
Response to Reviewers 

Reviewer 1 

This was an interesting and thought-provoking submission. I note that it is a revision: 
I am therefore supposing that the authors have already responded to one round of 
reviewer comments and that you are potentially interested in publishing this work. In 
brief, I think there are many elements of this report that warrant publication; 
however, there are some parts that are less compelling and could be deferred to a 
subsequent paper. The paper is far too long and would benefit greatly from being 
streamlined. Furthermore, some of the modeling is overengineered and is difficult to 
follow. I have tried to suggest how the authors might improve the presentation of their 
work in my comments to authors. 

I enjoyed reading this long but thought-provoking report of fluctuations in the 
sensitivity to sensory evidence in perceptual decision-making tasks. There were some 
parts of this report that were compelling and interesting. Other parts were less 
convincing and difficult to understand. Overall, this paper is far too long. An analogy 
that might help here is that a dinner guest is very entertaining for the first hour or so 
- and then overstays their welcome; until you start wishing they would leave. Another 
analogy, which came to mind, was that the modeling—and its interpretation—was a 
bit autistic (i.e., lots of fascinating if questionable detail with a lack of central 
coherence). 

I think that both issues could be resolved by shortening the paper and removing (or, 
at least, greatly simplifying) the final simulation studies of metacognition. I try to 
unpack this suggestion in the following. 

We would like to thank Prof. Friston for the very insightful and helpful comments on our 
manuscript. We fully agree that our ideas about the computational function of between-
mode fluctuations and the associated simulations may be presented in a more accessible 
form in a standalone paper. As we outlined in more detail below, we have streamlined our 
findings and rewrote the paper and reduced it’s length by shortening the sections on 
computational modeling. We have also followed Prof. Friston’s suggestion to interpret the 
effects of mode on RT and confidence in the context of predictive processing definitions of 
attention, namely the allocation of precision between prior and likelihood. 

Major points: 

As I understand it, you have used publicly available data on perceptual decision-
making to demonstrate slow fluctuations in the tendency to predicate perceptual 
decisions on the stimuli and on the history of recent decisions. You find scale-free 
fluctuations in this tendency — that are anti-correlated — and interpret this as 
fluctuations in the precision afforded sensory evidence, relative to prior beliefs. This 
interpretation is based upon a model of serial dependencies (parameterised with a 
hazard function). 



The stimulus and history (i.e., likelihood and prior) sensitivities are anti-correlated 
and both show scale free behavior. This is reproduced in men and mice. You then 
proceed to model this with periodic fluctuations in the precisions or weights applied 
to the likelihood and prior that are in anti-phase - and then estimate the parameters 
of the ensuing model. Finally, you then simulate the learning of the hazard parameter 
— and something called metacognition - to show that periodic fluctuations improve 
estimates of metacognition (based upon a Rescorla-Wagner model of learning). You 
motivate this by suggesting that the fluctuations in sensitivity are somehow necessary 
to elude circular inference and provide better estimates of precision. 

Note that I am reading the parameters omega_LLR and omega_ψ as the precision of 
the likelihood and prior, where the precision of the likelihood is called sensory 
precision. This contrasts with your use of sensory precision, which seems to be 
attributed to a metacognitive construct M. 

As noted above, all of this is fascinating but there are too many moving parts that do 
not fit together comfortably. I will list a few examples: 

Comment 1 

If, empirically, the fluctuations in sensitivity are scale-free with a 1/f power law, why 
did you elect to model fluctuations in precision as a periodic function with one unique 
timescale (i.e., f).? 

The reason for choosing a unique timescale 𝑓 was to enable our model to depict the dominant 
timescale at which prior and likelihood precision fluctuate in their impact on perceptual 
decision-making, giving rise to between-mode fluctuations. We think that identifying this 
timescale is important for planning future experiments targeted at between-mode 
fluctuations and their manipulation by causal interventions (e.g., pharmacology or TMS). The 
posterior value for 𝑓 lies at approximately 0.11 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠 in both humans and mice. The value 
of 𝑓 approximately matches the transition probabilities between engaged and disengaged 
states in work assessing fluctuations in perceptual decision-making using Hidden Markov 
models (stay probabilities ranged between 0.94 and 0.98, see Ashwood et al., Nature 
Neuroscience 2022). Simulating from our model (Figure 4) replicates the 1/f feature of the 
empirical data. Please note that the individual trial is the smallest unit of measurement for 
these fluctuations, such that our analysis is limited by definition to frequencies below 1 
(1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠). 

We now provide a rationale for choosing one value for 𝑓 - identifying the dominant timescale 
for fluctuations in mode - in the results section: 

• To allow for bimodal inference, i.e., alternating periods of internally- and externally-
biased modes of perceptual processing that occur irrespective of the sequence of 
preceding experiences, we assumed that likelihood and prior vary in their influence 
on the perceptual decision according to fluctuations governed by 𝜔𝐿𝐿𝑅 and 𝜔𝜓. These 

anti-phase sine functions (defined by amplitudes 𝑎𝐿𝐿𝑅/𝜓, frequency 𝑓 and phase 𝑝) 

determine the precision afforded to the likelihood and prior53. The implicit anti-phase 
fluctuations are mandated by Bayes-optimal formulations in which inference 



depends only on the relative values of prior and likelihood precision (i.e., the Kalman 
gain54). As such, 𝜔𝐿𝐿𝑅 and 𝜔𝜓 implement a hyperprior55 in which the likelihood and 

prior precisions are shifted against each other at a dominant timescale defined by 𝑓: 
(…) 

• (…) The parameter 𝑓 captures the dominant time scale at which likelihood (amplitude 
humans: 𝑎𝐿𝐿𝑅 = 0.5 ± 2.02 × 10−4; mice: 𝑎𝐿𝐿𝑅 = 0.39 ± 1.08 × 10−3 and prior precision 
(amplitude humans: 𝑎𝜓 = 1.44 ± 5.27 × 10−4; mice: 𝑎𝜓 = 1.71 ± 7.15 × 10−3 were 

shifted against each other and was estimated at 0.11 ± 1.68 × 10−5 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠 and 
0.11 ± 1.63 × 10−4 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠 in mice. 

• Table 2 (see response to Comment 22 by Reviewer 1) contains an additional 
definition for all model parameters, including 𝑓. 

Comment 2 

At present, the estimates of meta-cognition (M) play the role of accumulated estimates 
of (sensory or prior) precision. Why are these not used in your model of perceptual 
decisions in Equation 2. 

In our model, the parameter 𝛼 controls the encoding precision by governing the 
transformation from sensory stimuli to the log likelihood ratio (LLR) via the equations (13-
16) (the LLR ends up closer to zero when 𝛼 is low). Our simulations on the adaptive benefits 
of bimodal inference rest on the assumption that 𝛼 may change unpredictably. The construct 
𝑀 is a belief about 𝛼 that may be useful for, e.g., communicating the precision of sensory 
encoding to other cognitive domains or agents. To our mind, 𝛼 is a feature of low-level 
sensory encoding that cannot be modulated by top-down beliefs such as 𝑀. This is why we 
did not include 𝑀 in equation (2). Please note that we have removed this section following 
Comment 9 of Reviewer 1. 

Comment 3 

Why do you assume that non-specific increases in attention and arousal will increase 
reaction times? If one has very precise prior beliefs (and is not attending to stimuli), 
would you not expect a decrease in reaction time? 

Thanks a lot for pointing this out (see also the Comment below and Comment 6 by Reviewer 
3). Both high prior and high likelihood precision lead to higher absolute values of the log 
posterior ratio (reflecting certainty encoded by the decision variable), and thus faster RTs. 
This is reflected empirically by RTs in humans (Figure 2) and to a lesser degree in mice 
(Figure 3): RTs tended to be shorter for stronger biases toward both external and internal 
mode. Our model, which incorporates (i), the accumulation of information across trials, and 
(ii), fluctuations in the likelihood precision relative to the prior precision, recapitulates this 
feature of the data, which is lost or greatly attenuated when eliminating process (i) and/or 
(ii) (see model comparison and simulations below). Our data thus confirm the hypothesis 
that both high prior and likelihood precision lead to faster RTs. 



In the previous version of the manuscript, we had included the relation between mode and 
RTs and confidence primarily as a defensive analysis against the proposition that what we 
call between-mode fluctuations is not a perceptual phenomenon, but occurs downstream of 
perception. One may imagine that fluctuations in perceptual performance are not influenced 
by periods of relative increases in prior precision (which decrease performance in fully 
randomized designs), but by periods when participants do not attend to the task at all, i.e., 
neither to sensory information nor to prior precision. We propose that the analyses of RTs 
and confidence can give some insight into whether such alternative mechanisms may be at 
play, as we would assume longer RTs and lower confidence if participants failed to attend to 
the task at all. 

That being said, we realize that, due to the potential non-linearity in their relation to arousal 
(see also Comment 6 by Reviewer 3), RTs and confidence cannot provide a definitive map of 
where fluctuations in mode are situated in relation to arousal. Such a delineation may 
potentially be provided by tracking of pupil size, response behavior or by neural data (e.g., 
noise correlations of fluctuations in LFP). These data are not available for the studies in the 
Confidence Database, but were very recently published for the IBL database (after this 
manuscript was submitted). While we believe that this is beyond the scope of this 
manuscript, we will assess the relation of pupil diameter, motor behavior (turning of the 
response wheel) and LFPs to between-mode fluctuations in a future publication using the 
IBL dataset. 

In light of the considerations above and our response to Comment 6 by Reviewer 3, we now 
refer to attention in the predictive processing sense. We use the term “task engagement” 
instead of “on-task attention” to refer to situation in which participants may not attend to 
the task at all, e.g. due to low arousal or fatigue, and discuss these as alternative explanations 
for between-mode fluctuations. We have made three sets of changes to our manuscript: 

First, we present our results on the relation of mode to RT and Confidence in a more 
descriptive way, and do not use it as a strong defensive analysis against arousal: 

• The above results point to systematic fluctuations in the decision variable44 that 
determines perceptual choices, causing enhanced sensitivity to external stimulus 
information during external mode and increased biases toward preceding choices 
during internal mode. As such, fluctuations in mode should influence downstream 
aspects of behavior and cognition that operate on the perceptual decision variable44. 
To test this hypothesis with respect to motor behavior and metacognition, we asked 
how bimodal inference relates to response times (RTs) and confidence reports. (….) 

• (…) In sum, the above results indicate that reporting behavior and metacognition do 
not map linearly onto the mode of sensory processing. Rather, they suggest that slow 
fluctuations in the respective impact of external and internal information are most 
likely to affect perception at an early level of sensory analysis46,47. Such low-level 
processing may thus integrate perceptual history with external inputs into a decision 
variable44 that influences not only perceptual choices, but also the speed and 
confidence at which they are made. 



• In what follows, we probe alternative explanations for between-mode fluctuations, 
test for the existence of modes in mice, and propose a predictive processing model 
that explains fluctuations in mode by ongoing shifts in the precision afforded to 
external sensory information relative to internal predictions driven by perceptual 
history. 

Second, we have re-written our discussion of the quadratic relationship of mode to RTs and 
Confidence, focusing on predictive processing models of attention: - As a functional 
explanation for bimodal inference, we propose that perception temporarily disengages from 
internal predictions to form stable inferences about the statistical properties of the sensory 
environment. Between-mode fluctuations may thus elude circular inferences that occur 
when both the causes and the encoding of sensory stimuli are volatile19,57.** By the same 
token, we suggest that fluctuations in mode occur at the level of perceptual 
processing26,30,46,47, and are not a passive phenomenon that is primarily driven by factors 
situated up- or downstream of sensory analysis. 

• How does attention relate to between-mode fluctuations? According to predictive 
processing, attention corresponds to the precision afforded to the probability 
distributions that underlie perceptual inference53. From this perspective, fluctuations 
between external and internal mode can be understood as ongoing shifts in the 
attention afforded to either external sensory information (regulated via likelihood 
precision) or internal predictions (regulated via prior precision). When the precision 
of either likelihood or prior increases, posterior precision increases, which leads to 
faster RTs and higher confidence. Therefore, when defined from the perspective of 
predictive processing as the precision afforded to likelihood and prior53, fluctuations 
in attention may provide a plausible explanation for the quadratic relationship of 
mode to RTs and confidence (Figure 2H and J; Figure 3I; Figure 3I). 

Third, we have added a more general discussion of our findings in the light of fluctuations in 
task engagement: 

• Outside of the predictive processing field, attention is often understood in the context 
of task engagement63, which varies according to the availability of cognitive resources 
that are modulated by factors such as tonic arousal, familiarity with the task, or 
fatigue63. Our results suggest that internal mode processing cannot be completely 
reduced to intervals of low task engagement: In addition to shorter RTs and elevated 
confidence, choices during internal mode were not random or globally biased, but 
driven by perceptual history (Supplemental Figures S6-7). Moreover, our 
computational model identified the dominant timescale of between-mode 
fluctuations at 0.11 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠, which may be compatible with fluctuations in arousal64, 
but is faster than to be expected for the development of task familiarity or fatigue. 

