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Supplementary methods 1: Causal forest technical details 

Let 𝑌 be the observed outcome, 𝑊 the binary treatment indicator, 𝑌(𝑤) the potential outcome under 

treatment 𝑤, and 𝑋 the covariates. The causal forest (CF) method seeks to estimate the conditional 

average treatment effect (CATE) at 𝑋 =  𝑥, 

τ(𝑥) = 𝐸[ 𝑌(1) − 𝑌(0)
∣∣ 𝑋 = 𝑥 ]. 

The identification of CATE’s requires standard causal inference assumptions to hold. Specifically, 

we make the following assumptions: 

1. 0 < 𝑃( 𝑊 = 1 ∣ 𝑋 = 𝑥 ) < 1 (Positivity) 

2. 𝑌 = 𝑌(𝑊) (Consistency)  

3. 𝑌(0), 𝑌(1) ⫫ 𝑊 ∣ 𝑋 (Conditional exchangeability) 

CF utilises a metalearner to estimate treatment heterogeneity. These are meta-algorithms that leverage 

prediction models to estimate conditional causal effects. Specifically, it uses the R-learner 1. The R-

learner is based on the following relationship between the outcome and treatment indicator, 

𝑌 − 𝑚(𝑋) = (𝑊 − 𝑒(𝑋))τ(𝑋) + ε 

where ε is a mean zero error term and  

𝑚(𝑥) = 𝐸[ 𝑌 ∣ 𝑋 = 𝑥 ], 𝑒(𝑥) = 𝐸[ 𝑊 ∣ 𝑋 = 𝑥 ]. 

The CATE can thus be characterised through the following loss-based representation, 

τ(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛τ𝐸 [ ((𝑌𝑖 − 𝑚(𝑋𝑖)) − (𝑊𝑖 − 𝑒(𝑋𝑖))τ)
2

∣∣
∣ 𝑋𝑖 = 𝑥 ]. 

CF estimates CATEs by minimising the weighted empirical least squares loss with weight function 

α𝑖(𝑥), 

τ̂(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛τ ∑ α𝑖(𝑥)

𝑛

𝑖=1

(((𝑌𝑖 − �̂�(−𝑖)(𝑋𝑖)) − (𝑊𝑖 − �̂�(−𝑖)(𝑋𝑖)) τ)
2

). 

This minimisation problem contains three unknown quantities, αi(𝑥), 𝑚(𝑋𝑖), and 𝑒(𝑋𝑖). As such, we 

need to predict these quantities for each observation i. Prediction happens in two steps. In the first 

step, regression forests are used to predict the conditional outcome and propensity score for each 

observation. �̂�(−𝑖)(𝑋𝑖) is the predicted outcome at the covariates of the i-th sample, obtained from 



4 
 

the regression forest using only trees not containing the i-th sample (out-of-bag). Similarly, �̂�(−𝑖)(𝑋𝑖) 

is the out-of-bag predicted propensity to treat at the covariates of the i-th sample. In the second step, 

the weight function is predicted for each observation. The prediction algorithm is a modified version 

of random forest 2, using the splitting criterion from the generalised random forest algorithm 3. Honest 

trees are grown by randomly sampling two disjoint subsamples, S and T, without replacement. The 

first subsample, S, is used to recursively partition the covariate space. Splits are axis aligned, and 

chosen greedily to maximise the difference between the CATE in each subset. Once the tree is grown, 

the second subsample, T, is used to populate the leaves of the tree. Assuming 𝐿𝑏(𝑥) is the set of 

samples from T falling in the same leaf as 𝑥 within the b’th tree, the estimated weight function is 

given by 

α𝑖(𝑥) =
1

𝐵
∑

1(𝑋𝑖 ∈ 𝐿𝑏(𝑥))

|𝐿𝑏(𝑥)|

𝐵

𝑖=1

. 

