity

Jiang, X. Z[20] 2013 USA clinical hospital women 61.4 multiple 615 - LR

AUC
Sensitivity
Specificity
Accuracy

Schousboe, J.
T[21] 2014 USA clinical hospital women 75 vertebral 7233 - LR AUC

ROC
Sandhu, S.
K[22] 2010 Australia electronic health

record patient 74 multiple 200 - LR AUC

Rubin, K. H[23] 2018 Denmark administrative subjects 61.4 multiple 2495339 internal LR

AUC
ROC

Accuracy
PPV
NPV

Pluskiewicz,
W[24] 2010 Poland osteoporosis

registry women 68.5 multiple 2012 - LR ROC
AUC

Jang, E. J[25] 2016 Korea questionnaire
collection subjects 61 multiple 768 - LR C-statistics
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Barret A.
Monchka[26] 2021 Canada osteoporosis

registry subjects 75 vertebral 12742 internal CNN

AUC
Sensitivity
Specificity
Accuracy
PPV
NPV

Mehta, S. D[27] 2020 USA clinical hospital patient 69 vertebral 307 internal SVM

AUC
ROC

Sensitivity
Specificity
Accuracy
PPV
NPV

Langsetmo,
L[28] 2011 Canada questionnaire

collection subjects 67.6 multiple 5758 internal SM C-Statistics
ROC

Ioannidis, G[29] 2017 Canada electronic health
record subjects 61 multiple 29848 internal DT

LR C-statistics

K. K.
Nishiyama[30] 2013 Canada questionnaire

collection women 73 multiple 116 internal SVM

ROC
AUC

Sensitivity
Specificity
Accuracy

Kruse, C[31] 2017 Denmark administrative subjects 60.8 hip 7252 internal DT
NB

ROC
AUC

Sensitivity
Specificity

Kolanu, N[32] 2021 Australia electronic health
record patient 73.4 multiple 5416 external ANN

ROC
AUC

Sensitivity
Specificity

Kim, H. Y[33] 2016 Korea administrative subjects 60 multiple 718508 internal SM C-statistics

Hsieh, C. I[34] 2021 China clinical hospital patient 72.2 hip 36279 external Other DL

AUC
ROC

Sensitivity
Specificity
Accuracy
PPV
NPV

Hong, N[35] 2021 Korea clinical hospital women 73 hip 2462 internal SM C-statistics
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BT
SVM

Ho-Le, T. P[36] 2017 Australia osteoporosis
registry women 69.1 hip 1167 external

ANN
LR
kNN
SVM

AUC
Sensitivity
Specificity

Henry, M. J[37] 2011 Australia osteoporosis
registry women 74 multiple 600 - LR

AUC
ROC

Sensitivity
Specificity

Galassi, A[38] 2020 Spain electronic health
record women 81.4 hip 137 internal

DT
LR
RF
SVM

Sensitivity
Specificity
Accuracy

FitzGerald,
G[39] 2014 Californi

a
questionnaire
collection women 67 multiple 47429 - SM C-statistics

Ferizi, U[40] 2019 USA osteoporosis
registry women 62 multiple 92 -

LR
BT
kNN
SVM
NB

AUC
ROC

Sensitivity
Specificity

Enns-Bray, W.
S[41] 2019 USA clinical hospital women 77.2 hip 254 - LR AUC

ROC

Engels, A[42] 2020 Germany administrative patient 75.6 hip 78074 internal

SVM
RF
LR

Ensemble
learning
BT

AUC
ROC

De Vries, B. C.
S[43] 2021

The
Netherla
nds

clinical hospital patient 68 multiple 9348 internal
ANN
RF
SM

C-statistics

Cheung, E.
Y[44] 2012 China electronic health

record women 62 multiple 2266 - SM

AUC
ROC

Sensitivity
Specificity

Chanplakorn,
P[45] 2021 Thailand osteoporosis

registry women 68.5 vertebral 617 - SM AUC
ROC

Bredbenner, T. 2014 USA clinical hospital men 65 hip 922 internal LR AUC
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L[46] ROC