• However, in interpreting the impact of between-mode fluctuations on perceptual 
accuracy, speed of response and confidence, it is important to consider that global 
modulators such as tonic arousal are known to have non-linear effects on task 
performance65: In perceptual tasks, performance seems so be highest during mid-
level arousal, whereas low- and high-level arousal lead to reduced accuracy and 



slower responses65. This contrasts with the effects of bimodal inference, where 
accuracy increases linearly as one moves from internal to external mode, and 
responses become faster at both ends of the mode spectrum. 

• Of note, high phasic arousal has been shown to suppress multi-domain biases in 
decision-making in humans and mice66–68, including the biases toward perceptual 
history28 that we implicate in internal mode processing. The increase in response 
speed and history congruence over time (Supplemental Section 1.4) may argue 
against insufficient training as an alternative explanation for internal mode 
processing, but may also taken as a sign of waning arousal. The multiple mechanistic 
mappings to RTs and confidence therefore warrant more direct measures of arousal 
(such as pupil size28,65,66,68–70, motor behavior69,70, or neural data71) to better 
delineate bimodal inference from fluctuations in global modulators of task 
performance. 

Comment 4 

In the predictive processing literature, attention is thought to correspond to 
fluctuations in sensory and prior precision. Why did you then consider attention as 
some additional or unrelated confound? 

This point is closely related to the comment above. We realize that, in the predictive 
processing field, attention is equated with the precision of probability distributions that 
contribute to the perceptual decision, such that an observer can attend strongly to sensory 
information (high likelihood precision) or to internal predictions derived from the sequence 
of preceding percepts (high prior precision). Therefore, when following the above predictive 
processing definition, fluctuations in attention can be equated with fluctuations in mode. 

However, we feel that outside of the predictive processing field, attention is not always 
conceived in that way, such that low attention is often considered as low engagement with 
the task, i.e., relating to low likelihood and low prior precision in the predictive coding sense. 
It is against these caveats that our control analysis (based on psychometric functions, 
training effects, RTs and confidence) defend our conclusions on bimodal inference. 

We now provide a more nuanced interpretation of our findings of RTs and confidence in 
relation to attention, with a specific focus on predictive coding and precision. We hope that 
our responses to the comment above resolve the points raised in this comment. 

Comment 5 

What licences the assumption that “agents depend upon internal confidence signals” 
in the absence of feedback? 

In the absence of feedback, observers can only rely on internal estimates of performance to 
guide updates to their model of the reliability of their sensory apparatus (inferences about 
𝑀). Previous work (e.g. Guggenmos et al., Elife 2106, https://doi.org/10.7554/eLife.13388) 
has shown that confidence signals can provide signals that drive perceptual learning in the 
absence of feedback. This has motivated our model simulation on the adaptive benefits of 
bimodal inference for metacognition, where the learning signal 𝜖𝑀 (i.e., the difference 

https://doi.org/10.7554/eLife.13388


between the choice and its probability) drives inferences about 𝑀. Please note that we have 
removed this section following Comment 9 of Reviewer 1. 

Comment 6 

And what licences the assumption that internal confidence feedback corresponds to 
“the absolute of the posterior log ratio” (did you mean the log of the posterior ratio)? 

We mean the absolute of the log of the posterior ratio. Following first order models (see e.g., 
Fleming & Daw, Self-evaluation of decision-making: A general Bayesian framework for 
metacognitive computation, Psychol. Rev. 2017, https://doi.org/10.1037/rev0000045), the 
perceptual decision and the confidence report rely on the posterior. The distance of the log 
of the posterior ratio 𝐿𝑡 from zero becomes a measure of decision-certainty or confidence. 

Comment 7 

I got a bit lost here when you say that “the precision of sensory coding M a function of 
u_t. This is largely because I couldn’t find a definition of u_t. 

We apologize for this lack of clarity. In the model simulations on the adaptive benefits of 
bimodal inference, we generated stimuli 𝑠𝑡 from a Bernoulli-distribution with p = q = 0.5. 
The value of 𝑢𝑡  was then defined via equation (13), following our modeling of the human 
data. Please note that we have removed this section following Comment 9 of Reviewer 1. 

Comment 8 

What licences an application of Rescorla-Wagner to learning the parameters (as in 
Equation 11) and, learning sensory precision as described by M_T (Equation 13). Are 
you moving from a Bayesian framework to a reinforcement learning framework? 

We would like to thank the reviewer for pointing out this inconsistency. We have chosen the 
Rescorla-Wagner learning rule for simplicity: In our model, the speed of learning about 𝐻 
and 𝑀 varied according to the current mode of perceptual processing and a constant learning 
rate. Allowing the learning rate itself to vary as a function of preceding experiences would 
add an additional level of complexity that we sought to omit in this analysis. However, we 
fully agree that choosing a Bayesian framework (e.g., a three-level HGF) would indeed be 
more consistent. Please note that we have removed this section following Comment 9 of 
Reviewer 1. 

Comment 9 

I am sure you have answers to these questions - but with each new question the reader 
is left more and more skeptical that there is a coherent story behind your analyses. It 
would have been more convincing had you just committed to a Bayesian filter and 
made your points using one update scheme, under ideal Bayesian observer 
assumptions. 

Unlike your piecemeal scheme, things like the hierarchical Gaussian filter estimates 
the sensory and prior decisions explicitly and these estimates underwrite posterior 
inference. In your scheme, the sensory precision M appears to have no influence on 

https://doi.org/10.1037/rev0000045


perceptual inference (which is why, presumably you call it metacognition). The 
problem with this is that your motivation for systematic fluctuations in precision is 
weakened. This is because improved metacognition does not improve perception — it 
only improves the perception of perception. 

In light of the above, can I suggest that you remove Section 5.8 and use your model in 
the preceding section to endorse your hypothesis along the following lines: 

“In summary, we hypothesized that subjects have certain hyperpriors that are apt for 
accommodating fluctuations in the predictability of their environment; i.e., people 
believe that their world is inherently volatile. This means that to be Bayes optimal it 
is necessary to periodically re-evaluate posterior beliefs about model parameters. 
One way to do this is to periodically suspend the precision of prior beliefs and increase 
the precision afforded to sensory evidence that updates (Bayesian) beliefs about 
model parameters. The empirical evidence above suggests that the timescale of this 
periodic scheduling of evidence accumulation may be scale-invariant. This means that 
there may exist a timescale of periodic fluctuations in precision over every window or 
length of perceptual decision-making. In what follows, we model perceptual decisions 
under a generative model (based upon a hazard function to model historical or serial 
dependencies) with, a periodic fluctuation in the precision of sensory evidence 
relative to prior beliefs at a particular timescale. Remarkably—using Bayesian model 
comparison—we find that a model with fluctuating precisions has much greater 
evidence, relative to a model in the absence of fluctuating precisions. Furthermore, we 
were able to quantify the dominant timescale of periodic fluctuations; appropriate for 
these kinds of paradigm.” 

Note, again, I am reading your omega_LLR and omega_ψ as precisions and that the 
periodic modulation is the hyperprior that you are characterizing—and have 
discovered. 

We would like to thank Prof. Friston for these very helpful and precise suggestions. In brief, 
we now provide a quantitative assessment of model space based on AIC (i) and have followed 
the suggestion of omitting section 5.8 (ii). 

In addition to the qualitative assessment of our models in the initial version of our 
manuscript, we have conducted a formal model comparison (i). Following the model 
comparisons in other sections of the manuscript, we based the model comparison on AIC. 
We furthermore show that the winning bimodal inference model predicts out-of-training 
variables (RT and confidence) and use simulations from posterior model parameters to show 
that, in contrast to reduced models, the bimodal inference model neither over- nor underfits 
the empirical data. We have added a description of our model comparison to the Method 
section: 

• We validated the bimodal inference model in three steps: a formal model comparison 
to reduced models based on AIC (Figure 1F-G; Supplemental Figure S9), the 
prediction of within-training (stimulus- and history-congruence) as well as out-of-
training variables (RT and confidence), and a qualitative reproduction of the 
empirical data from model simulations based on estimated parameters (Figure 4). 



• Model comparison. We assessed the following model space based on AIC: 

• The full bimodal inference model (M1; Figure 1F) incorporates the influence of 
sensory information according to the parameter 𝛼 (likelihood); the integration of 
evidence across trials according to the parameter 𝐻 (prior); anti-phase oscillations in 
between likelihood and prior precision according to 𝜔𝐿𝐿𝑅 and 𝜔𝜓 with parameters 

𝑎𝐿𝐿𝑅 (amplitude likelihood fluctuation), 𝑎𝜓 (amplitude prior fluctuation), 𝑓 

(frequency) and 𝑝 (phase). 

• The likelihood-oscillation-only model (M2; Figure 1G) incorporates the influence of 
sensory information according to parameter 𝛼 (likelihood); the integration of 
evidence across trials according to parameter 𝐻 (prior); oscillations in likelihood 
precision according to 𝜔𝐿𝐿𝑅 with parameters 𝑎𝐿𝐿𝑅 (amplitude likelihood fluctuation), 
𝑓 (frequency) and 𝑝 (phase). 

• The prior-oscillation-only model (M3; Figure 1G) incorporates the influence of sensory 
information according to parameter 𝛼 (likelihood); the integration of evidence across 
trials according to parameter 𝐻 (prior); oscillations in the prior precision according 
to 𝜔𝜓 with parameters 𝑎𝜓 (amplitude prior fluctuation), 𝑓 (frequency) and 𝑝 (phase). 

Please note that all models M1-3 lead to shifts in the relative precision of likelihood 
and prior. 

• The normative-evidence-accumulation (M4; Figure 1G) incorporates the influence of 
sensory information according to parameter 𝛼 (likelihood); the integration of 
evidence across trials according to parameter 𝐻 (prior), There are no additional 
oscillations. Model M4 thus corresponds to the model proposed by Glaze et al. and 
captures normative evidence accumulation in unpredictable environments using a 
Bayesian update scheme51. The comparison against M4 tests the null hypothesis that 
fluctuations in mode emerge from a normative Bayesian model without the ad-hoc 
addition of oscillations as in models M1-3. 

• The no-evidence-accumulation (M5; Figure 1G) incorporates the influence of sensory 
information according to parameter 𝛼 (likelihood). The model lacks integration of 
evidence across trials (flat prior) and oscillations. The comparison against M5 tests 
the null hypothesis that observers do not use prior information derived from serial 
dependency in perception. 

• Prediction of within-training and out-of-training variables. To validate our 
model, we correlated individual posterior parameter estimates with the respective 
conventional variables. As a sanity check, we tested (i), whether the estimated hazard 
rate 𝐻 correlated negatively with the frequency of history-congruent choices and, (ii), 
whether the estimated sensitivity to sensory information 𝛼 correlated positively with 
the frequency of stimulus-congruent choices. In addition, we tested whether the 
posterior decision certainty (i.e.. the absolute of the log posterior ratio) correlated 
negatively with RTs and positively with confidence. This allowed us to assess whether 
our model could explain aspects of the data it was not fitted to (i.e., RTs and 
confidence). 



• Simulations. Finally, we used simulations (Figure 4, Supplemental Figures S10-13) 
to show that all model components, including the anti-phase oscillations governed by 
𝑎𝜓, 𝑎𝐿𝐿𝑅, 𝑓 and 𝑝, were necessary for our model to reproduce the characteristics of 

the empirical data. This enabled us to assess over- or under-fitting in the bimodal 
inference model and all reduced models M2-M5. We used the posterior model 
parameters observed for humans (𝐻, 𝛼, 𝑎𝜓, 𝑎𝐿𝐿𝑅, 𝑓 and 𝜁) to define individual 

parameters for simulation in 4317 simulated participants (i.e., equivalent to the 
number of human participants). For each participant, the number of simulated trials 
was drawn at random between 300 to 700. Inputs 𝑠 were drawn at random for each 
trial, such that the sequence of inputs to the simulation did not contain any systematic 
seriality. Noisy observations 𝑢 were generated by applying the posterior parameter 
𝛼 to inputs 𝑠, thus generating stimulus-congruent choices in 71.36 ± 2.6 × 10−3% of 
trials. Choices were simulated based on the trial-wise choice probabilities 𝑦𝑝 obtained 

from our model. Simulated data were analyzed in analogy to the human and mouse 
data. As a substitute of subjective confidence, we computed the absolute of the trial-
wise log posterior ratio |𝐿| (i.e., the posterior decision certainty). 

