Supporting Information

Highly Hydroxylated Hafnium Clusters Are Accessible to High Resolution EUV Photoresists under Small Energy Doses

Yu-Fang Tseng,^a Pin-Chia Liao, Po-Hsiung Chen^{*b,c} Tsi-Sheng Gau,^{*b,c} Burn-Jeng

Lin^{,b,c} Po-Wen Chiu^{b,c} and Jui-Hsiung Liu*a

KEYWORDS: Hexameric Hf oxide clusters, partially decarboxylation, photoresist, EUV lithography, line/space/edge character.

^aDepartment of Chemistry,

^bTSMC-NTHU Joint Research Center

^cDepartment of Electric Engineering, National Tsing-Hua University, Hsinchu, Taiwan, ROC, email: rsliu@mx.nthu.edu.tw

Content:

1.	Representative Synthetic procedures	1
2.	SEM images E-beam lithography patterns	2
3.	SEM images EUV lithography patterns	- 4
4.	Spectral data of key compounds6	
5.	¹ H and ¹³ C NMR of key compounds	7

1. Representative synthetic procedures

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere inoven-dried glassware using standard syringe, cannula and septa apparatus. Dichloromethane and toluene were dried over CaH₂ and distilled. Reagents were purchased from commercial sources and used without purification, unless otherwise stated. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 MHz and Bruker 500 MHz spectrometers using chloroform-d (CDCl₃) as the internal standard. The ESI-Mass were perdormed using JEOL JMS-700. The EA analysis was performed by elementar vario EL cube. The TGA were performed using Mettler-Toledo 2-HT. FTIR Spectroscopy of power samples was in a Bruker Vertex 80v spectrometer. The AFM measurements were using SEIKO SPA-300HV. Electronbeam lithography was done by utilizing Elionix ELS-7800 with an accelerating voltage of 80 kV and a beam current of 200 pA. The EUV-IL system at the Swiss Light Sources (SLS), Paul Scherrer Institute, utilizes 13.5 nm EUV light. HRXPS measurements were performed in a ULVAC-PHI Quantera II, with a monochromatic Al Ka source (energy of 1486.7 eV).

3. SEM image of E-beam lithography patterns

Figure S1. SEM images of E-beam lithography patterns on **3**. Process parameter: 2 wt%, THK= 24 nm, Developer: 2-Heptanone : Hexane = 1 : 1 60 s, **no PEB**

Figure S2. SEM images of E-beam lithography patterns on **3**. Process parameter: 2 wt%, THK= 24 nm, Developer: 2-Heptanone : Hexane = 1 : 1 60 s, PEB= 80°C, 60s

4. SEM image of EUV lithography patterns

Figure S3. SEM images of EUV lithography patterns on **3** HP= 50, 35, 25, 22, 18 nm at different dose. Process parameter: 2.0 wt%, THK= 24 nm, Developer: 2-Heptanone : Hexane = 1 : 1 60 s, PEB= 80°C 60 s

Dose	~ 90 mJ/cm²	~ 100 mJ/cm²
Design HP		
Design HP = 50 nm	HP = 50 nm (82 mJ/cm ²)	HP = 51 nm (90 mJ/cm ²)
Design HP = 35 nm	HP = 34 nm (88 mJ/cm ²) l_{qual} $l_$	HP = 35 nm (97 mJ/cm ²)
Design HP = 25 nm	HP = 25 nm (98 mJ/cm ²)	HP = 25 nm (109 mJ/cm ²) $\frac{\frac{1}{\sqrt{2}m}}{\frac{1}{\sqrt{2}m}} \frac{\frac{1}{\sqrt{2}m}}{\frac{1}{\sqrt{2}m}}$ $\frac{\frac{1}{\sqrt{2}m}}{\frac{1}{\sqrt{2}m}} \frac{1}{\sqrt{2}m}$ IST 2.06V3.9mm x100k
Design HP = 22 nm	$HP = 23 \text{ nm (90 mJ/cm2)}$ $\frac{\frac{1}{2} \frac{1}{2} 1$	HP = 22 nm (99 mJ/cm ²) $\frac{\frac{1}{2}}{\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = \frac{1}{2} = $
Design HP = 18 nm	\$12.04V38mmx100k	HP = 17 nm (99 mJ/cm ²) $\frac{\frac{1}{2}}{\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = \frac{1}{2} = $

Figure S4. SEM images of EUV lithography patterns on **3** HP= 50, 35, 25, 22, 18 nm at different dose. Process parameter: 2.0 wt%, THK= 24 nm, Developer: 2-Heptanone : Hexane = 1 : 1 60 s, PEB= 80°C 30 s

6. Spectral data of key compounds.

6.1 Spectral data for highly decarboxylated 6-Hafnium Cluster with 2methylbutanoic acid ligand 3.

White solid (59%) ; ¹H NMR (400 MHz, CDCl₃) : δ 2.11 (s, 8H), 1.65 (s, 8H), 1.30 (s, 8H), 1.03 (s, 24H), 0.84 (s, 24H) ; ¹³C NMR (125 MHz, CDCl₃) : δ 181.9, 42.8, 26.6, 16.2, 11.9. ; EA Anal. Calcd. for C₄₀H₈₀O₂₈Hf₆ : C : 23.10% ; H : 3.88%, found : C : 23.11% ; H : 4.17

7. ¹H and ¹³C NMR of cluster 3

Figure S5. 1H NMR of cluster 3

Figure S6. ¹³C NMR of cluster 3

Figure S7. ¹H NMR of cluster 1, 2 and 3