The weight function adjusts the observed sample to look like a sample with 𝑋𝑖  =  𝑥. Once we have 

obtained predictions of αi(𝑥), 𝑚(𝑋𝑖), and 𝑒(𝑋𝑖), CATE’s are estimated by solving the loss-based 

minimisation problem, 

τ̂(𝑥) =
∑ α𝑖(𝑥) (𝑌𝑖 − �̂�(−𝑖)(𝑋𝑖))𝑛

𝑖=1 (𝑊𝑖 − �̂�(−𝑖)(𝑋𝑖))

∑ α𝑖(𝑥)(𝑊𝑖 − �̂�(−𝑖)(𝑋𝑖))
2𝑛

𝑖=1

 

Given a CF model, treatment effect heterogeneity can be evaluated using Rank-Weighted Average 

Treatment Effect (RATE).4 RATE takes a treatment prioritisation rule 𝑆(𝑋𝑖) and assesses the rules 

ability to prioritise individuals with the largest treatment effect. For any threshold 0 < 𝑢 ≤ 1, define 

the targeting operator characteristic, 

𝑇𝑂𝐶(𝑢; 𝑆) = 𝐸[ 𝑌𝑖(1) − 𝑌𝑖(0) ∣∣ 𝐹𝑆(𝑆(𝑋𝑖)) ≥ 1 − 𝑢 ] − 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)]. 

RATE metrics are integrals over a weighted TOC curve, 

θα(𝑆) = ∫ α(𝑢)𝑇𝑂𝐶(𝑢; 𝑆)𝑑𝑢
1

0

. 

We used a RATE with α(𝑢) = 1, which corresponds to the area under the TOC curve (AUTOC). The 

RATE is estimated using terms from the AIPW estimator of the ATE. These AIPW scores, Γ̂𝑖, can be 

expressed in terms of �̂�(−𝑖)(𝑋𝑖), �̂�(−𝑖)(𝑋𝑖), and �̂�(−𝑖)(𝑋𝑖), 
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Γ̂𝑖 = �̂�(−𝑖)(𝑋𝑖) +
𝑊𝑖 − �̂�(−𝑖)(𝑋𝑖)

�̂�(−𝑖)(𝑋𝑖)(1 − �̂�(−𝑖)(𝑋𝑖))
(𝑌𝑖 − �̂�(−𝑖)(𝑋𝑖) − (𝑊𝑖 − �̂�(−𝑖)(𝑋𝑖)) �̂�(−𝑖)(𝑋𝑖)). 

If there are no ties in 𝑆(⋅), the TOC estimator is 

𝑇𝑂�̂�(𝑢; 𝑆) =
1

⌊𝑢𝑛⌋
∑ Γ̂𝑖(𝑗)

⌊𝑢𝑛⌋

𝑗=1

−
1

n
∑ Γ̂𝑖

𝑛

𝑖=1

, 

and the estimator for a RATE with weights α(𝑢) is  

θ̂α(𝑆) =
1

n
∑ α (

𝑗

𝑛
)

𝑛

𝑖=1

𝑇𝑂�̂� (
𝑗

𝑛
; 𝑆). 

If there are ties in 𝑆(⋅), the AIPW scores are averaged over tied observations. The RATE metrics 

provide tests for the hypothesis of treatment effect heterogeneity along the prioritisation rule S, using 

the null hypothesis 𝐻0: θα(𝑆) = 0. The AUTOC estimator θ̂ is asymptotically linear, so an 

asymptotically valid test for 𝐻0 can be constructed using the bootstrap. With σ̂ denoting the standard 

error of the bootstrap estimates and Φ the cumulative distribution function of the standard normal 

distribution, the P-value for 𝐻0 is 

2Φ (−
|θ̂|

σ̂
). 

Supplementary methods 2: Sensitivity analyses 

We conducted two sensitivity analyses. First, we evaluated the impact of false RT-PCR test results 

by rerunning our analysis 20 times using a modified exposure. Binny et.al. found RT-PCR sensitivity 

stays above 88% in the first two weeks post-infection, with a peak of 92.7%.5 Skittrall et.al. report 

high specificity above 99%.6 To evaluate the impact of false test results, we assumed a fixed 

sensitivity of 90% and a fixed specificity of 99%. Using these values, we solved for the number of 

false negatives (FN = 4112) and false positives (FP = 477) in the study population. These labels were 

assigned at random and the modified exposure had TP + FN in the exposed group, and TN + FP in 

the unexposed group. Second, we evaluated the impact of our choice of hyperparameters in the causal 

forest algorithm. We reran our analysis with all combinations of the following hyperparameters: 

sample fraction (0.3, 0.4, 0.5), mtry (10, 15, 20), minimum node size (5, 10, 20), honesty fraction 

(0.4, 0.5, 0.6). The algorithm has two hyperparameters (imbalance penalty and alpha) meant to limit 
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the amount of imbalance between the two child leaves from a split. Due to the low prevalence of 

several health conditions, we manually set these parameters to allow splitting along all covariates. 

