The effect of aerobic exercise training on pulse wave velocity in adults with and without long-term conditions –a systematic review and meta-analysis

Majda Bakali, Thomas JC Ward, Enya Daynes, Amy V Jones, Grace M Hawthorne, Pip Divall, Matthew PM Graham-Brown, Gerry P McCann, Thomas Yates, Michael C Steiner, Rachael A Evans

Supplementary material

Methods:

Eligibility criteria

The inclusion criteria: population - any adult population; interventions -supervised aerobic exercise training, for a minimum of 3 weeks; comparator- no control; outcomes- aortic stiffness measured using applantation tonometry, ultrasound measuring artery wall diameter or cardiac MRI; study design - studies with pre and post intervention measurements. Exclusion criteria: no objective measure of aortic stiffness; studies without exercise training as an intervention; abstract only.

Search strategy for the systematic review.

The full search terms for MEDLINE are as follows:

"VASCULAR STIFFNESS"/ OR ((aortic OR vascular OR arterial) ADJ3 stiff*).ti,ab OR "PULSE WAVE ANALYSIS"/ OR (pulse wave velocity).ti,ab))

AND

(exp EXERCISE/ OR exp EXERCISE THERAPY/ OR exp PHYSICAL EXERTION/ OR exp SPORTS/ OR exp EXERCISE MOVEMENT TECHNIQUES/ OR exp LOCOMOTION/ OR exp FITNESS CENTERS/ OR (physical ADJ3 (exertion OR endurance OR therap* OR conditioning OR activit* OR fitness)).ti,ab OR (exercis*).ti,ab OR (fitness ADJ3 (train* OR intervention* OR protocol* OR program* OR therap* OR activit* OR regim* OR centre* OR center*)).ti,ab OR ((training OR conditioning) ADJ3 (circuit OR intervention* OR protocol* OR program* OR activit* OR regim*)).ti,ab OR (walk* OR run* OR treadmill OR aerobic OR swim* OR danc*).ti,ab OR ((endurance OR aerobic OR cardio*) ADJ3 (fitness OR train* OR intervention* OR protoco* OR program* OR therap* OR activit* OR regim*)).ti,ab))

AND

ADULT

Study screening and data extraction

Two reviewers independently screened the titles and abstracts for inclusion against the defined eligibility criteria. The full text of the included articles were then screened by two reviewers against the defined eligibility criteria. Any disagreement was resolved by consensus, with the addition of a third reviewer if necessary.

The extracted information included: (1) the participants' demographics (2) disease/health characteristics; (3) intervention; (4) method of the assessment of aortic stiffness; (5) results; (6) statistical analysis. Any disagreements was resolved by consensus and a third reviewer was consulted when disagreement could not be resolved. If data from selected studies were incomplete, the principal study author was contacted.

Each study was assessed for possible risk of bias using the relative tool depending on the study design. For the randomised controlled trials the Revised Cochrane risk-of-bias tool for randomised trials (RoB 2) was used. As for the non-randomised studies, the Risk Of Bias In Non-randomized Studies – of Interventions (ROBINS-I) assessment tool was applied. The national heart, lung, blood institute quality assessment tool for observational cohort and cross-sectional studies was used for the uncontrolled studies.

Statistical analysis

Baseline demographics were analysed using SPSS.

Mean differences between the measures before and after the intervention measures of arterial stiffness were calculated using the reported means and standard deviations. If different measures of central tendency and distribution were available, means and SD were estimated using p-value or 95% confidence interval, or if not available, estimated from baseline SD using a correlation coefficient of 0.681 (derived from the dataset). A sensitivity analysis was performed with a correlation coefficient of 0.5. These imputations followed the guidelines as set out in the Cochrane handbook for systematic reviews of interventions.

A meta-analysis was conducted using the metafor package in R 4.1.1 (R Foundation for Statistical Computing).

Results

e-Table 1.	List of	excluded	studies
C-TADIC I.		excluded	studies

e-Table 1. List of excluded stu	
Study	Reason for exclusion
Acar, 2014 [1]	No measure of PWV
Acar, 2015 [2]	No measure of PWV
Akawaza, 2013 [3]	No measure of PWV
Akerman, 2019 [4]	Intervention was 2 weeks
Aldabayan, 2017 [5]	Systematic review
Aldabayan, 2019 [6]	Not aerobic exercise
Brozic, 2017 [7]	Unsupervised exercise training
Dobrosielski, 2012[8]	Not aerobic exercise
Eluterio-silva, 2013 [9]	No measure of PWV
Figueroa, 2014 [10]	Not aerobic exercise
Figueroa, 2011 [11]	Not aerobic exercise
Fujie, 2014 [12]	No measure of PWV
Fukuie, 2018 [13]	Not aerobic exercise
Gale, 2011 [14]	Not aerobic exercise
Greenwood, 2015 [15]	Not aerobic exercise
Harris, 2014 [16]	Not aerobic exercise
Howden, 2013 [17]	Exercise and lifestyle
Hraiech, 2016 [18]	Lack of intervention information
Kawamoto, 2014 [19]	No measure of PWV
Kawasaki, 2011 [20]	Unsupervised exercise training
Kim, 2017 [21]	Unsupervised exercise training
Koh, 2009 [22]	Protocol paper
Kurose, 2014 [23]	Not aerobic exercise
Lee, 2015 [24]	Not aerobic exercise
Mcneilly, 2012 [25]	Unsupervised exercise training
Michishita, 2017 [26]	Exercise and lifestyle
Mihaescu, 2013 [27]	Not aerobic exercise
Miura, 2015 [28]	Not aerobic exercise
Moore, 2017 [29]	Not aerobic exercise
Murakami, 2005 [30]	Lack of intervention information
Mustata, 2004 [31]	No measure of PWV
O'Connor, 2017 [32]	Duplicate data
Okamoto, 2019 [33]	Unsupervised exercise training
Pagonas, 2017 [34]	Unsupervised exercise training
Patil, 2015 [35]	Not aerobic exercise
Pierce, 2016 [36]	Unsupervised exercise training
Ramirez, 2019 [37]	Duplicate data
Son, 2016 [38]	Not aerobic exercise
Streese, 2018 [39]	Protocol paper
Tanaka, 2013 [40]	No measure of PWV
Tabara, 2007 [41]	No measure of PWV
Totosy, 2015 [42]	Not aerobic exercise
	No intervention
Trzos, 2007 [43]	