Beyaz, S[47] 2020 Turkey osteoporosis
registry patient 74.9 multiple 2106 - ANN

AUC
ROC

Sensitivity
Specificity
Accuracy

Berry, S. D[48] 2018 USA administrative subjects 84 hip 1278304 external SM C-statistics
Beaudoin,
C[49] 2021 Canada administrative subjects 75.1 multiple 581281 internal SM C-statistics

Baleanu, F[50] 2022 Belgium clinical hospital women 70.1 multiple 3560 - LR AUC
ROC

Almog, Y.
A[51] 2020 USA electronic health

record patient 50 vertebral 9806205 internal ANN

AUC
ROC

Sensitivity
Specificity

Zagorski, P[52] 2021 Poland questionnaire
collection women 65.2 hip 389 - LR

AUC
ROC

Sensitivity
Specificity

PPV
NPV

Diez-Perez,
A[53] 2007 Spain questionnaire

collection women 72.3 multiple 5201 - SM AUC
ROC

Lix, L. M[54] 2018 Canada osteoporosis
registry women 65.6 multiple 31999 - LR AUC

ROC

Li, Q. J[55] 2021 China clinical hospital patient 70 multiple 562
internal
and

external
LR C-statistics

Lee, S[56] 2008 Korea osteoporosis
registry women 65 multiple 94 - SVM Sensitivity

Specificity

Jacobs, J. W.
G[57] 2010 Portugal questionnaire

collection subjects 66 vertebral 314 - LR

AUC
ROC

Sensitivity
Specificity

Eller-Vainicher,
C[58] 2011 Italy questionnaire

collection women 68 vertebral 372 - ANN
LR

AUC
ROC

Sensitivity
Specificity
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Accuracy
Zhong, B.
Y[59] 2017 China clinical hospital patient 72 vertebral 421 internal SM C-statistics

Xiao, X[60] 2021 USA gene database women 64.5 hip 699 - SM AUC

Du,J[61] 2022 China clinical hospital subjects 71 femur 120 -

SVM
RF
DT

AdaBoost
ANN

XGBoost

Accuracy
Specificity

Recall
Precision

Wang,M[62] 2022 China clinical hospital subjects 73.4 vertebral 7906 - SM AUC

Dong,Q[63] 2022 USA clinical hospital men 73.7 vertebral 3792 internal Other DL

AUC
ROC

Sensitivity
Specificity

PPV
NPV
FDR
F1 score
Accuracy

Wen,Z[64] 2022 China clinical hospital patient 73.5 vertebral 270 internal LR

AUC
ROC

Specificity
Sensitivity

PPV
NPV

Diagnostic
efficiency

Pluskiewicz,W
[65] 2023 Poland questionnaire

collection women 66.4 multiple 640 - LR AUC

Kong,X[66] 2022 China clinical hospital patient 55.1 multiple 1730 - SM
AUC
NRI
IDI

Agarwal,A[67] 2023 Canada electronic health
record women 70.7 multiple 9716 external SM AUC

ROC
*LR: Logistic Regression;ANN:artificial neural network;SVM = support-vector machine; CNN:convolutional neural network; kNN: k-nearest neighbors; RF:
random forests;DT:decision tree;NB:Naive Bayes;BT:Boosted tree;SM:Survival model;DL:deep learnimg model;AUC:area under the receiver operating
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characteristic curve;ROC:receiver operating characteristic;PPV:positive predictive value;NPV:negative predictive value;FDR:R false discovery rate;NRI:net
reclassifcation index; IDI:integrated discrimination improvement.
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Table S4 Methodological characteristics of machine learning models developed for outcome prediction in patients with Osteoporosis

Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

Wu, Q 2020 Train M Multiple
fractures 361 4104 LR

10-fold
cross

validation

Median
interpolation

Wu, Q 2020 Train M Multiple
fractures 361 4104 RF

10-fold
cross

validation

Median
interpolation

Wu, Q 2020 Train M Multiple
fractures 361 4104 BT

10-fold
cross

validation

Median
interpolation

Wu, Q 2020 Train M Multiple
fractures 361 4104 ANN

10-fold
cross

validation

Median
interpolation

Wu, Q 2020 Test M Multiple
fractures 90 1026 LR

10-fold
cross

validation

Median
interpolation 0.6410 0.7610 0.4420 0.6980

Wu, Q 2020 Test M Multiple
fractures 90 1026 RF

10-fold
cross

validation

Median
interpolation 0.7005 0.7000 0.4670 0.7590

Wu, Q 2020 Test M Multiple
fractures 90 1026 BT

10-fold
cross

validation

Median
interpolation 0.7100 0.5650 0.6930 0.8840

Wu, Q 2020 Test M Multiple
fractures 90 1026 ANN

10-fold
cross

validation

Median
interpolation 0.6910 0.7120 0.5980 0.8390

Villamor, E 2020 Train F Hip
fracture 65 101 LR

10-fold
cross

validation
0.7669

Villamor, E 2020 Train F Hip
fracture 65 101 SVM

10-fold
cross

validation
0.7569
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Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

Villamor, E 2020 Train F Hip
fracture 65 101 ANN

10-fold
cross

validation
0.7642

Villamor, E 2020 Train F Hip
fracture 65 101 RF

10-fold
cross

validation
0.6940

Villamor, E 2020 Test F Hip
fracture 65 101 LR

10-fold
cross

validation
0.7309

Villamor, E 2020 Test F Hip
fracture 65 101 SVM

10-fold
cross

validation
0.7835

Villamor, E 2020 Test F Hip
fracture 65 101 ANN

10-fold
cross

validation
0.6940

Villamor, E 2020 Test F Hip
fracture 65 101 RF

10-fold
cross

validation
0.7334

van Geel,
Tacm 2011 Train F Vertebral

fracture 382 2372 SM Bootstrapp
ing

Ulivieri, F.
M 2021 Train F Vertebral

fracture 56 90 ANN 0.8300 0.7500 0.8372

Yoda, T 2021 Train M+F Vertebral
fracture 28 50 CNN

5-fold
cross

validation
0.9670 0.9250 0.9490 0.9380

Yoda, T 2021 Test M+F Vertebral
fracture 21 47 CNN

5-fold
cross

validation
0.9840 0.9810 0.9490 0.9640

Jiang, X. Z 2013 Train F Multiple
fractures 15 615 LR 0.7600 0.8100 0.4700 0.5100

Schousboe
, J. T 2014 Train F Vertebral

fracture 2883 7233 LR 0.6790
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Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

Sandhu, S.
K 2010 Train F Multiple

fractures 47 144 LR 0.8400 0.7800 0.8000

Sandhu, S.
K 2010 Train M Multiple

fractures 18 56 LR 0.7600 0.7400 0.8000

Rubin, K.
H 2018 Train F Multiple

fractures
1189
8 647103 LR 0.7500 0.7520 0.5650

Rubin, K.
H 2018 Train M Multiple

fractures
1185
1 647103 LR 0.7520 0.6450 0.6090

Rubin, K.
H 2018 Test F Multiple

fractures 4762 600567 LR 0.8740 0.6000 0.6990

Rubin, K.
H 2018 Test M Multiple

fractures 4776 600566 LR 0.8510 0.6300 0.5840

Pluskiewic
z, W 2010 Train F Hip

fracture 1599 2012 LR 0.850 0.7590 0.7370

Pluskiewic
z, W 2010 Train F Multiple

fractures 1704 2012 LR 0.8790 0.7390 0.5980

Jang, E. J 2016 Train M Multiple
fractures 36 363 LR 0.7390

Jang, E. J 2016 Train F Multiple
fractures 50 405 LR 0.7180

Barret A.
Monchka 2021 Train M+F Vertebral

fracture 1470 8920 CNN 0.9500 0.8240 0.9430 0.9230

Mehta, S.
D 2020 Train M+F Vertebral

fracture 86 246 SVM
10-fold
cross

validation
0.9258 0.8950 0.9560 0.9350

Mehta, S.
D 2020 Test M+F Vertebral

fracture 22 61 SVM
10-fold
cross

validation
0.8963 0.8180 0.9740 0.9180

Langsetmo
, L 2011 Test M Multiple

fractures 139 1606 SM 0.7000
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Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