We have also added a graphical depiction of the model space to Figure 1 (subpanels F and 
G): 

 

• F. The bimodal inference model (M1) explains fluctuations between externally- and 
externally-biased modes (left panel) by two interacting factors: a normative 
accumulation of evidence according to parameters 𝐻 (middle panel), and anti-phase 
oscillations in the precision terms 𝜔𝐿𝐿𝑅 and 𝜔𝜓 (right panel). 

• G. The control models M2-M5 were constructed by successively removing the anti-
phase oscillations and the integration of information from the bimodal inference 
model. Please note that the normative-evidence-accumulation-model (M4) 
corresponds to the model proposed by Glaze et al.51. In the no-evidence-accumulation 
model (M5), perceptual decisions depend only on likelihood information (flat priors). 

The formal model comparison yielded clear evidence for a superiority of the bimodal 
inference model, in particular over the normative Bayesian model of evidence accumulation. 
The model successfully predicted both within-training variables (as a sanity-check) and out-
of-training variables. Simulations from posterior model parameters closely followed the 
empirical data (Figure 4), which was not the case for reduced models (Supplemental Figures 
S10-13). We summarize these findings in the Results section and have added a Supplemental 
Figure S9 to show the distribution of observer-level AIC at the session-level (see below): 



• We used a maximum likelihood procedure to fit the bimodal inference model (M1, 
Figure 1F) to the behavioral data from the Confidence database20 and the IBL 

database21, optimizing the parameters 𝛼, 𝐻, 𝑎𝑚𝑝𝐿𝐿𝑅, 𝑎𝑚𝑝𝜓, 𝑓, 𝑝 and ζ (see Methods 

for details and Supplemental Table T2 for a summary of the parameters of the 
bimodal inference model). We validated our model in three steps: First, to show that 
bimodal inference does not emerge spontaneously in normative Bayesian models of 
evidence accumulation, but requires the ad-hoc addition of anti-phase oscillations in 
prior and likelihood precision, we compared the bimodal inference model to four 
control models (M2-5, Figure 1G). In these models, we successively removed the anti-
phase oscillations (M2-M4) and the integration of information across trials (M5) from 
the bimodal inference model and performed a model comparison based on AIC. 

• Model M2 (𝐴𝐼𝐶2 = 5.7 × 104 in humans and 4.94 × 104 in mice) and Model M3 (𝐴𝐼𝐶3 
= 6.9 × 104 in humans and 5.99 × 104 in mice) incorporated only oscillations of either 
likelihood or prior precision. Model M4 (𝐴𝐼𝐶4 = 9.8 × 104 in humans and 9.19 × 104 
in mice) lacked any oscillations of likelihood and prior precision and corresponded to 
the normative model proposed by Glaze et al.51. In model M5 (𝐴𝐼𝐶4 = 1.16 × 105 in 
humans and 1.14 × 105 in mice), we furthermore removed the integration of 
information across trials, such that perception depended only in incoming sensory 
information (Figure 1G). 

• The bimodal inference model achieved the lowest AIC across the full model space 
(𝐴𝐼𝐶1 = 4.73 × 104 in humans and 4.28 × 104 in mice) and was clearly superior to the 
normative Bayesian model of evidence accumulation (𝛿𝐴𝐼𝐶  = −5.08 × 104 in humans 
and −4.91 × 104 in mice; Supplemental Figure S9). 

• As a second validation of the bimodal inference model, we tested whether the 
posterior model predicted within-training and out-of-training variables. The bimodal 
inference model characterizes each subject by a sensitivity parameter 𝛼 (humans: 𝛼 
= 0.5 ± 1.12 × 10−4; mice: 𝛼 = 1.06 ± 2.88 × 10−3) that captures how strongly 
perception is driven by the available sensory information, and a hazard rate 
parameter 𝐻 (humans: 𝐻 = 0.45 ± 4.8 × 10−5; mice: 𝐻 = 0.46 ± 2.97 × 10−4) that 
controls how heavily perception is biased by perceptual history. The parameter 𝑓 
captures the dominant time scale at which likelihood (amplitude humans: 𝑎𝐿𝐿𝑅 = 0.5 
± 2.02 × 10−4; mice: 𝑎𝐿𝐿𝑅 = 0.39 ± 1.08 × 10−3) and prior precision (amplitude 
humans: 𝑎𝜓 = 1.44 ± 5.27 × 10−4; mice: 𝑎𝜓 = 1.71 ± 7.15 × 10−3) fluctuated and was 

estimated at 0.11 ± 1.68 × 10−5 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠 and 0.11 ± 1.63 × 10−4 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠 in mice. 

• As a sanity check for model fit, we tested whether the frequency of stimulus- and 
history-congruent trials in the Confidence database20 and IBL database21 correlate 
with the estimated parameters 𝛼 and 𝐻, respectively. As expected, the estimated 
sensitivity toward stimulus information 𝛼 was positively correlated with the 
frequency of stimulus-congruent perceptual choices (humans: 𝛽 = 8.4 ± 0.26, 
T(4.31 × 103) = 32.87, p = 1.3 × 10−211; mice: 𝛽 = 1.93 ± 0.12, T(2.07 × 103) = 16.21, 
p = 9.37 × 10−56). Likewise, 𝐻 was negatively correlated with the frequency of 
history-congruent perceptual choices (humans: 𝛽 = −11.84 ± 0.5, T(4.29 × 103) = 



−23.5, p = 5.16 × 10−115; mice: 𝛽 = −6.18 ± 0.66, T(2.08 × 103) = −9.37, p = 
1.85 × 10−20). 

• Our behavioral analyses reveal that humans and mice show significant effects of 
perceptual history that impaired performance in randomized psychophysical 
experiments24,28,30,31,43 (Figure 2A and 3A). We therefore expected that humans and 
mice underestimated the true hazard rate �̂� of the experimental environments 
(Confidence database20: �̂�𝐻𝑢𝑚𝑎𝑛𝑠  = 0.5 ± 1.58^{-5}); IBL database21: �̂�𝑀𝑖𝑐𝑒  = 0.49 ± 
6.47^{-5}). Indeed, when fitting the bimodal inference model to the trial-wise 
perceptual choices, we found that the estimated (i.e., subjective) hazard rate 𝐻 was 
lower than �̂� for both humans (𝛽 = −6.87 ± 0.94, T(61.87) = −7.33, p = 5.76 × 10−10) 
and mice (𝛽 = −2.91 ± 0.34, T(112.57) = −8.51, p = 8.65 × 10−14). 

• To further probe the validity of the bimodal inference model, we tested whether 
posterior model quantities could explain aspects of the behavioral data that the model 
was not fitted to. We predicted that the posterior decision variable 𝐿𝑡 not only 
encodes perceptual choices (i.e., the variable used for model estimation), but should 
also predict the speed of response and subjective confidence30,44. Indeed, the 
estimated trial-wise posterior decision certainty |𝐿𝑡| correlated negatively with RTs 
in humans (𝛽 = −4.36 × 10−3 ± 4.64 × 10−4, T(1.98 × 106) = −9.41, p = 5.19 × 10−21) 
and TDs mice (𝛽 = −35.45 ± 0.86, T(1.28 × 106) = −41.13, p = 0). Likewise, subjective 
confidence reports were positively correlated with the estimated posterior decision 
certainty in humans (𝛽 = 7.63 × 10−3 ± 8.32 × 10−4, T(2.06 × 106) = 9.18, p = 
4.48 × 10−20). 

• The dynamic accumulation of information inherent to our model entails that biases 
toward perceptual history are stronger when the posterior decision certainty at the 
preceding trial is high30,31,51. Due to the link between posterior decision certainty and 
confidence, we reasoned that confident perceptual choices should be more likely to 
induce history-congruent perception at the subsequent trial30,31. Indeed, logistic 
regression indicated that history-congruence was predicted by the posterior decision 
certainty |𝐿𝑡−1| (humans: 𝛽 = 8.22 × 10−3 ± 1.94 × 10−3, z = 4.25, p = 2.17 × 10−5; 
mice: 𝛽 = −3.72 × 10−3 ± 1.83 × 10−3, z = −2.03, p = 0.04) and subjective confidence 
(humans: 𝛽 = 0.04 ± 1.62 × 10−3, z = 27.21, p = 4.56 × 10−163) at the preceding trial. 

• As a third validation of the bimodal inference model, we used the posterior model 
parameters to simulate synthetic perceptual choices and repeated the behavioral 
analyses conducted for the empirical data. Simulations from the bimodal inference 
model closely replicated our empirical results: Simulated perceptual decisions 
resulted from a competition of perceptual history with incoming sensory signals 
(Figure 4A). Stimulus- and history-congruence were significantly autocorrelated 
(Figure 4B-C), fluctuating in anti-phase as a scale-invariant process with a 1/f power 
law (Figure 4D-F). Simulated posterior certainty28,30,44 (i.e., the absolute of the log 
posterior ratio |𝐿𝑡|) showed a quadratic relationship to the mode of sensory 
processing (Figure 4H), mirroring the relation of RTs and confidence reports to 
external and internal biases in perception (Figure 2G-H and Figure 3G-H). Crucially, 



the overlap between empirical and simulated data broke down when we removed the 
anti-phase oscillations or the accumulation of evidence over time from the bimodal 
inference model (Supplemental Figure S10-13). 

• In sum, computational modeling suggested that between-mode fluctuations are best 
explained by two interlinked processes (Figure 1E): (i), the dynamic accumulation of 
information across successive trials mandated by normative Bayesians model of 
evidence accumulation and, (ii), ongoing anti-phase oscillations in the impact of 
external and internal information. 

 

• Supplemental Figure S9. Comparison of the bimodal inference model against 
reduced control models. 

• A. Group-level AIC. The bimodal inference model (M1) achieved the lowest AIC across 
the full model space (𝐴𝐼𝐶1 = 4.73^{4} in humans and 4.28^{4} in mice). Model M2 
(𝐴𝐼𝐶2 = 5.7 × 104 in humans and 4.94 × 104 in mice) and Model M3 (𝐴𝐼𝐶3 = 6.9 × 104 
in humans and 5.99 × 104 in mice) incorporated only oscillations of either likelihood 
or prior precision. Model M4 (𝐴𝐼𝐶4 = 9.8 × 104 in humans and 9.19 × 104 in mice) 
lacked any oscillations of likelihood and prior precision and corresponded to the 
normative model proposed by Glaze et al.51. In model M5 (𝐴𝐼𝐶4 = 1.16 × 105 in 
humans and 1.14 × 105 in mice), we furthermore removed the integration of 
information across trials, such that perception depended only in incoming sensory 
information. 



• B. Subject-level AIC. Here, we show the distribution of AIC values at the subject-level. 
AIC for the bimodal inference model tended to be smaller than AIC for the comparator 
models (statistical comparison to the second-best model M2 in humans: 𝛽 = −1.81 ± 
0.27, T(5.07 × 103) = −6.82, p = 1.02 × 10−11; mice: T(1.5^{3}) = -6.28, p = 
4.38 × 10−10). 

In light of our response to Comments 1 - 9 of Reviewer 1, we agree that a complete and 
extensive investigation of the relation between bimodal inference, learning about changes in 
the environment and the relation to metacognition may be beyond the scope of the current 
manuscript: Both Reviewer 1 and 3 (see below) have shared that the manuscript is too long 
and should be streamlined. Yet evaluating the full model space (e.g., comparing update rules 
for inferences about 𝐻 and 𝑀, testing for an influence of beliefs about 𝑀 on learning about 𝐻 
etc.) would make the manuscript even longer. We are therefore happy to follow 
Prof. Fristons suggestions to omit section 5.8. We have changed the manuscript in the 
following ways: 

When introducing 𝜔𝐿𝐿𝑅, we identify it as the precision afforded to the likelihood, referring to 
the Bayesian framework, and refer to fluctuations in mode as a hyperprior. 

• To allow for bimodal inference, i.e., alternating periods of internally- and externally-
biased modes of perceptual processing that occur irrespective of the sequence of 
preceding experiences, we assumed that likelihood and prior vary in their influence 
on the perceptual decision according to fluctuations governed by 𝜔𝐿𝐿𝑅 and 𝜔𝜓. These 

anti-phase sine functions (defined by amplitudes 𝑎𝐿𝐿𝑅/𝜓, frequency 𝑓 and phase 𝑝) 

determine the precision afforded to the likelihood and prior53. The implicit anti-phase 
fluctuations are mandated by Bayes-optimal formulations in which inference 
depends only on the relative values of prior and likelihood precision (i.e., the Kalman 
gain54). As such, 𝜔𝐿𝐿𝑅 and 𝜔𝜓 implement a hyperprior55 in which the likelihood and 

prior precisions are shifted against each other at a dominant timescale defined by 𝑓. 