Vanfleteren, 2014 [44]	Not aerobic exercise
Yuan, 2016 [45]	No measure of PWV

			Unc	controlled trials			
Study	Country	Participant's characteristics	Ν	Age (years)	Sex at birth (% male)	BMI (kg/m ²)	Type of PWV measured
Alkatan et al, 2016 [46]	USA	Osteoarthritis	24	61 [5]	8	31.6 [8.3]	cfPWV
Alkatan et al, 2016 [46]	USA	Osteoarthritis	24	59 [5]	8	33.9 [8.3]	cfPWV
Bellia et al, 2017 [47]	Italy	Early onset of type II diabetes	11	59 [8]	82	27.7 [2.8]	rPWV
Chacaroun et al, 2020 [48]	France	Obesity	11	56 [11]	73	31.8 [3.2]	cfPWV
Clark et al, 2020 [49]	Australia	Overweight or obese	16	30 [6]	100	29.0 [3.1]	cfPWV
Clark et al, 2020 [49]	Australia	Overweight or obese	12	26 [8]	100	28.2 [2.5]	cfPWV
Cocks et al, 2013 [50]	UK	Healthy	8	21 [3]	100	22.6 [4.5]	cfPWV
Collier et al, 2008 [51]	USA	Prehypertension or stage 1 hypertension	15	50 [2]	67	29.4 [1.8]	cfPWV
Collier et al, 2011 [52]	USA	Pre- hypertension to stage 1 hypertension	10	46 [5]	100		cfPWV
Collier et al, 2011 [52]	USA	Pre- hypertension to stage 1 hypertension	10	54 [5]	0		cfPWV
Collier et al, 2015 [53]	USA	Obese pre- and stage1 hypertensive	10	54 [9]	70	33.5 [4.4]	cfPWV

e-Table 2. Description of the uncontrolled trials included in this review.

Open He	eart
---------	------

Fantin et al, 2012 [54]	Italy	Healthy	10	67 [6]	0	29.5 [5.2]	cfPWV
Fantin et al, 2012 [54]	Italy	Hypertension	11	70 [5]	0	28.2 [3.1]	cfPWV
Fernandes et al, 2020 [55]	Brazil	Parkinson's Disease	12	68 [9]	62	25.5 [4.7]	PWV
Fernandes et al, 2020 [55]	Brazil	Parkinson's Disease	9	70 [8]	58	26.8 [4.1]	PWV
Gainey et al, 2016 [56]	Thailand	Type II diabetes	18	63 [9]	18	26.6 [5.9]	baPWV
Gainey et al, 2016 [56]	Thailand	Type II diabetes	11	58 [10]	20	27.1 [4.6]	baPWV
Gelinas et al, 2017 [57]	Canada	COPD	24	69 [7]	54	27.8 [2.8]	cfPWV
Gelinas et al, 2017 [57]	Canada	Healthy	20	64 [5]	50	26.2 [3.0]	cfPWV
Hansenn et al, 2018 [58]	Switzerland	Unipolar depression	19	38 [12]	26	22.6 [3.3]	cfPWV
Hansenn et al, 2018 [58]	Switzerland	Unipolar depression	11	38 [10]	27	24.9 [5.2]	cfPWV
Hayashi et al, 2005 [59]	Japan	Healthy	17	50 [3]	100		cfPWV
Jamka et al, 2021 [60]	Poland	Abdominal obesity	52	55 [7]	0	34.5 [4.5]	cfPWV
Kakiyama et al, 2005 [61]	Japan	Healthy	10	21 [3]	100	21.0 [4.9]	aPWV
Laskey et al, 2013 [62]	USA	Stable coronary heart disease	15	61 [11]	54		cfPWV
Lane et al, 2014 [63]	USA	Healthy	25	24 [1]	0	25.0 [4.0]	cfPWV
Lane et al, 2014 [63]	USA	Healthy	28	24 [1]	100	25.0 [3.0]	cfPWV