Langsetmo
, L 2011 Test F Multiple

fractures 672 4152 SM 0.6900

Ioannidis,
G 2017 Train M+F Multiple

fractures 3858 22386 DT 0.6690

Ioannidis,
G 2017 Test M+F Multiple

fractures 1294 7462 DT 0.6870

K. K.
Nishiyama 2013 Train F Multiple

fractures 44 88 SVM
10-fold
cross

validation
0.6800 0.5280 0.7970 0.6890

K. K.
Nishiyama 2013 Test F Multiple

fractures 14 28 SVM
10-fold
cross

validation
0.8000 0.6880 0.8850 0.8100

Kruse, C 2017 Train F Hip
fracture 293 4722 NB

5-fold
cross

validation

random
forest

imputation
0.9200 0.8800 0.8100

Kruse, C 2017 Train M Hip
fracture 47 717 DT

5-fold
cross

validation

random
forest

imputation
0.8900 1.0000 0.6900

Kolanu, N 2021 Train M+F Multiple
fractures 433 5089 ANN 0.9900 0.9950

Kolanu, N 2021 Test M+F Multiple
fractures 97 327 ANN 0.6960 0.9500

Kim, H. Y 2016 Train M Multiple
fractures 4889 185127 SM 0.6800

Kim, H. Y 2016 Train F Multiple
fractures

1495
1 174126 SM 0.6500

Kim, H. Y 2016 Test M+F Multiple
fractures

1991
5 359255 SM 0.6650

Hsieh, C. I 2021 Train M+F Hip
fracture 2254 5164 Other

DL

4-fold
cross

validation
0.9700 0.8820 0.9140 0.9000
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Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

Hsieh, C. I 2021 Test M+F Hip
fracture 922 2060 Other

DL

4-fold
cross

validation
0.9600 0.8990 0.9200 0.9100

Hsieh, C. I 2021 Train M+F Vertebral
fracture 530 57662 Other

DL

4-fold
cross

validation
0.9700 0.6960 0.9790 0.9500

Hsieh, C. I 2021 Test M+F Vertebral
fracture 922 3346 Other

DL

4-fold
cross

validation
0.9400 0.7400 0.9730 0.9480

Hong, N 2021 Train F Hip
fracture 143 433 RF 0.7840 0.7300

Hong, N 2021 Train F Hip
fracture 143 433 BT 0.7680 0.7200

Hong, N 2021 Train F Hip
fracture 143 433 SVM 0.7590 0.7400

Hong, N 2021 Train F Hip
fracture 143 433 BT 0.7580 0.7300

Hong, N 2021 Test F Hip
fracture 34 2029 SM 0.8400

Ho-Le, T. P 2017 Train F Hip
fracture 54 700 ANN

5-fold
cross

validation
0.8890 0.8610 0.8630

Ho-Le, T. P 2017 Train F Hip
fracture 54 700 LR

5-fold
cross

validation
0.9070 0.8640 0.8670

Ho-Le, T. P 2017 Train F Hip
fracture 54 700 KNN

5-fold
cross

validation
1.0000 0.8330 0.8460

Ho-Le, T. P 2017 Train F Hip
fracture 54 700 SVM

5-fold
cross

validation
0.9240 0.9690 0.9660

Ho-Le, T. P 2017 Test F Hip
fracture 36 467 ANN 5-fold

cross 0.8330 0.8770 0.8730
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Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

validation

Ho-Le, T. P 2017 Test F Hip
fracture 36 467 LR

5-fold
cross

validation
0.7780 0.8180 0.8150

Ho-Le, T. P 2017 Test F Hip
fracture 36 467 KNN

5-fold
cross

validation
0.8060 0.7930 0.7940

Ho-Le, T. P 2017 Test F Hip
fracture 36 467 SVM

5-fold
cross

validation
0.8060 0.8160 0.8150

Henry, M.
J 2011 Train F Multiple

fractures 125 600 LR 0.7000 0.6420 0.6620

Galassi, A 2020 Train F Hip
fracture 62 96 LR 0.7033 0.7146 0.7081

Galassi, A 2020 Train F Hip
fracture 62 96 SVM 0.9367 0.6292 0.8077

Galassi, A 2020 Train F Hip
fracture 62 96 DT 0.5967 0.7446 0.6587

Galassi, A 2020 Train F Hip
fracture 62 96 RF 0.8330 0.9231 0.8710

FitzGerald,
G 2014 Train F Multiple

fractures 2638 47429 SM 0.6670

Ferizi, U 2019 Train F Multiple
fractures 32 92 BT

23-fold
cross

validation
0.6200 0.5880 0.6670 0.6390

Ferizi, U 2019 Train F Multiple
fractures 32 92 LR

23-fold
cross

validation
0.6200 0.5600 0.7010 0.6510

Ferizi, U 2019 Train F Multiple
fractures 32 92 LR

23-fold
cross

validation
0.6190 0.5400 0.7010 0.6420
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Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