We have deleted the section 5.8 and added a summary of our modeling approach to the 
discussion, closely following the text recommended by Prof. Friston: 

• (…) Yet relying too strongly on serial dependencies may come at a cost: When 
accumulating over time, internal predictions may eventually override external 
information, leading to circular and false inferences about the state of the 
environment57. Akin to the wake-sleep-algorithm in machine learning58, bimodal 
inference may help to determine whether errors result from external input or from 
internally-stored predictions: During internal mode, sensory processing is more 
strongly constrained by predictive processes that auto-encode the agent’s 
environment. Conversely, during external mode, the network is driven 
predominantly by sensory inputs18. Between-mode fluctuations may thus generate 
an unambiguous error signal that aligns internal predictions with the current state of 
the environment in iterative test-update-cycles58. On a broader scale, between-mode 
fluctuations may thus regulate the balance between feedforward versus feedback 
contributions to perception and thereby play a adaptive role in metacognition and 
reality monitoring59. 



• We hypothesized that observers have certain hyperpriors that are apt for 
accommodating fluctuations in the predictability of their environment, i.e., people 
believe that their world is inherently volatile. To be Bayes optimal, it is therefore 
necessary to periodically re-evaluate posterior beliefs about the parameters that 
define an internal generative model of the external sensory environment. One way to 
do this is to periodically suspend the precision of prior beliefs and increase the 
precision afforded to sensory evidence, thus updating Bayesian beliefs about model 
parameters. 

• The empirical evidence above suggests that the timescale of this periodic scheduling 
of evidence accumulation may be scale-invariant. This means that there may exist a 
timescale of periodic fluctuations in precision over every window or length of 
perceptual decision-making. Bimodal inference predicts perceptual decisions under 
a generative model (based upon a hazard function to model serial dependencies 
between subsequent trials) with periodic fluctuations in the precision of sensory 
evidence relative to prior beliefs at a particular timescale. Remarkably, a systematic 
model comparison based on AIC indicated that a model with fluctuating precisions 
has much greater evidence, relative to a model in the absence of fluctuating 
precisions. This ad-hoc addition of oscillations to a normative Bayesian model of 
evidence accumulation51 allowed us to quantify the dominant timescale of periodic 
fluctuations mode at approximately 0.11 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠 in humans and mice that is 
appropriate for these kinds of paradigms. 

Following the deletion of section 5.8, we have adapted the last sentence of the abstract and 
the last paragraph of the introduction: 

• (…) We propose that between-mode fluctuations generate unambiguous error signals 
that enable optimal inference in volatile environments. 

• When less sensitive to external stimulus information, humans and mice did not 
behave more randomly, but showed stronger serial dependencies in their perceptual 
choices22–33.** These serial dependencies may be understood as driven by internal 
predictions that reflect the autocorrelation of natural environments34 and bias 
perception toward preceding experiences30,31,35. Computational modeling indicated 
that ongoing changes in perceptual performance may be driven by systematic 
fluctuations between externally- and internally-oriented modes of sensory analysis. 
**We suggest that such bimodal inference may help to build stable internal 
representations of the sensory environment despite an ongoing stream of sensory 
information. 

Comment 11 

This begs the question as to whether you want to pursue the 1/f story. You refer to this 
as “noise”. However, there is no noise in this setup. I think what you meant was that 
the fluctuations are scale free, because they evinced a power law. I am sure that there 
are scale free aspects of these kinds of hyperpriors; however, in the context of your 
paradigm I wonder whether you should just ignore the scale free aspect and focus on 



your estimated temporal scale implicit in f. This means you don’t have to hand wave 
about self-organized criticality in the discussion and focus upon your hypothesis. 

We would like to thank the reviewer for this suggestion. We agree that the discussion of self-
organized criticality is far from the data. We have omitted this section from the discussion. 
With respect to 𝑓, we have adapted the manuscript to make clear that it captures the 
dominant timescale of fluctuations in mode: 

• (…) This implements a hyperprior55 in which the likelihood and prior precisions are 
shifted against each other at a dominant timescale defined by 𝑓: (…) 

• (…) The parameter 𝑓 captured the dominant time scale at which likelihood and prior 
precision were shifted against each other and was estimated at 0.11 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠 in both 
humans and mice. 

• Remarkably, a systematic model comparison based on AIC indicated that a model 
with fluctuating precisions has much greater evidence, relative to a model in the 
absence of fluctuating precisions. The ad-hoc addition of oscillations to a normative 
Bayesian model of evidence accumulation51 allowed us to quantify the dominant 
timescale of periodic fluctuations mode at approximately 0.11 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠 in humans 
and mice that is appropriate for these kinds of paradigms. 

Comment 12 

A final move—to make the paper more focused and digestible—would be to put a lot 
of your defensive analyses (e.g. about general arousal et cetera) in supplementary 
material. You have to be careful not to exhaust the reader by putting up a lot of 
auxiliary material before the important messages in your report. 

We have followed this suggestion and move the following sections to the Supplement: 
section 5.3 (Internal and external modes of processing facilitate response behavior and 
enhance confidence in human perceptual decision-making), section 5.4 (Fluctuations 
between internal and external mode modulate perceptual performance beyond the effect of 
general response biases), section 5.5 (Internal mode is characterized by lower thresholds as 
well as by history-dependent changes in biases and lapses). We have also moved secondary 
statistics to the figure legends and to the Supplement. 

Minor points 

Comment 13 

I cannot resist suggesting that you change your title to “Bimodal Inference in Mice and 
Men” 

We would like to thank the Reviewer for this suggestion and agree that this would indeed 
sound great. However, we are worried that changing the title to mice and men would not be 
as gender-neutral as humans and mice. We would therefore propose to stick with the current 
title. If we are mistaken and mice and men can be considered gender-neutral (we are non-
native speakers), we would be happy to change the title.  



Comment 14 

Please replace “infra-slow fluctuations” with “slow fluctuations”. Slow has some 
colloquial meaning in fMRI studies but not in any scale free context. 

Done. 

Comment 15 

Please replace “simulated data” with “simulations” in the abstract. Finally, please 
replace “robust learning and metacognition in volatile environments” with “enable 
optimal inference and learning in volatile environments.” 

Done. Since we have followed the suggestion to delete section 5.8, we have rephrased the 
last paragraph of the abstract into: 

• (…) We propose that between-mode fluctuations generate unambiguous error signals 
that enable optimal inference in volatile environments. 

Comment 16 

Line 50, please replace “about the degree of noise inherent in encoding of sensory 
information” with “the precision of sensory information relative to prior (Bayesian) 
beliefs.” 

Done. 

Comment 17 

Line 125: please replace “a source of error” with “a source of bias” 

Done. 

Comment 18 

Line 141: please replace “one 1/f noise” with a scale-invariant process with a 1/f 
power law” (here and throughout) this is not “noise” it is a particular kind of 
fluctuation. 

Done. 

Comment 19 

Line 178, when you say that the fluctuations may arise due to “changes in level of tonic 
arousal or on-task attention”, I think you need to qualify this. In predictive processing, 
on-task attention is exactly the modulation of sensory precision, relative to prior 
precision that you are characterizing here. Tonic arousal may be another thing may 
or may not confound your current results. 

Thank you very much for pointing this out. We have adapted the discussion to make the 
distinction between attention in the predictive processing sense and the broader issue of 



task engagement (reflecting fluctuations in arousal, fatigue etc.) clearer (see also our 
responses above): 

• As a functional explanation for bimodal inference, we propose that perception 
temporarily disengages from internal predictions to form stable inferences about the 
statistical properties of the sensory environment. Between-mode fluctuations may 
thus elude circular inferences that occur when both the causes and the encoding of 
sensory stimuli are volatile19,57). By the same token, we suggest that fluctuations in 
mode occur at the level of perceptual processing26,30,46,47, and are not a passive 
phenomenon that is primarily driven by factors situated up- or downstream of 
sensory analysis. 

• How does attention relate to between-mode fluctuations? According to predictive 
processing, attention corresponds to the precision afforded to the probability 
distributions that underlie perceptual inference53. As outlined above, between-mode 
fluctuations can be understood as ongoing shifts in the precision afforded to 
likelihood (external mode) and prior (internal mode), respectively. When the 
precision afforded to prior or likelihood increases, posterior precision increases, 
which leads to faster RTs and higher confidence. When defined from the perspective 
of predictive processing as the precision afforded to likelihood and prior53, 
fluctuations in attention may thus provide a plausible explanation for the quadratic 
relationship between mode and RTs and confidence (Figure 2H and J; Figure 3I; 
Figure 3I). 

• Outside of the predictive processing field, attention is often understood in the context 
of task engagement63, which varies according to the availability of cognitive resources 
that are modulated by factors such as tonic arousal, familiarity with the task, or 
fatigue63. Our results suggest that internal mode processing cannot be completely 
reduced to intervals of low task engagement: In addition to shorter RTs and elevated 
confidence, choices during internal mode were not random or globally biased, but 
driven by perceptual history (Supplemental Figures S6-7). Moreover, our 
computational model identified the dominant timescale of between-mode 
fluctuations at 0.11 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠, which may be compatible with fluctuations in arousal64, 
but is faster than to be expected for the development of task familiarity or fatigue. 

• However, in interpreting the impact of between-mode fluctuations on perceptual 
accuracy, speed of response and confidence, it is important to consider that global 
modulators such as tonic arousal are known to have non-linear effects on task 
performance65: In perceptual tasks, performance seems so be highest during mid-
level arousal, whereas low- and high-level arousal lead to reduced accuracy and 
slower responses65. This contrasts with the effects of bimodal inference, where 
accuracy increases linearly as one moves from internal to external mode, and 
responses become faster at both ends of the mode spectrum. 

• Of note, high phasic arousal has been shown to suppress multi-domain biases in 
decision-making in humans and mice66–68, including the biases toward perceptual 
history28 that we implicate in internal mode processing. The increase in response 



speed and history congruence over time (Supplemental Section 1.4) may argue 
against insufficient training as an alternative explanation for internal mode 
processing, but may also taken as a sign of waning arousal. The multiple mechanistic 
mappings to RTs and confidence therefore warrant more direct measures of arousal 
(such as pupil size28,65,66,68–70, motor behavior69,70, or neural data71) to better 
delineate bimodal inference from fluctuations in global modulators of task 
performance. 

Comment 20 

When introducing Equation 2, please make it clear that the omega terms stand in for 
the precisions afforded to the likelihood (omega_LLR) and prior (omega_ψ) that 
constitute the log posterior. 

We have modified the introduction of equation 2 as follows: 

• Following Bayes’ theorem, we reasoned that binary perceptual decisions depend on 
the log posterior ratio 𝐿 of the two alternative states of the environment that 
participants learn about via noisy sensory information51. We computed the posterior 
by combining the sensory evidence available at time-point 𝑡 (i.e., the log likelihood 
ratio 𝐿𝐿𝑅) with the prior probability 𝜓**, weighted by the respective precision terms 
𝜔𝐿𝐿𝑅 and 𝜔𝜓: 

You can then motivate Equation 6 and 7 as implementing the hyperprior in which the 
sensory and prior precisions fluctuate at a particular time scale. 

We would like to thank the reviewer for this suggestion, which we have added to the 
introduction of equations (6) and (7): 

• To allow for bimodal inference, i.e., alternating periods of internally- and externally-
biased modes of perceptual processing that occur irrespective of the sequence of 
preceding experiences, we assumed that likelihood and prior vary in their influence 
on the perceptual decision according to fluctuations governed by 𝜔𝐿𝐿𝑅 and 𝜔𝜓. These 

anti-phase sine functions (defined by amplitudes 𝑎𝐿𝐿𝑅/𝜓, frequency 𝑓 and phase 𝑝) 

determine the precision afforded to the likelihood and prior53. The implicit anti-phase 
fluctuations are mandated by Bayes-optimal formulations in which inference 
depends only on the relative values of prior and likelihood precision (i.e., the Kalman 
gain54). As such, 𝜔𝐿𝐿𝑅 and 𝜔𝜓 implement a hyperprior55 in which the likelihood and 

prior precisions are shifted against each other at a dominant timescale defined by 𝑓: 
(…) 

Comment 21 

You can also point out that the implicit anti-phase fluctuations are mandated by Bayes 
optimal formulations in which it is only the relative values of the prior and sensory 
precision that matter. Bayesian filters these precisions constitute the Kalman gain. 
You can find a derivation of why this in treatments of the hierarchical Gaussian filter 
is by Mathys et al. 



We would like to thank the reviewer for this suggestion. We added this information to the 
description of our model in the Results section (see comment above). 

Comment 22 

In your first model simulations, I would make it clear in the main text which 
parameters you are optimizing’s; namely (H, alpha, a_likelihood, a_prior f). Perhaps a 
little table with a brief description of the meaning of these hyper parameters would 
be useful? 