These choices were kept for the sensitivity analysis. 

Supplementary results 1: Analysis of more three-way interactions 

We looked at more three-way interactions with age, sex, and additional health conditions, including 

chronic asthma, chronic or frequent headaches/migraines, PTSD, and diabetes (Supplementary figure 

5). The interactions between age, sex, and headaches, PTSD, or diabetes showed significant 

uncertainty in the RD estimates for persons with the health condition. The interaction between age, 

sex, and chronic asthma showed an unexpected pattern between females with chronic asthma and age. 

The RDs increase sharply between age 20-40 years, with the highest AIPW RD observed for females 

with chronic asthma between 36-45 years (RD 10.4%, 95% CI 6.5% to 14.4%). The RDs drop for 

females with chronic asthma between 46-55 years (RD 6.4%, 95% CI 3.2% to 9.6%) and between 

53-64 years (RD 8.9%, 95% CI 5.6% to 12.2%). In contrast, males with chronic asthma had zero risk 

difference up to an age of 45 years, with an increase for males with chronic asthma between 46-55 

years (RD 5.5%, 95% CI 2.5% to 8.5%) and between 56-65 years (RD 4.2%, 95% CI 0.7% to 7.7%). 

RDs for males with chronic asthma were significantly higher than for males without chronic asthma 

in the 46-55 years age group (P-value 0.045). For females, those with chronic asthma have 

significantly higher RDs for age 36-45 years (P-value 0.002) and 56-65 years (P-value 0.045). 

Supplementary results 2: Sensitivity analyses 

Evaluating the impact of false RT-PCR test results, calibration measures showed similar results to 

the main analysis. The coefficient of the mean forest prediction was on average 1.00 (min 1.00, max 

1.00) and the coefficient of the differential forest prediction was on average 0.61 (min 0.58, max 

0.65). The variable importance measure consistently ranked the same five risk factors highest as in 

the main analysis. Age and high BMI were always ranked 1st and 2nd, however, education would 

sometimes rank higher than sex or depression, see Supplementary figure 11. The RD in the full 

population was slightly lower than in the main analysis (RD average 2.9, min 2.8, max 3.0). A similar 

pattern was observed for RD estimates along single risk factors, see Table 4. Accordingly, the RATEs 

are smaller than in the main analysis. For some modified exposures, fewer risk factors showed strong 

evidence for variability in RDs, specifically COPD or other lung disease, post-traumatic stress 

disorder, and chronic or frequent headaches had observed P-values above 0.05. Still, evidence for 
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heterogeneity in the total study population was strong, also along the risk factors identified as 

important by the variable importance measure. The RD estimates for the interaction between age, 

high BMI, and depression are shown in Figure 5. They show an increase with each covariate almost 

identical to the main analysis. Again, the RDs tend to be slightly lower compared to the main analysis. 

In summary, false RT-PCR test results due to imperfect sensitivity and specificity may have caused 

a small overestimation of the increased risk of full-time sick leave after COVID-19 infection. 

Evaluating the impact of our choice of hyperparameters in the causal forest algorithm, the coefficient 

of the mean forest prediction indicated that the mean forest prediction was well calibrated for all 

combinations of hyperparameters (average 1.00, min 0.99, max 1.01). The coefficient of the 

differential forest prediction showed more variation (average 0.83, min 0.49, max 1.13), indicating 

that conclusions about the calibration of the heterogeneity estimates depend significantly on the 

choice of hyperparameters. Results on variable importance are similar to the RT-PCR sensitivity 

analysis. The five risk factors ranked most important are consistent across choices of 

hyperparameters. Of the four covariates ranked most important in the main analysis, sex ranks below 

education in 70 of 81 cases, while depression ranks below education in 36 of 81 cases see 

Supplementary figure 12. The RD estimate in the full population and along single risk factors changed 

only minimally across choices of hyperparameters, see Table 5. The same was the case for the 

interaction between age, high BMI, and depression, see Figure 5. Overall, there was no evidence that 

the estimated RDs were sensitive to the choice of hyperparameters in the causal forest algorithm, 

excluding parameters controlling the imbalance between child leaves in a split, which were kept fixed. 