Lee et al, 2018 [64]	Korea	Subacute stroke	19	58 [14]	47	25.2 [3.1]	baPWV
Lee et al, 2018 [64]	Korea	Subacute stroke	18	64 [11]	56	24.5 [2.1]	baPWV
Li et al, 2012 [65]	China	Type II diabetes	27	52 [1[56	25.9 [3.1]	cfPWV
Li et al, 2012 [65]	China	Type II diabetes	28	50 [7]	54	26.1 [3.7]	cfPWV
Nishiwaki et al, 2011[66]	Japan	Healthy	8	56 [3]	0		baPWV
Olver et al, 2016 [67]	USA	Healthy	8	23 [6]	100		PWV
Park et al, 2020 [68]	Japan	Obese and overweight	21	49 [9]	100	27.7 [2.3]	baPWV
Park et al, 2020 [69]	USA	Peripheral artery disease	25	60 [10]	0	22.5 [2.4]	baPWV
Rakobowchuk et al, 2013 [70]	UK	Healthy	9	24 [3]	0	24.4 [2.2]	baPWV
Rakobowchuk et al, 2013 [70]	UK	Healthy	11	23 [2.5]	0	22.7 [3.1]	baPWV
Ramírez-Vélez et al, 2018 [71]	Colombia	Healthy	11	32 [8]	40	25.5 [4.2]	aPWV
Ramírez-Vélez et al, 2018 [71]	Colombia	Healthy	9	31 [6]	56	23.6 [3.6]	aPWV
Ranadive et al, 2016 [72]	USA	Healthy	36	24 [5]	50	24.7 [3.7]	cfPWV
Ranadive et al, 2016 [72]	USA	Healthy	26	24 [4]	39	29.4 [6.6]	cfPWV
Sabatier et al, 2008 [73]	USA	Healthy	13	33 [5]	0	29.1 [9.1]	PWV
Sauvet et al, 2017 [74]	France	Healthy	16	27 [5]	100	23.6 [0.6]	PWV

Scott et al, 2019 [75]	UK	Type I diabetes	7	29 [13]	71	29.2 [3.2]	cfPWV
Scott et al, 2019 [75]	UK	Type I diabetes	7	29 [8]	71	25.3 [3.2]	cfPWV
Shi et al, 2014 [76]	Japan	Healthy	14	27 [10]	100	23.1 [3.7]	baPWV
Slivovskaja et al, 2017 [77]	Lithuania	Metabolic syndrome	57	53 [7]	46	30.6 [3.7]	cfPWV
Suntraluck et al, 2016 [78]	Thailand	Type II diabetes	14			26.8 [4.5]	baPWV
Suntraluck et al, 2016 [78]	Thailand	Type II diabetes	15			26.0 [3.5]	baPWV
Szucs et al, 2018 [79]	Hungary	COPD	40	65 [7]	53	28.0 [7.0]	PWV
Vogel et al, 2013 [80]	France	Healthy	71	66 [7]	51	27.4 [3.4]	cfPWV
Way et al, 2020 [81]	Australia	Type II diabetes	12	55 [2]	50	34.3 [3.7]	cfPWV
Way et al, 2020 [81]	Australia	Type II diabetes	12	57 [2]	58	37.5 [5.4]	cfPWV

Data are expressed as mean [SD] unless specified. Abbreviations: aPWV, aortic pulse wave velocity; cfPWV, carotid-femoral pulse wave velocity; baPWV, brachial-ankle pulse wave velocity; rPWV, radial pulse wave velocity

Training programme of the controlled studies

e-Table 3. Details of the training programmes of the controlled studies of this review. The intensity of the programme is defined in table 4.

Randomised contro	olled trials					
Study	Duration of the programme (weeks)	Frequency (per week)	Intensity	Type of exercise	Target exercise session (min)	Target exercise duration throughout the intervention (min)
Adams et al, 2017	6	3	3	Walking/running	25	450
Beck et al, 2013	8	3	2	Running	60	1440
Bouaziz et al, 2019	9.5	2	2	Cycling	30	570
Ciolac et al, 2010	16	3	2	Walking/running	40	1920
Deiseroth et al, 2019	12	3	3	Walking	28	1008
Goldberg et al, 2012	4	3	3	Cycling	30	360
Graham-Brown et al, 2021	24	3	3	Cycling	30	2160
Greenwood et al, 2015	12	3	3	Cycling/running	60	2160
Ha et al, 2018	12	3	4	Other	40	1440
Hasegawa et al, 2018	8	3	2	Cycling	40	1080
Hasegawa et al, 2018	8	3	2	Cycling	45	1080
Hannemann et al, 2020	12		3	Cycling	35	420
Hanssen et al, 2017	12	2	3	Running	45	1080
Headley et al, 2014	16	3	2	Unclear	45	2160
Heydari et al, 2013	12	3	3	Cycling	20	720

Ho et al, 2020	8	3	0	Cycling	20	480
Kang et al, 2016	12	5	1	Walking	40	2400
Kim et al, 2017	8	4	3	Cycling	30	900
Koh et al, 2010	24	3	4	Cycling	30	2160
Madden et al, 2013	24	3	3	Cycling/running	40	2880
Madden et al, 2009	12	3	3	Cycling/running	40	1440
Mora-Rodriguez et al, 2018	24	3	3	Cycling	40	3240
Nualnim et al, 2012	12	4	2	Swimming	40	1920
Oliveira et al, 2015	8	3	2	Cycling/running	30	720
Oudesgeest-Sander et al, 2013	52	3	3	Cycling	30	4680
Pascoalino et al, 2015	12	3	3	Walking/running	40	1440
Silva et al, 2019	16	3	2	Cycling	30	1440
Suguwara et al, 2012	8	3	1	Cycling	40	960
Yoshizawa et al, 2009	12	2	2	Cycling	30	720
Zempo-Miyaki	8	3	2	Cycling	45	1080
Non-randomised co	ontrolled trials					
Study	Duration of the programme (weeks)	Frequency (per week)	Intensity	Type of exercise	Target exercise session (min)	Target exercise duration throughout the intervention (min)
Bahmanbeglou et al,	8	3	3	Running	30	744
Donley et al, 2014	8	3	3	Cycling	60	1440
Donley et al, 2014	8	3	3	Cycling	60	1440
Fujie et al, 2020	8	3	2	Cycling	45	1080
Fujie et al, 2020	8	3	2	Cycling	45	1080