We now identify the optimized parameters at the outset of the modeling section: 

• (…) We used a maximum likelihood procedure to fit the bimodal inference model (M1, 
Figure 1F) to the behavioral data from the Confidence database20 and the IBL 

database21, optimizing the parameters 𝛼, 𝐻, 𝑎𝑚𝑝𝐿𝐿𝑅, 𝑎𝑚𝑝𝜓, 𝑓, 𝑝 and ζ (see Methods 

for details and Supplemental Table T2 for a summary of the parameters of the 
bimodal inference model). We validated our model in three steps: (…). 

We furthermore included a table summarizing the model parameters in the Supplement 
(Supplemental Table T2). 

Comment 23 

Please remove Section 5.8. If you do not, you need to explain why — on line 586 - 
setting a = 0 is appropriate when a = 0, the log posterior in Equation 2 is zero because 
the precisions (omegas) are zero (by Equations 6 and 7). 

We have removed the section 5.8. When setting the amplitude parameters to zero, 𝜔𝐿𝐿𝑅 and 
𝜔𝜓 are constant at 1, creating a unimodal control model that corresponds to the normative 

Bayesian evidence accumulation model proposed by Glaze et al51. 

Reviewer 2 

The authors elucidate whether periodicities in the sensitivity to external information 
represent an epiphenomenon of limited processing capacity or, alternatively, result 
from a structured and adaptive mechanism of perceptual inference. Analyzing large 
datasets of perceptual decision-making in humans and mice, they investigated 
whether the accuracy of visual perception is constant over time or whether it 
fluctuates. The authors found significant autocorrelations on the group level and on 
the level of individual participants, indicating that a stimulus-congruent response in 
a given trial increased the probability of stimulus-congruent responses in the future. 
Furthermore, the authors addressed whether observers cycle through periods of 
enhanced and reduced sensitivity to external information or whether observers rely 
on internal information in certain phases. This was quantified by whether a response 
at a given trial was correlated with responses in previous trials. The authors used 
computational modeling to infer the origin of the different modes (internal 
vs. external). 

Evaluation 



This is a very interesting and well-written manuscript, dealing with an important 
question. The findings are novel and provide an innovative account of interpreting 
visual perception. I am not an expert in modeling, so I will restrict my comments to 
theoretical framework and the experimental approach. I have a few minor questions 
that I would like the authors to answer or clarify. 

We would like to thank the reviewer for the evaluation of our manuscript. We have added 
the discussion of potential effects at the motor-level to our discussion. 

Minor questions 

Comment 1 

History congruent perception was defined on the basis of response repetitions. Are 
we really sure that responses are repeated due to some variant of a perceptual 
decision process (internal or external) or may arise on the motor-level - independent 
of a perceptual source? For instance, a response primed by residual activation in the 
motor system may represent a local effect independent from a general response bias. 
If indeed, a response repetition is initiated by whatever reasons (non-perceptual), 
wouldn’t this imply that the repeated response is per se more related to previous than 
to current visual information and would hence signal a reduced sensitivity to current 
external information? The authors are discussing the option of stereotypically 
repeated responses in the context of alertness. However, a tendency to repeat 
responses may arise due to other reasons. For instance, may the motor priming effects 
mentioned possibly explain faster RTs along with a stronger bias when in internal-
mode. 

Thanks a lot for pointing this out. In this manuscript, we attempt to characterize the 
phenomenon of bimodal inference at the level of behavior: The Confidence database consists 
only of behavioral data. At the time of publishing this paper as a preprint, the IBL database 
had also released only behavioral data. 

We realize that it is very difficult to preclude all influences from effects that occur at the level 
of behavior. Not all studies in the confidence database have used a counter-balanced 
mapping between the perceptual decision and the associated motor-response. In the IBL 
data, the mapping between the perceptual decision and the associated motor-response is 
fixed (turning a response wheel left or right depending on the perceived location of a 
grating). Confidence reports also provide only indirect information on motor- vs. perceptual 
effects. One may speculate that, if a response was driven by residual activity in the motor 
system, it may be more likely to be a lapse and be accompanied by reduced confidence. By 
contrast, we found that confidence was, on average, elevated for history-congruent choices. 

That being said, behavioral analyses alone are insufficient to rule out the contribution of 
motor-related effects to seriality in choices. This would require analyses of additional types 
of data, such as video tracking of the motor response or even neural data collected in brain 
areas directly related to motor behavior. While this analysis is beyond the scope of the 
present manuscript, we plan to carry out these analyses using the recent data publication of 
the IBL, that contains, among others, video tracking of the motor response (turning of the 



response wheel) and neuropixel recording across the whole brain, including premotor and 
motor cortex71. 

We have added these considerations to the discussion of potential confounds: 

• Residual activation of the motor system may provide another contribution to serial 
biases in perceptual choices72. Such motor-driven priming may lead to errors in 
randomized psychophysical designs, resembling the phenomenon that we identify as 
internally-biased processing73. Moreover, residual activation of the motor system 
may lead to faster responses, and thus constitutes an alternative explanation for the 
quadratic relationship of mode with RTs72. The observation of elevated confidence 
for stronger biases toward internal mode speaks against the proposition that residual 
activation of the motor system is the primary driver of serial choice biases, since 
strong motor-driven priming should lead to frequent lapses that are typically 
associated reduced confidence74. Likewise, perceptual history effects have repeatedly 
been replicated in experiments with counter-balanced stimulus-response 
mappings82. 

• No-response paradigms, in which perceptual decision are inferred from eye-
movements alone, could help to better differentiate perceptual from motor-
related effects. Likewise, video-tracking of response behavior and neural 
recording from motor- and premotor, which has recently been released for the 
IBL database71, may provide further insight into the relation of motor behavior 
to the perceptual phenomenon of between-mode fluctuations. 

Reviewer 3 

In this paper the authors propose that during perceptual decisions, humans and mice 
exhibit regular oscillatory fluctuations between an “external” (that places more 
weight on the perceptual evidence) and an “internal” (that places more weight on 
historical experiences) mode. In particular, the authors propose a computational 
scheme in which the influences of history and current stimulus on choice oscillate in 
anti phase, effectively implementing “bimodal inference”. The computational 
advantages of these scheme as well as its relation to the underlying neurophysiology 
are discussed. 

Overall, the authors make a very interesting proposal about what drives slow 
fluctuations in perceptual performance during randomized two-alternative choice 
tasks. This proposal relates changes in accuracy with changes in serial choice biases, 
which is a timely and synthesizing contribution. Furthermore, this proposal is backed 
by analyses over several human datasets and a large dataset in mice. 

Despite its strong empirical contribution, the paper seems limited by the fact that 
alternative computational hypotheses are not adequately considered (or at least 
considered in a systematic way). At the same time, and although the paper is well 
written, some parts are overly technical. 



We would like to thank the Reviewer for the very helpful comments on our manuscript. We 
fully agree that the previous version of our manuscript did not consider alternative 
computational hypotheses in a systematic and adequate way. As we outline in more detail in 
our point-by-point-responses below, we have addressed this issue by adding a formal model 
comparison of the bimodal inference model to reduced models, including a normative 
models of Bayesian evidence accumulation. We have added null-hypothesis-testing for 
enhanced history-congruence during internal mode. We have also moved a number of 
defensive analyses to the supplement. 

Major comments: 

Comment 1 

The authors collapse across various datasets in which different tasks were employed. 
However, some details on the nature of these different tasks and a discussion on the 
rationale of collapsing behavioral metrics across them is missing. The authors 
mention that all tasks involved binary perceptual decisions. In some parts of the 
manuscript the term “false alarms” is mentioned, indicating a detection protocol. 
Other terms in the methods section (e.g., “set size”) might need further clarification. 
Importantly, it is not clear how reaction times were calculated in the various tasks and 
whether some experiments involved free response paradigms while others 
interrogation/ cued paradigms (in which case RTs can be defined as the latency 
between the response cue and the response). 

We would like to thank the Reviewer for this important point. Regarding the rationale for 
collapsing across the studies in the Confidence database: Having found strong evidence of 
apparent between-mode fluctuations in a study on intermittent bistable perception19, our 
goal was to test whether between-mode fluctuations were a general phenomenon in 
perceptual decision-making. We thus had a lenient threshold for including studies from the 
Confidence database, i.e., all that addressed the domain of perception in 2AFC tasks. This has 
the advantage of looking at perceptual 2AFC decisions in general and indicated that history 
effects and bimodal inference are present in a wide variety of tasks. 

At the same time, collapsing across diverse set of experiments means that the stimuli, the 
timing and the way that responses were collected differed between them. To account for this 
variability, we included individual experiments as random factors in linear mixed modeling. 
We also made sure that perceptual performance is comparable across studies (Supplemental 
Figure S1A-B). While our analysis of the IBL database was mainly motivated by investigating 
bimodal inference across species, it also allowed us to replicate our results in a highly 
standardized task that was collected across many individual subjects21. We have added the 
rationale for collapsing across studies with its advantages and disadvantages to the Open 
questions and limitations subsection of the discussion: 

• Our results suggest bimodal inference as a pervasive aspect in perceptual decision-
making in humans and mice. However, a number of limitations and open questions 
have to be considered: First, this work sought to understand whether fluctuations 
between internal and external mode, which we initially observed in an experiment on 
bistable perception in humans19, represent a general phenomenon that occurs across 



a diverse set of perceptual decision-making tasks. Our analysis of the Confidence 
database20 therefore collapsed across all available experiments on binary perceptual 
decision-making. Individual experiments differed with respect to the stimuli, the 
manipulation of difficulty, the timing of trials, and the way responses were collected, 
but were highly comparable with respect to the central variables of stimulus- and 
history-congruence (Supplemental Figure S1A-B). 

• The variability across experiments, which we considered as random effects in all 
statistical analyses, enabled us to assess whether bimodal inference represents a 
general phenomenon in perceptual decision-making, but limited the precision at 
which we were able to investigate the relation of mode to behavioral variables such 
as timing, task difficulty, RT or confidence. This issue is partially resolved by our 
analyses of the IBL database, which replicated our findings in an experiment that was 
highly standardized with respect to timing, task difficulty, and behavioral read-out21. 
It will be an important task for future research to validate our results on bimodal 
inference in a standardized dataset of comparable volume in humans, which is, to our 
knowledge, not yet available. 

We apologize for the lack of clarity regarding the way we queried the Confidence database. 
To select a broad variety of experiments on 2AFC perceptual decision-making, we queried 
the Confidence database for studies from the perception category (excluding studies from 
the categories cognitive, motor, memory and mixed) and selected studies with 2AFC 
responses. Our previous version of the manuscript had mentioned the variable names given 
to the difficulty variable in the individual experiments (i.e., the name of the column in the 
individual .txt files provided for every experiment in the Confidence database). The term 
false alarm turned up in the discussion of lapses of attention and arousal, which we have re-
written in response to Comment 19 by Reviewer 1 and Comment 6 by Reviewer 3. We now 
provide more information on the experiments and variables selected in the Method section: 

• We downloaded the human data from the Confidence database20 on 10/21/2020, 
limiting our analyses to the category perception. Within this category, we selected 
studies in which participants made binary perceptual decisions between two 
alternatives. We excluded two experiments in which the average perceptual accuracy 
fell below 50%. After excluding these experiments, our sample consisted of 21.05 
million trials obtained from 4317 human participants and 66 individual experiments 
(Supplemental Table 1). Out of the 66 included experiments, 62 investigated visual, 1 
auditory, 2 proprioceptive, and 1 multimodal perception. 59 experiments were based 
on discrimination and 6 on detection, with one investigating both. 

• Out of the 58 experiments that provide information on RTs, 46 cued the response by 
the onset of a response screen or an additional response cue, whereas 14 allowed 
participants to respond at any time after stimulus onset. 

• 21 of the 66 included experiments used fixed difficulty levels, whereas 45 
manipulated difficulty levels within participants. Difficulty was manipulated via noise 
masks, contrast, luminance, presentation time, or stimulus probability for gabors, dot 
coherence for random dot kinematograms, difference in elements and set size for 



comparisons of numerosity, difference in clicks for auditory discrimination, temporal 
distance for meta-contrast masking, and amount of self-motion for proprioception. 
We treated task difficulty as a missing variable for the experiments that fixed it at the 
participant-level, as this precluded the computation of autocorrelation curves. 

Comment 2 

The key premise that when participants do not rely on the external stimulus they rely 
more on the previous trial needs to be more clearly (and statistically) contrasted 
against a null hypothesis. For instance, an null hypothesis could be that when 
participants place a lower weight on the stimulus they simply choose randomly. It is 
important to specify a null hypothesis such that the key premise does not appear self-
evident or circular. 