Supplementary discussion 

For the age, sex, and chronic asthma interaction, the increase in RD varied by age, suggesting a high 

RD at a middle age between 36-45 years, with lower risk between both 26-35 years (4.1%) and 46-

55 years (6.4%). Asthma has been reported as a risk factor for PCC in existing literature. Tsampasian 

et al. reported a significantly higher risk of developing PCC, with odds ratio 1.24 (95% CI 1.15 to 

1.35),7 while Jacob et al. reported an increased prevalence of long-term COVID-19 sick leave for 

persons with asthma (8.8%).8 However, to our knowledge, previous literature has not reported on the 

interaction between age, sex, and chronic asthma.  

In previous work by colleagues using the same cohort, age was treated as a categorical variable.9 In 

the present work, age was kept as a continuous variable. This was chosen in part due to the goal of 
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estimating individual level causal effects, in part because the CF method treats all covariates as 

continuous. To work with categorical covariates, they must be manually one-hot encoded (or encoded 

using some other appropriate scheme).  

Comorbidities were only registered if they were present before the RT-PCR test, as they might 

otherwise act as mediators of the COVID-19 effect on sick leave.  

We note a few additional limitations to those discussed in the main discussion. First, with the variable 

importance measure, only one split per level is possible on categorical covariates. This limits the 

number of splits per tree. This risks a lower importance score for categorical covariates with few 

levels, compared with a continuous covariate with similar overall treatment effect. Particularly, age 

and education level will have more opportunities to be split along in each tree compared with the 

remaining risk factors. The weight function was chosen to mitigate this issue, by limiting the impact 

of splits deeper in the trees.  

Second, identification of conditional risk differences depends on the conditional exchangeability 

assumption, wherein we assume all variables confounding the effect of SARS-CoV-2 infection on 

post-acute sick leave are measured and adjusted for by the causal forest. As we cannot rule out the 

possibility of unmeasured confounders, our results may be attenuated by confounding bias from such 

variables. Similarly, undetected effect heterogeneity may exist due to unmeasured effect modifiers. 

This limitation is inherent to causal inference models and has been previously reported in other 

studies.10,11  
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Supplementary table 1: Characteristics of 88,818 study participants who obtained a positive or 

negative RT-PCR test for SARS-CoV-2. 

Characteristics Tested negative Tested positive 

 (n=51,336) (n=37,482) 

Sex   

  Female 34,085 (66.4%) 23,002 (61.4%) 

  Male 17,251 (33.6%) 14,480 (38.6%) 

Age   

  Mean (SE) 45.8 (13.7) 43.6 (13.9) 

  Median [Min, Max] 49.0 [15.0, 65.0] 46.0 [15.0, 65.0] 

Charlson Comorbidity Index scores   

  0 45,984 (89.6%) 33,988 (90.7%) 

  1 2,854 (5.6%) 1,967 (5.2%) 

  2 1,926 (3.8%) 1,144 (3.1%) 

  3 or more 572 (1.1%) 383 (1.0%) 

Highest completed education   

Primary/elementary school 4,267 (8.3%) 2,991 (8.0%) 

secondary education or vocational education 5,127 (10.0%) 4,711 (12.6%) 

vocational training 8,490 (16.5%) 5,755 (15.4%) 

Shorter term higher education 5,999 (11.7%) 4,067 (10.9%) 

Medium term higher education 17,237 (33.6%) 12,147 (32.4%) 

Long term higher education 8,938 (17.4%) 6,799 (18.1%) 

Do not know/None of the above/Do not wish to answer 1,278 (2.5%) 1,011 (2.7%) 

Vaccination status   

  Not vaccinated 51,065 (99.5%) 37,366 (99.7%) 

  Not fully vaccinated 270 (0.5%) 116 (0.3%) 

  Primary course 1 (0.0%) 0 (0%) 

Pre-existing conditions (before test)   

High BMI   

  No 38,696 (75.4%) 28,599 (76.3%) 

  Unknown 4,143 (8.1%) 2,680 (7.2%) 

  Yes 8,497 (16.6%) 6,203 (16.5%) 

Fibromyalgia   

  No 50,862 (99.1%) 37,153 (99.1%) 

  Yes 474 (0.9%) 329 (0.9%) 

Chronic fatigue syndrome   

  No 50,473 (98.3%) 37,000 (98.7%) 

  Yes 863 (1.7%) 482 (1.3%) 
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Anxiety   

  No 46,905 (91.4%) 34,488 (92.0%) 

  Yes 4,431 (8.6%) 2,994 (8.0%) 

Depression   

  No 44,870 (87.4%) 33,233 (88.7%) 

  Yes 6,466 (12.6%) 4,249 (11.3%) 

PTSD   

  No 51,299 (98.0%) 36,762 (98.1%) 