Holloway et al, 2018	6	3	3	Cycling	50	170
Kim et al, 2018	16	2	2	Other	40	1280
Mamen et al, 2020	8	3	2	Other	17	408
Shenouda et al, 2017	12	3	2	Cycling	45	1620
Soriano et al, 2017	12	2	2	Running	75	1800
Wong et al, 2018	12	4	4	Other		
Vivodtzev et al, 2010	4	5	3	Cycling	30	600
Cross-over trials						
Study	Duration of the programme (weeks)	Frequency (per week)	Intensity	Type of exercise	Target exercise session (min)	Target exercise duration throughout the intervention (min)
Ferrier et al, 2001	8	3	2	Cycling	30	720
Toussaint et al, 2008	12	3	0	Cycling	30	1080

Classification of the exercise prescription

	Low	Moderate	High	Very high	Guideline
	intensity (1)	intensity	intensity (3)	intensity	
		(2)		(4)	
Borg	<3	3	4-6	>6	ATS/ERS ³ /ACSM ⁴
W _{peak}	<40%	40-59%	60-79%	≥80%	ACSM for COPD
Walking	<40%	40-59%	60-79%	≥80%	ACSM for COPD
speed					
(%max)					
Walking	<80%	-	>80%	-	Australian PR
speed from					guidelines ⁵
6MWT					
%max Heart	<64%	64-76%	77-95%	≥96%	ACSM guidelines
rate					for healthy adults
% heart rate	<40%	40-59%	60-89%	≥90%	ACSM guidelines
reserve					for healthy adults
% age	<64%	64-76%	77-95%	≥96%	No guidelines,
predicted					based on ACSM
max heart					HR guidelines
rate					
%VO2peak	<45%	46-63%	64-90%	≥91%	ACSM guidelines
					for healthy adults
At anaerobic			all		
threshold					
Self-selected	All				
intensity					

e-Table 4. Classifying intensity for exercise prescription

Meta-analysis of measures of PWV

e-Table 5. Meta-analysis and meta-regression of measurement method of PWV in controlled studies

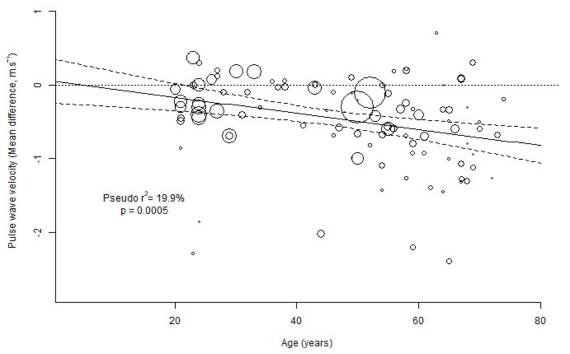
Variable	-	ysis of each PW led studies	Meta-regression controlled age, sex at birth and baseline cfPWV			
	Number of studies	Estimate (95% CI)	P-value	Number of studies	Estimate (95% CI)	P-value
cfPWV	35	-0.65 (-0.89 to -0.42)	<.0001*	35	-0.006 (- 0.05 to 0.04)	0.81
aPWV	4	-0.74 (-1.15 to 0.32)	0.16	4	-0.02 (-0.37 to 0.34)	0.11
baPWV	4	-0.74 (-1.15 to -0.32)	0.0005*	4	0.23 (-0.16 to 0.61)	0.15
cbPWV	3	-0.97 (-1.62 to -0.32)	0.004*	3	-0.44 (-1.04 to 0.16)	0.15
PWV unspecified	2	-0.07 (-0.34 to -0.20)	0.60	2	0.40 (0.02 to 0.78)	0.04*
rPWV				1	-1.64 (-2.74 to -0.54)	0.004*

cfPWV, carotid-femoral pulse wave velocity; aPWV, aortic pulse wave velocity; baPWV, brachial-ankle pulse wave velocity; cbPWV, carotid-brachial pulse wave velocity; PWV, pulse wave velocity; rPWV, radial pulse wave velocity.

e-Table 6. Meta-analysis of equipment used to measure PWV

Equipment	Meta-analysis of equipment used to measure PWV			
	N=	Estimate (95% CI)	P-value	
Applantation tonometry	26	-0.73 (-1.00 to - 0.45)	0.15	
Endervis -Vascular Explorer	3	-0.28 (-1.78 to 1.21)	0.71	
Volume plethysmographic device	3	-0.80 (-1.43 to - 0.17)	0.13	
Pulsepen device	3	-0.63 (-1.31 to 0.05)	0.06	
Doppler probes	4	-1.09 (-2.38 to 0.20)	0.10	
Complior SP device	6	-0.67 (-1.23 to - 0.11)	0.08	
Oscillometric monitor	3	-0.008 (-0.17 to 0.16)	0.92	
Automatic wave form analyser	3	-1.04 (-2.65 to 0.57)	0.21	
Semiautomated device	4	-1.19 (-2.63 to 0.25)	0.11	
24h PWA monitor	5	-0.07 (-0.38 to 0.24)	0.66	
SphygmoCor XCEL®	4	-0.04 (-0.40 to 0.32)	0.82	
BPLab® ambulatory blood pressure monitoring system	3	-0.30 (-1.37 to 0.77)	0.58	
TU-100 and VP-2000	2	-0.25 (-0.78 to 0.28)	0.35	
Cardiac magnetic resonance imaging	2	-1.70 (-2.96 to - 0.44)	0.83	

Diagnostics of the main meta-analysis


Q-Q plots were created to check normality for each meta-analysis and meta-regression model. For the meta-analysis of RCTs, the model was repeated fit leaving out one study at a time to detect any undue influence of a single study. The effect remained significant in each of these conditions.