We would like to thank the reviewer for highlighting this important point. Following this 
suggestion, we have explicitly tested our main hypothesis (𝐻1: periods of reduced stimulus-
congruence are periods of enhanced reliance on history-congruence) against the following 
null hypotheses: 

• 𝐻01: Periods of reduced stimulus-congruence are periods of enhanced random 
choices 

• 𝐻02: Periods of reduced stimulus-congruence are periods of enhanced general bias 

We present three sets of statistical analyses to test H1 against 𝐻01/2: 

First, we used logistic regression to predict individual choices. Under H1, one would expect 
a significant effect of perceptual history in a logistic regression model that predicts 
individual choices from the external stimulus, perceptual history and general response bias. 
At the model level, one would expect higher AIC in a model without perceptual history as a 
predictor of individual choices, indicating that perceptual history influences choices beyond 
noise (𝐻01) and general response bias (𝐻02). 

In both humans and mice, we found a significant effect of perceptual history on choices while 
controlling for bias. When eliminating perceptual history as a predictor of individual choices, 
we found higher AIC (providing model-level evidence against 𝐻01 and 𝐻02). We 
complemented this analysis by computing AIC in individual observers (Supplemental Figure 
S4), and again found higher AIC in models from which perceptual history was eliminated. We 
have made the following changes to the main manuscript: 

Humans: 

• Subsection title: Fluctuations between internal and external mode cannot be reduced 
to general response biases or random choices 

• The core assumption of bimodal inference - that ongoing changes in the sensitivity to 
external information are driven by internal predictions induced via perceptual 
history - needs to be contrasted against two alternative hypotheses: When making 
errors, observers may not engage with the task and respond stereotypically, i.e., 
exhibit stronger general biases toward one of the two potential outcomes, or simply 



choose randomly. Logistic regression confirmed that perceptual history made a 
significant contribution to perception (𝛽 = 0.11 ± 5.79 × 10−3, z = 18.53, p = 
1.1 × 10−76) over and above the ongoing stream of external sensory information (𝛽 
= 2.2 ± 5.87 × 10−3, z = 375.11, p = 0) and general response biases toward (𝛽 = 15.19 
± 0.08, z = 184.98, p = 0). When eliminating perceptual history as a predictor of 
individual choices at individual trials, AIC increased by 𝛿𝐴𝐼𝐶  = 1.64^{3} (see 
Supplemental Figure S4A-B for parameter- and model-level inference at the level of 
individual observers). 

Mice: 

• In line with humans, mice were biased toward perceptual history in 54.03% ± 0.17% 
of trials (T(163) = -7.52, p = 3.44 × 10−12; Figure 4A and Supplemental Figure S1D). 
Perceptual history effects remained significant (𝛽 = 0.51 ± 4.49 × 10−3, z = 112.84, p 
= 0) when controlling for external sensory information (𝛽 = 2.96 ± 4.58 × 10−3, z = 
646.1, p = 0) and general response biases toward one of the two potential outcomes 
(𝛽 = −1.78 ± 0.02, z = −80.64, p = 0). When eliminating perceptual history as a 
predictor of individual choices, AIC increased by 𝛿𝐴𝐼𝐶  = 1.48^{4}, arguing against the 
notion that choice randomness and general response bias are the only determinants 
of perceptual performance (see Supplemental Figure S4C-D for parameter- and 
model-level inference within individual mice). 

Second, we analyzed dynamic changes in history- and stimulus-congruence (i.e., smoothed 
probabilities for stimulus-congruence, history-congruence and general response bias in 
sliding 10 trial time-windows). Under H1, one would expect a significant negative correlation 
between the dynamic probability of stimulus- and history-congruence. At the model level, 
one would expect higher AIC in a model without history-congruence as a predictor of 
stimulus-congruence, indicating that changes in the probability of history-congruence 
influence stimulus-congruence beyond noise (𝐻01) and general response bias (𝐻02). 

In both humans and mice, we found a significant negative correlation between history-
congruence and stimulus-congruence while controlling for general response bias. When 
eliminating the dynamic probability of history-congruence as a predictor of stimulus-
congruence, we found higher AIC (providing model-level evidence against 𝐻01 and 𝐻02). The 
section 5.4 or our original manuscript (Fluctuations between internal and external mode 
modulate perceptual performance beyond the effect of general response biases) complements 
these control analyses and has been moved to the supplement to stream-line the manuscript 
(following the Comment 12 by Reviewer 1 and Comment 9 by Reviewer 3). We have modified 
the main manuscript in the following way: 

Humans: 

• Finally, we ensured that fluctuations in stimulus- and history-congruence are linked 
to each other, while controlling for fluctuations in the strength of general response 
biases. When perceptual choices were less biased toward external information, 
participants relied more strongly on internal information acquired from perceptual 
history (and vice versa, 𝛽 = −0.05 ± 5.63 × 10−4, T(2.1 × 106) = −84.21, p = 0), 



controlling for fluctuations in the strength of general response biases (𝛽 = −0.06 ± 
5.82 × 10−4, T(2.1 × 106) = −103.51, p = 0). 

• (…) Likewise, eliminating the dynamic fluctuations in history-congruence as a 
predictor of fluctuations in stimulus-congruence yielded an increase in AIC by _{AIC} 
+ 7.06^{3}. These results provided model-level evidence against the null hypotheses 
that fluctuations in stimulus-congruence are driven exclusively by choice 
randomness or general response bias (see Supplemental Section 1.2 for an in-depth 
assessment of general response bias). 

Mice: 

• As in humans, fluctuations in the strength of history-congruent biases had a 
significant effect on stimulus-congruence (𝛽1 = −0.12 ± 7.17 × 10−4, T(1.34 × 106) = 
−168.39, p = 0) beyond the effect of ongoing changes in general response biases (𝛽2 
= −0.03 ± 6.94 × 10−4, T(1.34 × 106) = −48.14, p = 0). Eliminating the dynamic 
fluctuations in history-congruence as a predictor of fluctuations in stimulus-
congruence resulted in an increase in AIC by _{AIC} + 2.8^{4}. This confirmed that, in 
both humans and mice, perceptual performance is modulated by systematic 
fluctuations between externally- and internally-oriented modes of sensory 
processing that exist beyond general response bias (see Supplemental Section 1.2 for 
an in-depth assessment of general response bias). 

Third, we analyzed full and history-conditioned psychometric curves in external and internal 
mode as well as across modes. Under our main hypothesis that periodic reductions in 
sensitivity to external information are driven by increases in the impact of perceptual 
history, one would expect (i) a history-dependent increase in biases and lapses (effects of 
perceptual history), and (ii), a history-independent increase in threshold (reduced 
sensitivity to external information). Conversely, if what we identified as internal mode 
processing was in fact driven by random choices, one would expect (i), a history-
independent increase in lapses (choice randomness), (ii), no change in bias (no effect of 
perceptual history), and (iii), reduced thresholds (reduced sensitivity to external 
information). In both humans and mice, we observed the pattern predicted by H1. In 
response to the comments by Reviewer 1 and 3, we have significantly streamlined the 
manuscript and moved our assessment of psychometric functions to the supplement. We 
now provide a summary of our results in the main manuscript to make our reasoning with 
respect to 𝐻01 and 𝐻1 more explicit: 

Humans: 

• To confirm that changes in the sensitivity to external information are indicative of 
internal mode processing, we estimated full and history-dependent psychometric 
curves during internal, external, and across modes. If, as we hypothesized, internal 
mode processing reflects an enhanced impact of perceptual history, one would expect 
a history-dependent increase in biases and lapses as well as a history-independent 
increase in threshold. Conversely, if internal mode processing were driven by random 
choices, one would expect a history-independent increase in biases and threshold, 
and no change in bias. In line with our prediction, we found that internal mode 



processing was associated with a history-dependent increase in bias and lapse as well 
as a history-independent increase in threshold (Supplemental Section 1.3.1 and 
Supplemental Figure S6). This confirms that internal mode processing is indeed 
driven by an enhanced impact of perceptual history. 

Mice: 

• When fitting full and history-conditioned psychometric curves to the data from the 
IBL database, we observed that internal mode processing was associated with a 
history-dependent increase in bias and lapse as well as a history-independent 
increase in threshold (Supplemental Section 1.3.2 and Supplemental Figure S7). This 
provided further evidence for the hypothesis that internal mode processing is driven 
by an enhanced impact of perceptual history, as opposed to increased choice 
randomness. 

Comment 3 

From a mechanistic (sequential sampling) perspective, several previous papers have 
examined whether choice history biases influence the starting point or the drift rate 
of the evidence accumulation process. Under the former formulation, reliance on the 
evidence vs. reliance on the previous choice will be naturally anti-correlated (the less 
weight you place on the evidence the more impactful the choice history will be, 
assuming that the last choice is represented as a starting point bias). This seems to be 
mapping onto the computational model the authors describe, in which there is a 
weight on the prior, a weight on the likelihood and the assumption that these weights 
fluctuate in anti-phase. It is not obvious that this anti-phase relationship needs to be 
imposed ad-hoc. Or whether it would emerge naturally (using a mechanistic or 
Bayesian framework). More generally, the authors assert that without an external 
mechanism prior biases would be impossible to overcome, and this would misfit the 
data. However, it would be important to a) actually show that the results cannot be 
explained by a single mechanism in which the anti-phase relationship is emergent 
rather than ad-hoc, b) relate the current framework with previous mechanistic 
considerations of serial choice biases. 

We would like to thank the reviewer for pointing this out. We agree that both normative 
Bayesian and mechanistic drift diffusion are bound to lead to anti-correlated effects of 
sensory information and perceptual history at the level of individual trials. This, however, 
does not necessarily entail slow fluctuations in the impact of sensory information and 
perceptual history that evolve over many consecutive trials. We now provide a systematic 
model comparison and discuss our model in relation to drift diffusion models and descriptive 
models that assume slow changes in the latent parameters underlying perceptual decision-
making (such as Roy et al., Neuron 2021 or Ashwood et al. Nature Neuroscience et al. 2022). 
We also discuss the ad-hoc nature of the bimodal inference model in the subsection 
Limitations and open questions. 

• We used a maximum likelihood procedure to fit the bimodal inference model (M1, 
Figure 1F) to the behavioral data from the Confidence database20 and the IBL 



database21, optimizing the parameters 𝛼, 𝐻, 𝑎𝑚𝑝𝐿𝐿𝑅, 𝑎𝑚𝑝𝜓, 𝑓, 𝑝, and ζ (see Methods 

for details and Supplemental Table T2 for a summary of the parameters of the 
bimodal inference model). We validated our model in three steps: First, to show that 
bimodal inference does not emerge spontaneously in normative Bayesian models of 
evidence accumulation, but requires the ad-hoc addition of anti-phase oscillations in 
prior and likelihood precision, we compared the bimodal inference model to four 
control models (M2-5, Figure 1G). In these models, we successively removed the anti-
phase oscillations (M2-M4) and the integration of information across trials (M5) from 
the bimodal inference model and performed a model comparison based on AIC. 

• Model M2 (𝐴𝐼𝐶2 = 5.7 × 104 in humans and 4.94 × 104 in mice) and Model M3 (𝐴𝐼𝐶3 
= 6.9 × 104 in humans and 5.99 × 104 in mice) incorporated only oscillations of either 
likelihood or prior precision. Model M4 (𝐴𝐼𝐶4 = 9.8 × 104 in humans and 9.19 × 104 
in mice) lacked any oscillations of likelihood and prior precision and corresponded to 
the normative model proposed by Glaze et al.51. In model M5 (𝐴𝐼𝐶4 = 1.16 × 105 in 
humans and 1.14 × 105 in mice), we furthermore removed the integration of 
information across trials, such that perception depended only in incoming sensory 
information (Figure 1G). 

• The bimodal inference model achieved the lowest AIC across the full model space 
(𝐴𝐼𝐶1 = 4.73 × 104 in humans and 4.28 × 104 in mice) and was clearly superior to the 
normative Bayesian model of evidence accumulation (𝛿𝐴𝐼𝐶  = −5.08 × 104 in humans 
and −4.91 × 104 in mice; Supplemental Figure S9). 

• In sum, computational modeling suggested that between-mode fluctuations are best 
explained by two interlinked processes (Figure 1E): (i), the dynamic accumulation of 
information across successive trials mandated by normative Bayesian models of 
evidence accumulation and, (ii), ongoing anti-phase oscillations in the impact of 
external and internal information. 

• Could bimodal inference emerge spontaneously in normative models of perceptual 
decision-making? In predictive processing, the relative precision of prior and 
likelihood determines their integration into the posterior that determines the content 
of perception. At the level of individual trials, the perceptual impact of internal 
predictions generated from perceptual history (prior precision) and external sensory 
information (likelihood precision) are thus necessarily anti-correlated. The same 
holds for mechanistic models of drift diffusion, which understand choice history 
biases as driven by changes in the starting point51 or the drift rate of evidence 
accumulation32. Under the former formulation, perceptual history is bound to have a 
stronger influence on perception when less weight is given to incoming sensory 
evidence, assuming that the last choice is represented as a starting point bias. The 
effects of choice history in normative Bayesian and mechanistic drift diffusion models 
can be mapped onto one another via the Bayesian formulation of drift diffusion60, 
where the inverse of likelihood precision determines the amount of noise in the 
accumulation of new evidence, and prior precision determines the absolute shift in 
its starting point60. 