Ferizi, U 2019 Train F Multiple
fractures 32 92 SVM

23-fold
cross

validation
0.5910 0.4490 0.7440 0.6410

Ferizi, U 2019 Train F Multiple
fractures 32 92 kNN

23-fold
cross

validation
0.5060 0.2690 0.7420 0.5760

Ferizi, U 2019 Train F Multiple
fractures 32 92 NB

23-fold
cross

validation
0.5650 0.4520 0.6790 0.6020

Enns-Bray,
W. S 2019 Train F Hip

fracture 95 254 LR 0.7270

Engels, A 2020 Train M+F Hip
fracture 6115 20456 LR

10-fold
cross

validation
0.7140

Engels, A 2020 Train M+F Hip
fracture 6115 20456 RF

10-fold
cross

validation
0.6860

Engels, A 2020 Train M+F Hip
fracture 6115 20456 SVM

10-fold
cross

validation
0.6600

Engels, A 2020 Train M+F Hip
fracture 6115 20456 BT

10-fold
cross

validation
0.7110

Engels, A 2020 Train M+F Hip
fracture 6115 20456

Ense
mble
learni
ng

10-fold
cross

validation
0.7220 1.0000

Engels, A 2020 Train M+F Hip
fracture 6115 20456 BT

10-fold
cross

validation
0.7250

Engels, A 2020 Test M+F Hip
fracture 1529 57618 LR

10-fold
cross

validation
0.6950 1.0000
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Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

Engels, A 2020 Test M+F Hip
fracture 1529 57618 RF

10-fold
cross

validation
0.6850

Engels, A 2020 Test M+F Hip
fracture 1529 57618 SVM

10-fold
cross

validation
0.6500

Engels, A 2020 Test M+F Hip
fracture 1529 57618 BT

10-fold
cross

validation
0.7020

Engels, A 2020 Test M+F Hip
fracture 1529 57618

Ense
mble
learni
ng

10-fold
cross

validation
0.6980

Engels, A 2020 Test M+F Hip
fracture 1529 57618 BT

10-fold
cross

validation
0.7030

de Vries, B.
C. S 2021 Train M+F Multiple

fractures 805 7578 SM 0.6970

de Vries, B.
C. S 2021 Train M+F Multiple

fractures 805 7578 ANN 0.6700

de Vries, B.
C. S 2021 Train M+F Multiple

fractures 805 7578 RF 0.6870

de Vries, B.
C. S 2021 Test M+F Multiple

fractures 165 1770 SM 0.6250

de Vries, B.
C. S 2021 Test M+F Multiple

fractures 165 1770 ANN 0.5880

de Vries, B.
C. S 2021 Test M+F Multiple

fractures 165 1770 RF 0.5930

Cheung, E.
Y 2012 Train F Multiple

fractures 106 2266 SM 0.7300 0.8080 0.5170

Chanplakor
n, P 2021 Train F Vertebral

fracture 179 617 LR 0.6500 0.4300 0.8600
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Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