Sensitivity analyses

Multiple sensitivity analyses were performed.

- 1. Method of imputing change standard deviation (SD); studies were classified according to the method of imputing change SD using the guidelines stated in the Cochrane handbook for systematic reviews [82]:
 - a. No imputation, the raw values were used
 - b. Change SD estimated from presented test statistic (p value, t value or 95% confidence interval)
 - c. Imputed based on baseline SD and computed correlation coefficient of 0.681.
 A sensitivity analysis was also run with a correlation coefficient of 0.5 (as recommended by the Cochrane handbook)
- Excluding the three studies that had a significant influence on the results [83-85], the difference between these results and the main meta-analysis was not significant (p=0.32)
- 3. Method of measure of PWV
- 4. Short versus long duration studies
- 5. Technique (equipment) used to measure PWV
- 6. Low risk of bias and blinding outcome assessors

Bubble plots

Figure 1. Bubble plot of age vs change in pulse wave velocity.

The size of each bubble is proportional to the weight assigned to that study. The solid line represents the regression line and dashed lines represent the upper and lower 95% CIs. Pseudo r^2 represents the proportion of the total variance explained by the included variable.

Funnel plots

Appears that the more successful trials may be more likely to be published which is highlighted by 3 outlier studies (Adams, Graham-Brown and Zempo-Miyaki) –figure a. The Egger's test for the controlled trials reported p=0.134, indicating no evidence of publication bias statistically.

The Egger's test for all of the included studies (figure b) reported p=0.005 showing significant publication bias.



Figure 2. a. Funnel plot of randomised controlled trials. b. Funnel plot of all included studies.

If there is no evidence of publication bias, then studies should be evenly distributed on either size of the mean treatment effect line with a similar number of low and high weight studies on either side; a 'bat wing' distribution

References

- 1. Acar, R.D., et al., *P*-wave dispersion and its relationship to aortic stiffness in patients with acute myocardial infarction after cardiac rehabilitation. ARYA atherosclerosis, 2014. **10**(4): p. 185-91.
- 2. Acar, R.D., et al., *Evaluation of the effect of cardiac rehabilitation on left atrial and left ventricular function and its relationship with changes in arterial stiffness in patients with acute myocardial infarction.* Echocardiography (Mount Kisco, N.Y.), 2015. **32**(3): p. 443-7.
- 3. Akazawa, N., et al., *Effects of curcumin intake and aerobic exercise training on arterial compliance in postmenopausal women*. Artery Research, 2013. **7**(1): p. 67-72.
- Akerman, A.P., et al., *Heat therapy vs. Supervised exercise therapy for peripheral arterial disease: A 12-wk randomized, controlled trial.* American Journal of Physiology Heart and Circulatory Physiology, 2019. **316**(6): p. H1495-H1506.
- Aldabayan, Y.S., A.M. Alrajeh, A. Lemson, and J.R. Hurst, *Pulmonary rehabilitation and cardiovascular risk in COPD: A systematic review*. COPD Research and Practice, 2017. 3(1): p. 7.
- 6. Aldabayan, Y.S., et al., *Pulmonary rehabilitation, physical activity and aortic stiffness in COPD*. Respiratory research, 2019. **20**(1): p. 166.
- 7. Brozic, A.P., S. Marzolini, and J.M. Goodman, *Effects of an adapted cardiac rehabilitation programme on arterial stiffness in patients with type 2 diabetes without cardiac disease diagnosis.* Diabetes & vascular disease research, 2017. **14**(2): p. 104-112.
- Dobrosielski, D.A., et al., *Effect of exercise on blood pressure in type 2 diabetes: a randomized controlled trial.* Journal of general internal medicine, 2012. 27(11): p. 1453-9.
- Eleutério-Silva, M.A., et al., SHORT-TERM CARDIOVASCULAR PHYSICAL PROGRAMME AMELIORATES ARTERIAL STIFFNESS AND DECREASES OXIDATIVE STRESS IN WOMEN WITH METABOLIC SYNDROME. Journal of Rehabilitation Medicine (Stiftelsen Rehabiliteringsinformation), 2013. 45(6): p. 572-579.
- Figueroa, A., et al., Effects of milk proteins and combined exercise training on aortic hemodynamics and arterial stiffness in young obese women with high blood pressure. American journal of hypertension, 2014. 27(3): p. 338-44.
- 11. Figueroa, A., et al., *Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women.* Menopause (New York, N.Y.), 2011. **18**(9): p. 980-4.
- 12. Fujie, S., et al., *Reduction of arterial stiffness by exercise training is associated with increasing plasma apelin level in middle-aged and older adults.* PloS one, 2014. **9**(4): p. e93545.
- Fukuie, M., et al., The Effect Of Aquatic Exercise On Arterial Stiffness And Central Blood Pressure: 2222 Board #58 June 1 11:00 AM - 12:30 PM...American College of Sports Medicine Annual Meeting, May 29-June 2, 2018, Minneapolis, Minnesota. Medicine & Science in Sports & Exercise, 2018. 50: p. 541-541.
- 14. Gale, N.S., et al., *Does pulmonary rehabilitation address cardiovascular risk factors in patients with COPD?* BMC pulmonary medicine, 2011. **11**: p. 20.
- 15. Greenwood, S.A., et al., *The effect of aerobic or resistance training on vascular health, cardio-respiratory fitness, quality of life, physical function, and inflammatory biomarkers in kidney transplant recipients: A pilot randomised controlled trial-the exert study.* Nephrology Dialysis Transplantation, 2015. **30**(SUPPL. 3).
- 16. Harris, E., M. Rakobowchuk, and K.M. Birch, *Sprint interval and sprint continuous training increases circulating CD34+ cells and cardio-respiratory fitness in young healthy women.* PloS one, 2014. **9**(9): p. e108720.
- 17. Howden, E.J., et al., *Effects of exercise and lifestyle intervention on cardiovascular function in CKD*. Clinical journal of the American Society of Nephrology : CJASN, 2013. **8**(9): p. 1494-501.