• While it is thus clear that the impact of perceptual history and sensory evidence are 
anti-correlated at each individual trial, we here introduce anti-phase oscillations as 
an ad-hoc modification to model slow fluctuations in prior and likelihood precision 
that evolve over many consecutive trials and are not mandated by normative Bayesian 
or mechanistic drift diffusion models. The bimodal inference model provides a 
reasonable explanation of the linked autocorrelations in stimulus- and history-
congruence, as evidenced by formal model comparison, successful prediction of RTs 
and confidence as out-of-training variables, and a qualitative reproduction of our 
empirical data from posterior model parameter as evidence against over- or under-
fitting. 

• Of note, similar non-stationarities have been observed in descriptive models that 
assume continuous61 or discrete12 changes in the latent states that modulate 
perceptual decision-making at slow timescales. A recent computational study62 has 
used a Hidden Markov model to investigate perceptual decision-making in the IBL 
database21. In analogy to our findings, the authors observed that mice switch between 
temporally extended strategies that last for more than 100 trials: During engaged 
states, perception was highly sensitive to external sensory information. During 
disengaged states, in turn, choice behavior was prone to errors due to enhanced 
biases toward one of the two perceptual outcomes62. Despite the conceptual 
differences to our approach (discrete states in a Hidden Markov model that 
correspond to switches between distinct decision-making strategies62 vs. gradual 
changes in mode that emerge from sequential Bayesian inference and ongoing 
fluctuations in the impact of external relative to internal information), it is tempting 
to speculate that engaged/disengaged states and between-mode fluctuations might 
tap into the same underlying phenomenon. 

• A third open question concerns the computational underpinnings of bimodal 
inference. The addition of slow anti-phase oscillations to the integration of prior and 
likelihood represents an ad-hoc modification of a normative Bayesian model of 
evidence accumulation51. While the bimodal inference model is supported by formal 
model comparison, the successful prediction of out-of-training variables and the 
qualitative reproduction of our empirical data in simulations from posterior model 
parameters, it is an important task for future research to test (i), whether between-
mode fluctuations can emerge spontaneously in hierarchical models of Bayesian 
inference, (ii), whether modes are continuous19 or discrete62, and (iii), whether 
bimodal inference can be causally manipulated by experimental variables. We 
speculate that between-mode fluctuations may separate the perceptual contribution 
of internal predictions and external sensory data in time, creating unambiguous 
learning signals that benefit inference about the precision of prior and likelihood, 
respectively. This proposition should be tested empirically by relating the 
phenomenon of bimodal inference to performance in, e.g., reversal learning, 
probabilistic reasoning, or metacognition. 



Comment 4 

The authors need to unpack their definition of history biases since in previous work 
biases due to the response or the identity of the stimulus at the previous trial are 
treated differently. Here, the authors focus on response biases but it is not clear 
whether they could examine also stimulus-driven history biases (in paradigms where 
stimulus-response is remapped on each trial). 

We would like to thank the reviewer for raising this important point. We defined the history-
biases reported in our main manuscript by comparing the response about the perceived 
stimulus category (A vs. B) at the current and at the preceding trial (choice history). An 
alternative would have been to define history biases by comparing the choice at the current 
trial to the stimulus category presented at the preceding trial (stimulus history). As we show 
below, perceptual responses tended to be biased not only toward choice history, but also 
(but to a lesser degree) to stimulus history. This is expected, as perception was stimulus-
congruent on approximately 75% of trials, causing the effects of the preceding response and 
the preceding stimulus to be highly correlated. We therefore compared the effects on choice 
history and stimulus history induced by trials at which perception was stimulus-incongruent, 
since those trials lead to opposite predictions regarding the perceptual choice at the 
subsequent trial. 

As expected, perceptual choices were attracted toward perceptual choices at preceding 
stimulus-incongruent trials (i.e., a positive effect of choice history). By contrast, perceptual 
choices tended to be repelled away from the stimulus presented the preceding trial. This 
repulsion of choices away from stimuli presented at stimulus-incongruent trials confirms 
that the choices at stimulus-incongruent trials were the primary driver of serial effects in 
perception in both humans and mice. 

We now refer to our analysis on stimulus history as an additional confound, which we 
present in detail in the Supplement 9.1 of our manuscript: 

• (…) These serial biases were effects of choice history, i.e., driven by the experiences 
reported at the preceding trial, and could not be attributed to stimulus history, i.e., to 
effects of the stimuli presented at the preceding trial (Supplemental Section 1.1). 

Supplement: 

• The main manuscript reports the effects of perceptual history, which we defined as 
the impact of the choice at the preceding trial on the choice at the current trial 
(henceforth choice history). Stimulus history, which is defined as the impact of the 
stimulus presented at the preceding trial on the choice at the present trial, represents 
an alternative approach to this. Here, we compare the effects of choice history to the 
effects of stimulus history. 

• We observed a significant bias toward stimulus history (humans: 49.76% ± 0.1% of 
trials, 𝛽 = 1.26 ± 0.94, T(373.62) = 1.34, p = 0.18; mice: 51.11% ± 0.08% of trials, 
T(164) = 13.4, p = 3.86 × 10−28). The bias toward stimulus history was smaller than 



the bias toward choice history (humans: 𝛽 = −3.53 ± 0.5, T(66.53) = −7.01, p = 
1.48 × 10−9; mice: T(164) = -17.21, p = 1.43 × 10−38). 

• The attraction of choices toward both preceding choices and stimuli is expected, as 
perception was stimulus-congruent on approximately 75% of trials, causing choices 
and stimuli to be highly correlated. We therefore compared the effects of choice 
history and stimulus history after stimulus-incongruent (i.e., error) trials, since those 
trials lead to opposite predictions regarding the perceptual choice at the subsequent 
trial. 

• As expected from the findings presented in the main manuscript, perceptual choices 
were attracted toward perceptual choices when the inducing trial was stimulus-
incongruent (i.e., a positive effect of choice history; humans: 𝛽 = 0.19 ± 1.4 × 10−4, z 
= 1.36 × 103, p = 0: mice: 𝛽 = 0.92 ± 0.01, z = 88.82, p = 0). By contrast, perceptual 
choices tended to be repelled away from the stimulus presented at preceding 
stimulus-incongruent trial (i.e., a negative effect of stimulus history; humans: 𝛽 = 
−0.19 ± 0.01, z = −16.47, p = 5.99 × 10−61: mice: 𝛽 = −0.92 ± 0.01, z = −88.76, p = 0). 
This repulsion of choices away from stimuli presented at stimulus-incongruent trials 
confirmed that choices (which are anti-correlated to stimuli at stimulus-incongruent 
trials) were the primary driver of attracting serial effects in perception. 

• In sum, the above results suggest that, in both humans and mice, serial dependencies 
were better explained by the effects of choice history as opposed to the effects of 
stimulus history. This aligns with a result recently published for the IBL database, 
where mice were shown to follow an action-kernel as opposed to a stimulus-kernel 
model when integrating information across trials81. 

Comment 5 

Previous work, which the authors acknowledges in their Discussion (6.5), 
distinguishes repetitive history biases from alternating biases. For instance, in Braun, 
Urai & Donner (2018, JoN) participants are split into repetitive or alternating. 
Shouldn’t the authors define the history bias in a similar fashion? The authors point 
out that attracting and repelling biases operate simultaneously across different 
timescales. However, this is not warranted given Braun et. al and other similar papers. 
It is not clear how this more nuanced definition of history bias would alter the 
conclusions. 

Our empirical results show that, on average, history biases tend to be repetitive (Figure 2A, 
Figure 3A, and the biases in the psychometric functions in the Supplemental Figure S6-7). In 
fact, only 2 of the 66 experiments we included from the Confidence database20 showed 
significant alternating biases (Supplemental Figure S1, please note that history-congruence 
was not used in the inclusion algorithm). However, this does not rule out the possibility that 
there are periods of alternating biases in the other experiments with net repeating effects. 

Importantly, our central finding of autocorrelation in history-congruence does not 
distinguish between alternating and repetitive history biases. In the plot below, we show 
autocorrelation curves for fluctuations in history-congruence for both alternation (hazard = 



0.8) and repetition (hazard = 0.2). Both were simulated for 10 blocks of a random duration 
between 15 and 30 trials, interleaved with 10 blocks with no history biases (hazard = 0.5). 
This simulation illustrates that the autocorrelation of alternating and repeating biases is 
identical for symmetric pairs of hazard rates. The autocorrelation of history-congruence and 
the associated internal mode processing is therefore not tied to repeating biases, but 
accommodates alternating biases as well (which seem to be, on average and in our data, less 
frequent). We therefore did not separate alternating from repeating biases in our analysis of 
mode. 

We apologize for not having recognized this aspect in the previous version of the discussion. 
We have rewritten the paragraph on alternating and repeating biases in the discussion, 
referring to the plot below, which we have added to the Supplemental Materials. 

• Second, our results point to an attraction of perception toward preceding choices. 
Previous work has shown that perceptual decision-making is concurrently affected 
by both attractive and repulsive serial biases that operate on distinct time-scales and 
serve complementary functions for sensory processing27,75,76: Short-term attraction 
may serve the decoding of noisy sensory inputs and increase the stability of 
perception, whereas long-term repulsion may enable efficient encoding and 
sensitivity to change27. In the data analyzed here, history biases tended to be 
repetitive (Figure 2A, Figure 3A, Supplemental Figure S6 and S7), and only 2 of the 66 
experiments of the Confidence database20 showed significant alternating biases 
(Supplemental Figure S1). However, as we show in Supplemental Figure S14, 
fluctuations in both alternating and repeating history biases generate overlapping 
autocorrelation curves. Our analysis of between-mode fluctuations is therefore not 
tied exclusively to repeating biases, but accommodates alternating biases as well, 
such that both may lead to internally-biased processing and reduced sensitivity to 
external sensory information. Future work could apply our approach to paradigms 
that boost alternating as opposed to repeating biases, as this would help to better 
understand how repetition and alternation are linked in terms of their computational 
function and neural implementation27. 

 

 

 

 

 

 

 

 

 



Supplemental Figure S14  

 

• Supplemental Figure S14. Autocorrelation of history-congruence of alternating and 
repeating biases. Here, we simulate the autocorrelation of history-congruence in 
1000 synthetic participants. In the repeating regime (blue), history-congruence 
fluctuated between 50% and 80% (blue) in interleaved blocks (10 blocks per 
condition with a random duration between 15 and 30 trials). In the alternation 
regime (red), history-congruence fluctuated between 50% and 20%. The resulting 
autocorrelation curves for history-congruence overlap, indicating that our analysis is 
able to accommodate both repeating and alternating biases. 

Comment 6 

The arousal hypothesis seems to be ruled out too easily, merely in the presence of a 
non-monotonic “state” vs. RT pattern. Arousal can have an inverted U-shaped effect on 
behavioral performance and recent paper has demonstrated a non-monotonic effect 
of tonic arousal (baseline pupil) on RTs and accuracy 
(https://www.biorxiv.org/content/10.1101/2023.07.28.550956.abstract). More 
generally, the RT and confidence analyses need to be complemented, perhaps by 
computational modeling using sequential sampling models, as these behavioral 
metrics have multiple mechanistic mappings (e.g., a fast RT might correspond to high 
SNR or an impulsive decisions driven by a starting point bias). 

We would like to thank the reviewer for this important point. Considering this Comment and 
the Comment 3 by Reviewer 1, we realize that the quadratic relationships between mode 
and RTs/confidence do not represent a convincing defensive analysis against the potential 

https://www.biorxiv.org/content/10.1101/2023.07.28.550956.abstract


contributions of arousal to the phenomenon that we have identified as between-mode 
fluctuations. Rather, we now interpret the fluctuations of RTs/confidence with mode as 
indicative of a scenario in which between-mode fluctuations modulate a decision-variable 
that determines not only the perceptual choices, but also the speed and confidence at which 
they are made. 

Therefore, as a first response to this comment, we have re-phrased our assessment of RT and 
confidence in the following way: 

Humans: 

• The above results point to systematic fluctuations in the decision variable44 that 
determines perceptual choices, causing enhanced sensitivity to external stimulus 
information during external mode and increased biases toward preceding choices 
during internal mode. As such, fluctuations in mode should influence downstream 
aspects of behavior and cognition that operate on the perceptual decision variable44. 
To test this hypothesis with respect to motor behavior and metacognition, we asked 
how bimodal inference relates to response times (RTs) and confidence reports. (…). 