  Yes 1,037 (2.0%) 720 (1.9%) 

Chronic asthma   

  No 47,840 (93.2%) 34,643 (92.4%) 

  Yes 3,496 (6.8%) 2,839 (7.6%) 

Diabetes   

  No 49,583 (96.6%) 36,255 (96.7%) 

  Yes 1,753 (3.4%) 1,227 (3.3%) 

High blood pressure   

  No 45,412 (88.5%) 33,589 (89.6%) 

  Yes 5,924 (11.5%) 3,893 (10.4%) 

COPD or other lung disease   

  No 50,565 (98.5%) 37,056 (98.9%) 

  Yes 771 (1.5%) 426 (1.1%) 

Chronic or frequent headaches or migraines   

  No 49,212 (95.9%) 36,013 (96.1%) 

  Yes 2,124 (4.1%) 1,469 (3.9%) 

 PTSD: post-traumatic stress disorder, COPD: chronic obstructive pulmonary disease. 
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Supplementary table 2: Subpopulation counts for combinations of age, high BMI, and depression 

 
no depression, 

not high BMI 

no depression, 

high BMI 

depression, 

not high BMI 

depression, 

high BMI 

15-25 yrs 8,819 513 925 143 

26-35 yrs 8,860 1,448 1,367 372 

36-45 yrs 9,864 2,191 1,473 537 

46-55 yrs 16,103 4,117 1,947 740 

56-65 yrs 16,284 3,985 1,653 654 

<50 yrs 33,323 5,525 4,483 1,310 

≥50 yrs 26,607 6,729 2,882 1,136 

 

The number of persons from subgroups of the study populations defined by combinations of the persons age, 

BMI, and response regarding existing depression.   
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Supplementary table 3: Subpopulation counts for combinations of sex, depression, and high BMI 

  
no depression, 

not high BMI 

depression, not 

high BMI 

no depression, 

high BMI 

depression, 

high BMI 

female 37,070 5,394 7,146 1,850 

male 22,860 1,971 5,108 596 

 

The number of persons from subgroups of the study populations defined by combinations of the persons sex, 

response regarding existing depression, and BMI.  
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Supplementary table 4: Covariate balance between study participants with and without a positive RT-

PCR test 

Characteristics SMD Variance 

ratio 

eCDF mean 

difference 

eCDF max 

difference 

Before/after adjustment     

Age 0.113/0.004 0.97/1.00 0.045/0.001 0.094/0.032 

Sex 0.074/0.001 · · · 

Highest completed education     

  Primary/elementary school 0.009/0.001 · · · 

  secondary education or vocational education 0.058/0.003 · · · 

  Vocational training 0.023/0.003 · · · 

  Shorter term higher education 0.019/0.001 · · · 

  Medium term higher education 0.018/0.000 · · · 

  Long term higher education 0.014/0.001 · · · 

  Do not know 0.009/0.005 · · · 

Charlson Comorbidity Index scores 0.027/0.000 · · · 

High BMI     

  Yes 0.000/0.002 · · · 

  No  0.015/0.002 · · · 

  Unknown  0.025/0.001 · · · 

Fibromyalgia 0.003/0.005 · · · 

Chronic fatigue syndrome 0.023/0.011 · · · 

Anxiety 0.016/0.006 · · · 

Depression 0.027/0.006 · · · 

PTSD 0.005/0.002 · · · 

Chronic asthma 0.021/0.003 · · · 

Diabetes 0.006/0.004 · · · 

High blood pressure 0.026/0.004 · · · 

COPD or other lung disease 0.023/0.007 · · · 

Chronic headaches or migraines 0.008/0.001 · · · 

Covariate balance between study participants with a positive RT-PCR test and those without a positive RT-

PCR test before and after inverse propensity weighting. The variance ratio and eCDF statistics are only 

reported for the continuous age covariate. 
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Supplementary figure 1: Causal tree example 

 

Part of a tree grown for the causal forest model. Splits have been chosen to maximise heterogeneity in the 

causal effect within the child nodes. 
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Supplementary figure 2: Causal forest variable importance measure 

 

Variable importance measure for the causal forest model. The measure was calculated using a weighted sum 

of how many times each variable was split at each depth of the tree. The weight function used was the 

reciprocal squared of the tree depth.  
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Supplementary figure 3: Estimated risk differences for combinations of sex, high BMI, and age 