- Hraiech, A.E., K. Abdennbi, and G. Amah, Short-term impact of an ambulatory cardiac rehabilitation program on arterial rigidity. Archives of Cardiovascular Diseases Supplements, 2016. 8(1 SUPPL. 1): p. 91.
- 19. Kawamoto, R., et al., *Effect of weight loss on central systolic blood pressure in elderly community-dwelling persons*. Hypertension research : official journal of the Japanese Society of Hypertension, 2014. **37**(10): p. 933-8.
- 20. Kawasaki, T., et al., A long-term, comprehensive exercise program that incorporates a variety of physical activities improved the blood pressure, lipid and glucose metabolism, arterial stiffness, and balance of middle-aged and elderly Japanese. Hypertension research : official journal of the Japanese Society of Hypertension, 2011. **34**(9): p. 1059-66.
- 21. Kim, S.-S., *Effects of endurance exercise and half-bath on body composition, cardiorespiratory system, and arterial pulse wave velocity in men with intellectual disabilities.* Journal of physical therapy science, 2017. **29**(7): p. 1216-1218.
- 22. Koh, K.P., et al., Intradialytic versus home-based exercise training in hemodialysis patients: a randomised controlled trial. BMC nephrology, 2009. **10**: p. 2.
- 23. Kurose, S., et al., *Improvement in endothelial function by lifestyle modification focused on exercise training is associated with insulin resistance in obese patients.* Obesity research & clinical practice, 2014. **8**(1): p. e106-114.
- 24. Lee, Y.H., et al., *Effects of combined aerobic and resistance exercise on central arterial stiffness and gait velocity in patients with chronic poststroke hemiparesis.* American journal of physical medicine & rehabilitation, 2015. **94**(9): p. 687-95.
- 25. McNeilly, A., et al., *Exercise training and impaired glucose tolerance in obese humans.* Journal of Sports Sciences, 2012. **30**(8): p. 725-732.
- Michishita, R., et al., *Effects of Lifestyle Modification on an Exaggerated Blood Pressure Response to Exercise in Normotensive Females.* American journal of hypertension, 2017.
 30(10): p. 999-1007.
- 27. Mihaescu, A., et al., *Benefits of exercise training during hemodialysis sessions: a prospective cohort study*. Nephron. Clinical practice, 2013. **124**(1-2): p. 72-8.
- Miura, H., Y. Takahashi, Y. Maki, and M. Sugino, *Effects of exercise training on arterial stiffness in older hypertensive females*. European journal of applied physiology, 2015. **115**(9): p. 1847-54.
- Moore, L.E., et al., Cardiovascular benefits from standard pulmonary rehabilitation are related to baseline exercise tolerance levels in chronic obstructive pulmonary disease. Respiratory medicine, 2017. 132: p. 56-61.
- 30. Murakami, M., et al., *Influences of physical activity in stroke patients with hemiplegia on pulse wave velocity.* Isokinetics and Exercise Science, 2005. **13**(3): p. 165-168.
- Mustata, S., C. Chan, V. Lai, and J.A. Miller, Impact of an exercise program on arterial stiffness and insulin resistance in hemodialysis patients. Journal of the American Society of Nephrology : JASN, 2004. 15(10): p. 2713-8.
- O'Connor, E.M., et al., Long-term pulse wave velocity outcomes with aerobic and resistance training in kidney transplant recipients A pilot randomised controlled trial. PloS one, 2017. 12(2): p. e0171063.
- Okamoto, T., Y. Hashimoto, and R. Kobayashi, *Effects of interval walking training compared to normal walking training on cognitive function and arterial function in older adults: a randomized controlled trial.* Aging clinical and experimental research, 2019. **31**(10): p. 1451-1459.
- 34. Pagonas, N., et al., *Aerobic versus isometric handgrip exercise in hypertension: A randomized controlled trial.* Journal of Hypertension, 2017. **35**(11): p. 2199-2206.
- 35. Patil, S.G., M.R. Aithala, and K.K. Das, *Effect of yoga on arterial stiffness in elderly subjects with increased pulse pressure: A randomized controlled study.* Complementary therapies in medicine, 2015. **23**(4): p. 562-9.