• (…) In sum, the above results indicate that reporting behavior and metacognition do 
not map linearly onto the mode of sensory processing. Rather, they suggest that slow 
fluctuations in the respective impact of external and internal information are most 
likely to affect perception at an early level of sensory analysis46,47. Such low-level 
processing may thus integrate perceptual history with external inputs into a decision 
variable44 that influences not only perceptual choices, but also the speed and 
confidence at which they are made. 

• In what follows, we probe alternative explanations for between-mode fluctuations, 
test for the existence of modes in mice, and propose a predictive processing model 
that explains fluctuations in mode ongoing shifts in the precision afforded to external 
sensory information relative to internal predictions driven by perceptual history. 

Mice: 

• The above results confirm that fluctuations between internally- and externally-biased 
modes generalize to perceptual decision-making in mice. As in humans, we 
hypothesized that bimodal inference modulates the decision variable44 that 
determines not only perceptual choices, but also downstream aspects of mouse 
behavior44. (…). When fitting full and history-conditioned psychometric curves to the 
data from the IBL database, we observed that internal mode processing was 
associated with a history-dependent increase in bias and lapse as well as a history-
independent increase in threshold (Supplemental Section 1.3.2 and Supplemental 
Figure S7). Over time, the frequency of history-congruent choices increased alongside 
stimulus-congruence and speed of response as mice were exposed to the experiment, 
arguing against the proposition that biases toward perceptual history reflected an 
unspecific response strategy in mice who were not sufficiently trained on the IBL task. 



Second, we have re-structured the section of defensive analyses, where we contrast the 
phenomenon that we identify as fluctuating modes in perception with stereotypical or 
random responses as evidence of low task engagement, and not specifically with attention 
or arousal, which we discuss below. To streamline the manuscript, we report those analyses 
in detail in the Supplement (see Comments 12 by Reviewer 1 and Comment 9 by Reviewer 
3). 

• The core assumption of bimodal inference - that ongoing changes in the sensitivity to 
external information are driven by internal predictions induced via perceptual 
history - needs to be contrasted against two alternative hypotheses: When making 
errors, observers may not engage with the task and respond stereotypically, i.e., 
exhibit stronger general biases toward one of the two potential outcomes, or simply 
choose randomly. Logistic regression confirmed that perceptual history made a 
significant contribution to perception (𝛽 = 0.11 ± 5.79 × 10−3, z = 18.53, p = 
1.1 × 10−76) over and above the ongoing stream of external sensory information (𝛽 
= 2.2 ± 5.87 × 10−3, z = 375.11, p = 0) and general response biases toward (𝛽 = 15.19 
± 0.08, z = 184.98, p = 0). 

• When eliminating perceptual history as a predictor of individual choices at individual 
trials, AIC increased by 𝛿𝐴𝐼𝐶  = 1.64^{3} (see Supplemental Figure S4A-B for 
parameter- and model-level inference at the level of individual observers). Likewise, 
when eliminating slow fluctuations in history-congruence as a predictor of slow 
fluctuations in stimulus-congruence across trials, we observed an increase in AIC by 
𝛿𝐴𝐼𝐶  + 7.06^{3}. These results provided model-level evidence against the null 
hypotheses that fluctuations in stimulus-congruence are driven exclusively by choice 
randomness or general response bias (see Supplemental Section 1.2 for an in-depth 
assessment of general response bias). 

• To confirm that changes in the sensitivity to external information are indicative of 
internal mode processing, we estimated full and history-dependent psychometric 
curves during internal, external, and across modes. If, as we hypothesized, internal 
mode processing reflects an enhanced impact of perceptual history, one would expect 
a history-dependent increase in biases and lapses as well as a history-independent 
increase in threshold. Conversely, if internal mode processing were driven by random 
choices, one would expect a history-independent increase in lapses and threshold, 
and no change in bias. In line with our prediction, we found that internal mode 
processing was associated with a history-dependent increase in bias and lapse as well 
as a history-independent increase in threshold (Supplemental Section 1.3 and 
Supplemental Figure S6-7). This confirmed that internal mode processing is indeed 
driven by an enhanced impact of perceptual history. 

• In line with this, the quadratic relationship between mode and confidence (Figure 2J) 
suggested that biases toward internal information do not reflect a post-perceptual 
strategy or repeating preceding choices when the subjective confidence in the 
perceptual decision is low. Moreover, while responses became faster with longer 
exposure to the experiments of the Confidence database, the frequency of history-
congruent choices increased over time, speaking against the proposition that 



participants may stereotypically repeat preceding choices when not yet familiar with 
the experimental task (see Supplemental Section). 

• Taken together, our results thus argue against recurring intervals of low task 
engagement, which may be signaled by stereotypical or random responses, as an 
alternative explanation for the phenomenon that we identify as bimodal inference. 

Third, in response the Comment 3 by Reviewer 1, we now interpret the quadratic 
relationship of mode to RTs/confidence in the context of predictive processing views on 
attention53. Based on the Bayesian formulation of drift diffusion60, we propose that the 
effects of likelihood on prior precision on the decision variable and, consequently, on 
confidence and RTs can be translated into the mechanistic framework of drift diffusion. 
Specifically, Bitzer et al. relate likelihood precision to noise in the accumulation process, and 
prior precision to the amount of shift in the starting point60. As a third response to this 
comment, we have re-written our discussion of the quadratic relationship of mode to RTs 
and Confidence, focusing on predictive coding models attention, which we relate to 
mechanistic drift diffusion models: 

• How does attention relate to between-mode fluctuations? According to predictive 
processing, attention corresponds to the precision afforded to the probability 
distributions that underlie perceptual inference53. As outlined above, between-mode 
fluctuations can be understood as ongoing shifts in the precision afforded to 
likelihood (external mode) and prior (internal mode), respectively. When the 
precision afforded to prior or likelihood increases, posterior precision increases, 
which leads to faster RTs and higher confidence. When defined from the perspective 
of predictive processing as the precision afforded to likelihood and prior53, 
fluctuations in attention may thus provide a plausible explanation for the quadratic 
relationship of mode to RTs and confidence (Figure 2H and J; Figure 3I; Figure 4I). 
Such effects of attention in the predictive processing sense can be directly related to 
mechanistic drift diffusion models60, where both larger shifts in starting point 
(related to increased prior precision in internal mode) and lower noise in the 
accumulation of evidence (related to increased likelihood precision in external mode) 
may explain faster and more confident responses. 

Given the correspondence between normative Bayesian and mechanistic drift diffusion 
models60, we believe that we would not gain additional insights into the role of arousal and 
additional potential confounds or causes of between-mode fluctuations by fitting drift 
diffusion models as an alternative class of behavioral models to our data. To understand the 
relation of arousal to the bimodal inference, we think that it is necessary to look at data 
beyond behavior, such as pupillometry, video tracking of response behavior, or neural data. 
While this is beyond the scope of the current manuscript, we plan to do these analyses in a 
follow-up paper, using data published by the IBL after this paper was submitted. The IBL 
data now contains eye tracking, video tracking of response behavior, and neuropixel 
recordings across the whole mouse brain71. As a fourth response to this comment, we have 
re-written our discussion of attention and arousal: 



• Outside of the predictive processing field, attention is often understood in the context 
of task engagement63, which varies according to the availability of cognitive resources 
that are modulated by factors such as tonic arousal, familiarity with the task, or 
fatigue63. Our results suggest that internal mode processing cannot be completely 
reduced to intervals of low task engagement: In addition to shorter RTs and elevated 
confidence, choices during internal mode were not random or globally biased, but 
driven by perceptual history (Supplemental Figures S6-7). Moreover, our 
computational model identified the dominant timescale of between-mode 
fluctuations at 0.11 1/𝑁𝑡𝑟𝑖𝑎𝑙𝑠, which may be compatible with fluctuations in arousal64, 
but is faster than to be expected for the development of task familiarity or fatigue. 

• However, in interpreting the impact of between-mode fluctuations on perceptual 
accuracy, speed of response and confidence, it is important to consider that global 
modulators such as tonic arousal are known to have non-linear effects on task 
performance65: In perceptual tasks, performance seems so be highest during mid-
level arousal, whereas low- and high-level arousal lead to reduced accuracy and 
slower responses65. This contrasts with the effects of bimodal inference, where 
accuracy increases linearly as one moves from internal to external mode, and 
responses become faster at both ends of the mode spectrum. 

• Of note, high phasic arousal has been shown to suppress multi-domain biases in 
decision-making in humans and mice66–68, including the biases toward perceptual 
history28 that we implicate in internal mode processing. The increase in response 
speed and history congruence over time (Supplemental Section 1.4) may argue 
against insufficient training as an alternative explanation for internal mode 
processing, but may also taken as a sign of waning arousal. The multiple mechanistic 
mappings to RTs and confidence therefore warrant more direct measures of arousal 
(such as pupil size28,65,66,68–70, motor behavior69,70, or neural data71) to better 
delineate bimodal inference from fluctuations in global modulators of task 
performance. 

Comment 7 

In several analysis the authors present an effect and then show that this effects 
persists when key variables/ design aspects are also taken into account (see an 
example at around line 70). It makes more sense to present only one single analysis 
in which these key variables are controlled for. Results cannot be interpreted if they 
are spurious factors driving them so it is not clear why some of the results are 
presented in two versions (“uncontrolled” and “controlled” analyses). 

We apologize for this. We have updated our manuscript accordingly and have omitted, 
whenever possible, reports of uncontrolled analyses (highlighted in the main text). The most 
significant changes are summarized here: 

• Group-level autocorrelation curves in humans: In line with previous work8, we found 
that the probability of stimulus-congruence was not independent across successive 
trials: At the group level, stimulus-congruent perceptual choices were significantly 
autocorrelated for up to 15 trials (Figure 2B), controlling for task difficulty and the 



sequence of presented stimuli (Supplemental Figure 2A-B). (…) In close analogy to 
stimulus-congruence, we found history-congruence to be significantly autocorrelated 
for up to 21 trials (Figure 2B), while controlling for task difficulty and the sequence 
of presented stimuli (Supplemental Figure 2A-B). 

• Group-level autocorrelation curves in mice: At the group level, we found significant 
autocorrelations in both stimulus-congruence (42 consecutive trials) and history-
congruence (8 consecutive trials (Figure 3B), while controlling for the respective 
autocorrelation of task difficulty and external stimulation (Supplemental Figure 2C-
D). 

• Correlation between stimulus- and history-congruence in humans: When perceptual 
choices were less biased toward external information, participants relied more 
strongly on internal information acquired from perceptual history (and vice versa, 𝛽 
= −0.05 ± 5.63 × 10−4, T(2.1 × 106) = −84.21, p = 0, controlling for fluctuations in 
general response biases; Supplemental Section 1.2). 

• Correlation between stimulus- and history-congruence in mice: Fluctuations in the 
strength of history-congruent biases had a significant effect on stimulus-congruence 
(𝛽1 = −0.12 ± 7.17 × 10−4, T(1.34 × 106) = −168.39, p = 0) beyond the effect of 
ongoing changes in general response biases (𝛽2 = −0.03 ± 6.94 × 10−4, T(1.34 × 106) 
= −48.14, p = 0). 

Comment 8 

The central empirical finding is potentially important but is currently shadowed by more 
speculative sections/ discussions. For instance, the section on the adaptive merits of the 
computational model is relatively weaker compared to the empirical results. In particular, 
the model is simulated without feedback (whereas most experiments employ trial by trial 
feedback) and does not outperform the baseline model in accuracy but in other secondary 
metrics. 

We agree with the Reviewer (see also a similar suggestion by Reviewer 1 in Comment 
9). We have removed the section 5.8 and the associated subsection of the discussion 
from our manuscript. We will develop a model on the potential function of between-
mode fluctuations in a separate publication. 

Minor comments: 

Comment 9 

The amount of statistical analysis and results is often overwhelming. The authors 
could streamline the presentation better such that the main result is brought to the 
foreground. Currently the manuscript resembles a technical report. 

We apologize for this. From the Results, we have moved a number of sections to the 
Supplemental Materials to stream-line the manuscript (i.e., our analysis of general response 
biases [former section 5.4], the analysis of psychometric functions [former section 5.5], and 
the respective paragraphs on the IBL database). From the Discussion, we have removed the 



section on self-organized criticality (also following the suggestion of Reviewer 1). We have 
also moved more peripheral statistical results to the figure legends and the method section: 

• We have moved the statistics on exponential decay in the autocorrelation to the figure 
legends of Figure 2B and 3B. 

• We have shortened the description of logistic regression models that predict the 
stimulus- and history-congruence at the index trial from the stimulus- and history-
congruence at the preceding trials. 

• The section on mouse behavior now matches the logic and presentation of results in 
the human section. 

We hope that these changes will increase the readability of our manuscript. 

Comment 10 

Some typos or omissions may alter the meaning in various places. Indicatively, in lines 
273, 439, 649. 

Thanks a lot, we have corrected these typos. 

 