Bredbenner,
T. L 2014 Train M Hip

fracture 45 472 LR
10-fold
cross

validation
0.9300

Beyaz, S 2020 Train M+F Multiple
fractures 235 2106 CNN

5-fold
cross

validation
0.8250 0.6930 0.7770

Berry, S. D 2018 Train M Hip
fracture 3541 119874 SM 0.6922

Berry, S. D 2018 Train F Hip
fracture

1101
2 299794 SM 0.7106

Berry, S. D 2018 Test M+F Hip
fracture

2805
0 858636 SM 0.6800

Beaudoin,
C 2021 Train M+F Multiple

fractures
5767
8 307909 SM 0.6810

Beaudoin,
C 2021 Test M+F Multiple

fractures
2180
9 273372 SM 0.6790

Baleanu, F 2022 Train F Multiple
fractures 410 3560 LR 0.7300

Almog, Y.
A 2020 Train M+F Vertebral

fracture
2468
694 6329986 ANN 0.8120 0.8120 0.1920

Almog, Y.
A 2020 Test M+F Vertebral

fracture
2954
79 3476219 ANN 0.6680 0.7070 0.1140

Zagorski, P 2021 Train F Hip
fracture 49 389 LR 0.8840 0.9390 0.7120

Diez-Perez,
A 2007 Train F Multiple

fractures 363 5201 SM 0.6720

Lix, L. M 2018 Train F Multiple
fractures 749 31999 LR 0.7060

Li, Q. J 2021 Train F Multiple
fractures 49 403 LR 0.8820

Li, Q. J 2021 Test F Multiple
fractures 17 159 LR 0.8690
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Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

Lee, S 2008 Train F Multiple
fractures 47 94 SVM 0.8500 0.4900

Jacobs, J.
W. G 2010 Train M Vertebral

fracture 58 109 LR 0.5100

Jacobs, J.
W. G 2010 Train F Vertebral

fracture 98 205 LR 0.7400 0.6700 0.7100

Eller-Vainic
her, C 2011 Train F Vertebral

fracture 33 372 LR 0.8230 0.3730 0.9030 0.6380

Eller-Vainic
her, C 2011 Train F Vertebral

fracture 33 372 ANN 0.6990 0.7480 0.8780 0.8130

Zhong, B.
Y 2017 Train M+F Vertebral

fracture 33 256 SM 0.7800

Zhong, B.
Y 2017 Test M+F Vertebral

fracture 23 165 SM 0.7200

Xiao, X 2021 Train F Hip
fracture 25 699 SM 0.8040

Du,J 2022 Train M+F Femur
fracture 96 SVM 0.6250

Du,J 2022 Train M+F Femur
fracture 96 RF 0.5000

Du,J 2022 Train M+F Femur
fracture 96 DT 0.5833

Du,J 2022
Train M+F Femur

fracture 96
Boost
ed
tree 0.5000

Du,J 2022 Train M+F Femur
fracture 96 ANN 0.5833

Du,J 2022
Train M+F Femur

fracture 96
Boost
ed
tree 0.5417

Du,J 2022 Test M+F Femur
fracture 24 SVM 0.9167
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Author Year Data
set Gender Fracture

site Events Sample
size

Model
type

Verification
method

Missing value
processing

C-inde
x

Sensiti
vity Specificity Accuracy

Du,J 2022 Test M+F Femur
fracture 24 RF 0.8333

Du,J 2022 Test M+F Femur
fracture 24 DT 0.9167

Du,J 2022
Test M+F Femur

fracture 24
Boost
ed
tree 0.8750

Du,J 2022 Test M+F Femur
fracture 24 ANN 0.9583

Du,J 2022
Test M+F Femur

fracture 24
Boost
ed
tree 0.9167

Wang,M 2022 Train M+F Vertebral
fractur 72 7906 SM

10-fold
cross

validation
0.820

Dong,Q 2022 Train M+F Vertebral
fractur 3413 Other

DL 0.990 0.5980 0.9990 0.9950

Dong,Q 2022 Test M+F Vertebral
fractur 379 Other

DL 0.820 0.9770 0.9510 0.9510

Wen,Z 2022 Train M+F Vertebral
fractur 208 220 LR 0.854 0.7310 0.8460

Wen,Z 2022 Test M+F Vertebral
fractur 50 50 LR 0.979 0.8942 0.9545

Pluskiewicz
,W 2023 Train F Multiple

fractures 129 640 LR 0.660

Kong,X 2022 Train M+F Multiple
fractures 109 1730 SM Bootstrapp

ing
Mean

interpolation 0.803

Agarwal,A 2023 Test F Multiple
fractures 264 9716 SM 0.710

*M:Male;F:Female;LR:Logistic Regression;ANN:artifificial neural network;SVM:support-vector machine; CNN:convolutional ANN; kNN:k-nearest
neighbors; RF:random forests;DT:decision tree;BT:Boosted tree;SM:Survival model;NB:Naive Bayes;DL:deep learnimg model.