- 36. Pierce, G.L., et al., *Estimated aortic stiffness is independently associated with cardiac baroreflex sensitivity in humans: role of ageing and habitual endurance exercise.* Journal of human hypertension, 2016. **30**(9): p. 513-20.
- Ramirez-Velez, R., et al., *Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults*. Lipids in health and disease, 2019. **18**(1): p. 42.
- 38. Son, W.M., K.D. Sung, J.M. Cho, and S.Y. Park, *Combined exercise reduces arterial stiffness,* blood pressure, and blood markers for cardiovascular risk in Postmenopausal women with hypertension. Menopause, 2016. **24**(3): p. 262-268.
- 39. Streese, L., et al., *Exercise, Arterial Crosstalk-Modulation, and Inflammation in an Aging Population: The ExAMIN AGE Study.* Frontiers in physiology, 2018. **9**: p. 116.
- 40. Tanaka, M., et al., Intermittent, moderate-intensity aerobic exercise for only eight weeks reduces arterial stiffness: Evaluation by measurement of stiffness parameter and pressurestrain elastic modulus by use of ultrasonic echo tracking. Journal of Medical Ultrasonics, 2013. **40**(2): p. 119-124.
- 41. Tabara, Y., et al., *Effect of acute and long-term aerobic exercise on arterial stiffness in the elderly*. Hypertension Research, 2007. **30**(10): p. 895-902.
- 42. Totosy de Zepetnek, J.O., C.A. Pelletier, A.L. Hicks, and M.J. MacDonald, *Following the physical activity guidelines for adults with spinal cord injury for 16 weeks does not improve vascular health: a randomized controlled trial.* Archives of Physical Medicine and Rehabilitation 2015 Sep;96(9):1566-1575, 2015.
- 43. Trzos, E., et al., *The influence of physical rehabilitation on arterial compliance in patients after myocardial infarction.* Cardiology journal, 2007. **14**(4): p. 366-71.
- 44. Vanfleteren, L.E.G.W., et al., *Arterial stiffness in patients with COPD: The role of systemic inflammation and the effects of pulmonary rehabilitation.* European Respiratory Journal, 2014. **43**(5): p. 1306-1315.
- 45. Yuan, W.X., et al., *Effects of 8-week swimming training on carotid arterial stiffness and hemodynamics in young overweight adults.* BioMedical Engineering Online, 2016. **15**: p. 151.
- 46. 10. Alkatan, M., et al., *Effects of Swimming and Cycling Exercise Intervention on Vascular Function in Patients With Osteoarthritis.* The American journal of cardiology, 2016. **117**(1): p. 141-5.
- Bellia, A., et al., Exercise individualized by TRIMPi method reduces arterial stiffness in early onset type 2 diabetic patients: A randomized controlled trial with aerobic interval training. International journal of cardiology, 2017. 248: p. 314-319.
- 48. Chacaroun, S., et al., *Hypoxic Exercise Training to Improve Exercise Capacity in Obese Individuals*. Medicine and science in sports and exercise, 2020.
- 49. 15. Clark, T., et al., *High-intensity interval training for reducing blood pressure: a randomized trial vs. moderate-intensity continuous training in males with overweight or obesity.*Hypertension research : official journal of the Japanese Society of Hypertension, 2020. 43(5): p. 396-403.
- 50. 16. Cocks, M., et al., Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. The Journal of physiology, 2013. **591**(3): p. 641-56.
- 51. Collier, S.R., et al., *Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives.* Journal of human hypertension, 2008. **22**(10): p. 678-86.
- 52. 17. Collier, S.R., et al., Sex differences in resting hemodynamics and arterial stiffness following 4 weeks of resistance versus aerobic exercise training in individuals with prehypertension to stage 1 hypertension. Biology of sex differences, 2011. **2**(1): p. 9.

53.	19. Collier, S.R., et al., Reduction of plasma aldosterone and arterial stiffness in obese pre-
	and stage1 hypertensive subjects after aerobic exercise. Journal of human hypertension,
	2015. 29 (1): p. 53-7.

- 54. 24. Fantin, F., et al., *Supervised walking groups to increase physical activity in elderly women with and without hypertension: effect on pulse wave velocity.* Hypertension research : official journal of the Japanese Society of Hypertension, 2012. **35**(10): p. 988-93.
- 55. Fernandes, B., et al., *High-Intensity Interval Versus Moderate-Intensity Continuous Training in Individuals With Parkinson's Disease: Hemodynamic and Functional Adaptation.* Journal of physical activity & health, 2020. **17**(1): p. 85-91.
- 56. 31. Gainey, A., T. Himathongkam, H. Tanaka, and D. Suksom, *Effects of Buddhist walking meditation on glycemic control and vascular function in patients with type 2 diabetes.* Complementary therapies in medicine, 2016. **26**: p. 92-7.
- 57. 33. Gelinas, J.C., et al., Aerobic exercise training does not alter vascular structure and function in chronic obstructive pulmonary disease. Experimental physiology, 2017. 102(11): p. 1548-1560.
- Hanssen, H., et al., Effects of Endurance Exercise Modalities on Arterial Stiffness in Patients Suffering from Unipolar Depression: A Randomized Controlled Trial. Frontiers in psychiatry, 2017. 8: p. 311.
- 43. Hayashi, K., et al., *Effects of aerobic exercise training on the stiffness of central and peripheral arteries in middle-aged sedentary men.* The Japanese journal of physiology, 2005.
 55(4): p. 235-9.
- 60. Jamka, M., et al., *Endurance training depletes antioxidant system but does not affect endothelial functions in women with abdominal obesity: A randomized trial with a comparison to endurance-strength training.* Journal of clinical medicine, 2021. **10**(8): p. 1639.
- 61. Kakiyama, T., et al., *Effects of short-term endurance training on aortic distensibility in young males.* Medicine and science in sports and exercise, 2005. **37**(2): p. 267-271.
- 62. 60. Laskey, W., S. Siddiqi, C. Wells, and R. Lueker, *Improvement in arterial stiffness following cardiac rehabilitation*. International journal of cardiology, 2013. **167**(6): p. 2734-8.
- 63. 61. Lane, A.D., et al., *Sex differences in ventricular-vascular coupling following endurance training.* European journal of applied physiology, 2014. **114**(12): p. 2597-606.
- 64. Lee, S.Y., S.H. Im, B.R. Kim, and E.Y. Han, *The Effects of a Motorized Aquatic Treadmill Exercise Program on Muscle Strength, Cardiorespiratory Fitness, and Clinical Function in Subacute Stroke Patients: A Randomized Controlled Pilot Trial.* American Journal of Physical Medicine and Rehabilitation, 2018. **97**(8): p. 533-540.
- 63. Li, J., et al., Duration of exercise as a key determinant of improvement in insulin sensitivity in type 2 diabetes patients. The Tohoku journal of experimental medicine, 2012.
 227(4): p. 289-96.
- 66. 76. Nishiwaki, M., et al., *Vascular adaptations to hypobaric hypoxic training in postmenopausal women*. The journal of physiological sciences : JPS, 2011. **61**(2): p. 83-91.
- 67. Olver, T.D., et al., *Effects of acute and chronic interval sprint exercise performed on a manually propelled treadmill on upper limb vascular mechanics in healthy young men.* Physiological reports, 2016. **4**(13).
- 68. 82. Park, J., et al., *Effects of aerobic exercise training on the arterial stiffness and intramyocellular or extramyocellular lipid in overweight and obese men.* Clinical and experimental hypertension (New York, N.Y. : 1993), 2020. **42**(4): p. 302-308.
- 69. Park, S.Y., A. Wong, W.M. Son, and E.J. Pekas, *Effects of heated water-based versus land-based exercise training on vascular function in individuals with peripheral artery disease.* Journal of applied physiology (Bethesda, Md. : 1985), 2020. **128**(3): p. 565-575.