 

a Risk differences (RDs) and two-sided 95% confidence intervals (CI) for full-time sick leave taken four 

weeks to nine months after the test date between SARS-CoV-2 test-positives and test-negatives for 

subgroups of a population of n=88,818 individuals. Subgroups are defined by combinations of sex, high 

BMI, and age risk factors. Subgroups with unknown BMI (n=6,823) are not displayed.  

b Distribution of conditional risk differences (CRDs), estimated using out-of-bag prediction from the causal 

forest model, within subgroups of a population of n=88,818 individuals. Subgroups are defined by 

combinations of sex, high BMI, and age risk factors. Subgroups with unknown BMI (n=6,823) are not 

displayed. The dashed line shows the average RD in the full population. The fraction of CRDs below and 

above this RD is printed for each combination of sex, high BMI, and age. Dark red indicates estimated CRDs 

significantly different from the average RD in the full population at a 5% significance level using a z-test 

with two-sided alternative. 

c Number of individuals in each of the subgroups appearing in panel a and b.  
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Supplementary figure 4: Estimated risk differences for combinations of sex, age, and depression  

 

a Risk differences (RDs) and two-sided 95% confidence intervals (CI) for full-time sick leave taken four 

weeks to nine months after the test date between SARS-CoV-2 test-positives and test-negatives for 

subgroups of a population of n=88,818 individuals. Subgroups are defined by combinations of sex, age, and 

depression risk factors.  

b Distribution of conditional risk differences (CRDs), estimated using out-of-bag prediction from the causal 

forest model, within subgroups of a population of n=88,818 individuals. Subgroups are defined by 

combinations of sex, age, and depression risk factors. The dashed line shows the average RD in the full 

population. The fraction of CRDs below and above this RD is printed for each combination of sex, age, and 

depression. Dark red indicates estimated CRDs significantly different from the average RD in the full 

population at a 5% significance level using a z-test with two-sided alternative. 

c Number of individuals in each of the subgroups appearing in panel a and b. 
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Supplementary figure 5: Estimated risk differences for combinations of sex, age, and health 

conditions. 

 

Risk differences (RDs) and two-sided 95% confidence intervals (CI) for full-time sick leave taken four 

weeks to nine months after the test date between SARS-CoV-2 test-positives and test-negatives for 

subgroups of a population of n=88,818 individuals. Subgroups are defined by combinations of sex, age, and 

four different health conditions. Age is grouped in 10-year age groups (15-25 years, 26-35 years, 36-45 

years, 46-55 years, 56-65 years). 
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Supplementary figure 6: Distribution of estimated propensity scores 

 

The distribution of propensity scores predicted using a regression forest. The figure shows the distributions 

within each test group before adjusting with IPW (unweighted) and the distributions after adjusting 

(weighted). The figure shows good overlap between the test negatives and -positives, and there is no 

evidence of positivity violations. 
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Supplementary figure 7: Covariate balance – Love plot 

 

Covariate balance between individuals with a positive RT-PCR test and individuals without a positive RT-

PCR test before and after inverse propensity weighting assessed with the absolute standardised mean 

difference (ASMD). Covariates with ASMD below 0.1 are considered well balanced.  
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Supplementary figure 8: Covariate balance – eCDF plots 

 

eCDF plots showing balance before (left) and after (right) adjusting with IPW for age, sex, Charlson 

comorbidity index, chronic asthma, and diabetes. 
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Supplementary figure 9: Covariate balance – eCDF plots 

 

eCDF plots showing balance before (left) and after (right) adjusting with IPW for high blood pressure, 

COPD or other chronic lung disease, chronic or frequent headaches/migraines, fibromyalgia, and chronic 

fatigue syndrome. 
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Supplementary figure 10: Covariate balance – eCDF plots 

 

eCDF plots showing balance before (left) and after (right) adjusting with IPW for anxiety, depression, ptsd, 

education, and high BMI. Education has the following levels: a=primary, b=secondary, c=vocational 

training, d=higher 1-2 years, e=higher 3-4 years, f=higher ≥5 years, g=unknown.  
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Supplementary figure 11: RT-PCR test sensitivity analysis - variable importance 

 

Distribution of variable importance ranking for each risk factor across n = 20 modified exposures.  
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Supplementary figure 12: Hyperparameter sensitivity analysis - variable importance 

 

Distribution of variable importance ranking for each risk factor across n = 81 combinations of the 

hyperparameters sample fraction, mtry, minimum node size, and honesty fraction. 
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