.
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Table S5 Risk of bias assessment grading of the machine learning predictive modelling studies of osteoporosis populations as per the PROBAST
criteria

Study Participants bias Predictors bias Outcome bias Analysis bias Overall bias rating

Wu, Q low low low high high

Wu, Q low low low high high

Wu, Q low low low high high

Wu, Q low low low high high

Villamor, E high unclear unclear high high

Villamor, E high unclear unclear high high

Villamor, E high unclear unclear high high

Villamor, E high low unclear high high

Van Geel, Tacm low low low high high

Ulivieri, F. M low low low high high

Yoda, T low low low high high

Jiang, X. Z low low low high high

Schousboe, J. T high low low unclear high

Sandhu, S. K high unclear unclear high high

Rubin, K. H low low low unclear unclear

Pluskiewicz, W high low low unclear high

Jang, E. J low low low high high

Barret A. Monchka high low low unclear high

Mehta, S. D high unclear unclear high high

Langsetmo, L low low low unclear unclear

Ioannidis, G high low low unclear high

K. K. Nishiyama low low low high high
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Kruse, C low low low unclear unclear

Kruse, C low low low unclear unclear

Kolanu, N high low low unclear high

Kim, H. Y low low low unclear unclear

Hsieh, C. I low low low unclear unclear

Hong, N low low low unclear unclear

Hong, N low low low unclear unclear

Hong, N low low low unclear unclear

Hong, N low low low unclear unclear

Hong, N low low low unclear unclear

Ho-Le, T. P low low low high high

Ho-Le, T. P low low low high high

Ho-Le, T. P low low low high high

Ho-Le, T. P low low low high high

Henry, M. J low low low unclear unclear

Galassi, A low low low high high

Galassi, A low low low high high

Galassi, A low low low high high

Galassi, A low low low high high

FitzGerald, G low low low unclear unclear

Ferizi, U high unclear unclear high high

Ferizi, U high unclear unclear high high

Ferizi, U high unclear unclear high high

Ferizi, U high unclear unclear high high

Ferizi, U high unclear unclear high high

Ferizi, U high unclear unclear high high

Page 46 of 55

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Enns-Bray, W. S high low low high high

Engels, A low low low unclear unclear

Engels, A low low low unclear unclear

Engels, A low low low unclear unclear

Engels, A low low low unclear unclear

Engels, A low low low unclear unclear

Engels, A low low low unclear unclear

de Vries, B. C. S high low low unclear high

de Vries, B. C. S high low low unclear high

de Vries, B. C. S high low low unclear high

Cheung, E. Y low low low unclear unclear

Chanplakorn, P high low low unclear high

Bredbenner, T. L high unclear unclear high high

Beyaz, S high low low unclear high

Berry, S. D low low low unclear unclear

Beaudoin, C high low low unclear high

Baleanu, F low low low unclear unclear

Baleanu, F low low low unclear unclear

Almog, Y. A high low low unclear unclear

Zagorski, P low low low high high

Diez-Perez, A low low low unclear unclear

Lix, L. M low low low unclear unclear

Li, Q. J high low low high high

Lee, S high unclear low high high

Jacobs, J. W. G low low low unclear unclear

Eller-Vainicher, C low low low high high
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Eller-Vainicher, C low low low high high

Zhong, B. Y high low low high high

Xiao, X low low low high high

Du,J low low low high high

Du,J low low low high high

Du,J low low low high high

Du,J low low low high high

Du,J low low low high high

Du,J low low low high high

Wang,M high low low high high

Dong,Q low low low unclear unclear

Wen,Z high low low high high

Pluskiewicz,W low low low high high

Kong,X high low low high high

Agarwal,A low low low unclear unclear
*When a single study included multiple models, risk of bias concerns were assessed for each model.
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Fig.S1 Forest plots for subgroup analysis of C-index statistics by fracture site and machine learning type in training set
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Fig.S2 Forest plots for subgroup analysis of C-index statistics by fracture site and machine learning type in validation set
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Fig.S3 Sensitivity analysis of multiple fracture model in training set
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Fig.S4 Sensitivity analysis of vertebral fracture model in training set
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Fig.S5 Sensitivity analysis of hip fracture model in training set
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Fig.S6 Sensitivity analysis of multiple fracture model in validation set
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Fig.S7 Sensitivity analysis of vertebral fracture model in validation set
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Fig.S8 Sensitivity analysis of hip fracture model in validation set
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