- 86. Rakobowchuk, M., et al., Moderate and heavy metabolic stress interval training improve arterial stiffness and heart rate dynamics in humans. European journal of applied physiology, 2013. 113(4): p. 839-49.
- 71. 87. Ramirez-Velez, R., et al., *Exercise and postprandial lipemia: effects on vascular health in inactive adults.* Lipids in health and disease, 2018. **17**(1): p. 69.
- 72. Ranadive, S.M., et al., *Aerobic Exercise Training and Arterial Changes in African Americans versus Caucasians*. Medicine and science in sports and exercise, 2016. **48**(1): p. 90-7.
- 73. 90. Sabatier, M.J., et al., *Femoral artery remodeling after aerobic exercise training without weight loss in women.* Dynamic medicine : DM, 2008. **7**: p. 13.
- 91. Sauvet, F., et al., Protective effects of exercise training on endothelial dysfunction induced by total sleep deprivation in healthy subjects. International journal of cardiology, 2017. 232: p. 76-85.
- 75. Scott, S.N., et al., *High-Intensity Interval Training Improves Aerobic Capacity Without a Detrimental Decline in Blood Glucose in People With Type 1 Diabetes.* The Journal of clinical endocrinology and metabolism, 2019. **104**(2): p. 604-612.
- 76. 94. Shi, B., et al., *Effect of hypoxic training on inflammatory and metabolic risk factors: a crossover study in healthy subjects.* Physiological reports, 2014. **2**(1): p. e00198.
- 77. 95. Slivovskaja, I., et al., *Positive impact of a 4-week duration supervised aerobic training on anthropometric, metabolic, hemodynamic and arterial wall parameters in metabolic syndrome subjects.* Seminars in Cardiovascular Medicine, 2017. **23**(1): p. 11-16.
- 78. Suntraluck, S., H. Tanaka, and D. Suksom, *The Relative Efficacy of Land-Based and Water-Based Exercise Training on Macro- and Microvascular Functions in Older Patients With Type 2 Diabetes.* Journal of aging and physical activity, 2017. **25**(3): p. 446-452.
- 79. 101. Szucs, B., M. Petrekanits, and J. Varga, *Effectiveness of a 4-week rehabilitation program on endothelial function, blood vessel elasticity in patients with chronic obstructive pulmonary disease*. Journal of thoracic disease, 2018. **10**(12): p. 6482-6490.
- 80. 109. Vogel, T., et al., *Effect of a short-term intermittent exercise-training programme on the pulse wave velocity and arterial pressure: a prospective study among 71 healthy older subjects.* International journal of clinical practice, 2013. **67**(5): p. 420-6.
- 81. Way, K.L., et al., *The effect of low-volume high-intensity interval training on cardiovascular health outcomes in type 2 diabetes: a randomised controlled trial.* International journal of cardiology, 2020. **320**: p. 148-154.
- 82. Higgins JPT, T.J., Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). *Cochrane Handbook for Systematic Reviews of Interventions* Cochrane, 2022. **version 6.3 (updated February 2022)**.
- Adams, S.C., et al., Effects of high-intensity aerobic interval training on cardiovascular disease risk in testicular cancer survivors: A phase 2 randomized controlled trial. Cancer, 2017. 123(20): p. 4057-4065.
- 84. Zempo-Miyaki, A., et al., *Elevated pentraxin 3 level at the early stage of exercise training is associated with reduction of arterial stiffness in middle-aged and older adults.* Journal of human hypertension, 2016. **30**(9): p. 521-6.
- 85. Graham-Brown, M.P., et al., *A randomized controlled trial to investigate the effects of intradialytic cycling on left ventricular mass.* Kidney International, 2021. **99**(6): p. 1478-1486.