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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Manuscript Title: Full Hardware Implementation of Neuromorphic Visual System Based on 

Multimodal Optoelectronic Resistive Memory Arrays for Versatile Image Processing (NCOMMS-23-

25136-T) 

 

This paper suggested that resistive memory arrays for versatile image processing, which was inspired 

by visual system. However, authors should revise the manuscript as following comments. 

 

Comments: 

1. Authors claimed that modified silk fibroin protein (MSFP) is more effective, however, authors have 

not compared it with unmodified silk fibroin protein (ISFP). Author should give comparative results 

between MSFP and UMSFP at least with respect to the IV curves. 

2. Further, to support the benefits of modification of silk fibroin protein, authors should provide the 

change in crystallographic and structural properties of UMSFP to MSFP with the help of the following 

characterization techniques such as XRD, and SEM. 

3. In this work, authors have used Au as a top and bottom electrode, however, we suggest authors 

should check their performance with several other electrode materials like Al, Ag, and ITO. 

4. In order to argue with the current technology, authors should give a comparison table of your 

material efficiency concerning the previously reported materials. 

5. Authors should explain, what are the capabilities of the ORRAM mode array in image pre-

processing, and what functions can the ERRAM mode array perform? 

6. With background denoising techniques from the images, most important features can be 

removed. How to define that important features are kept after applying background denoising? 

Authors should define them. 

7. In Figure 3, authors show NRM and PPM effects. Especially, Figure 3d and e also show stability. 

However, Figure 3e is a little bit inconsistent in all respects compared to Figure d. Hence, authors 

should clearly explain NPM intensity flow and stability more. 

8. How does the trap concentration in the MSFP-based memory affect its resistive switching 

behavior? Authors should describe it. 

9. The computation complexity of the proposed method should be clearly described. 



10. In Figure 3g, how much epoch or repeat to get this result? Authors should define it. 

11. Authors should give a more detailed explanation of the computer simulation for Figure 4a. 

12. Authors should put the resulting number in Figure 4g and h. 

13. In Figure 4i, it is hard to understand, so authors should explain the figure in more detail. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The article by Zhou, et al discusses testing and implementation of silk-protein based memristors that 

exhibit multi-modal variable conductance in response to both light exposure and applied voltage. In 

addition to voltage-controlled resistive switching, they show that device conductance is enhanced 

upon exposure to 405nm light at intensities above 70mW, but it is lowered at intensities between 

10-60mW (with minimum conductance occurring at 60 mW). This bidirectional change in baseline 

conductance enables them to perform contrast enhancement and denoising of images through a 

seemingly intrinsic intensity threshold to positive and negative changes in conductance. Because the 

same memristor can also be electrically programmed via resistive switching, they demonstrate in 

hardware that two memristor arrays can be built to perform image preprocessing and convolutional 

neural network-based classification. The device properties are interesting and the application of 

their use is potentially compelling. However, there are several key weaknesses in this manuscript 

that prevent it from being acceptable for publication. The reviewer suggests a major revision be 

considered to allow them a chance to fix these issues. 

 

Major 

 

1. Missing device details: what is the thickness, footprint, and total area of each device? 

2. Electrical resistive switching: What sweep rate(s) were used for the i-v traces shown in Figure 2c? 

how quickly do the devices change conductance? Is the memory volatile or nonvolatile? The 

counterclockwise hysteresis paths in both quadrants 1 and 3 suggest the devices exhibit volatile 

memory. But the data in Figure S3c show nonvolatile states were written (at unknown voltage levels, 

durations—details needed here)! Therefore, the reviewer questions whether these devices exhibit 

volatile or nonvolatile memory resistance. Their characteristic speeds of switching and memory loss 

also aren’t disclosed. For context, what dialyzing time/conditions were used to create the MSFP for 

the devices described in Figure 2? It isn’t clear from Figure 2d that changes are representative of LTP 

or LTD (i.e. do these changes persist after writing?) 



3. The paper makes little mention of device repeatability/stability and no mention of device-to-

device reproducibility. These are major gaps that limits understanding how “identical” the various 

memristors are in the CNN arrays and how many times they can be programmed. 

4. The proposed switching mechanism isn’t backed by specific data other than i-v slope fitting. The 

authors state “The analogue resistive memory behaviours with multiple states are dependent on the 

ion doping concentration of Br- and Li+ in the MSFP thin film.” But this isn’t supported by any data. 

Therefore, the reviewer requests that the mechanism be described as “proposed” or “possible,” and 

that more evidence be used to support their statements. 

5. Test conditions and data presentation for ORRAM: What was the light exposure duration/distance 

for the data in Figure 2f-k, and what was the ERRAM state (HRS or LRS)? How long does optical 

switching take? What is the switching repeatability and device-to-device reproducibility in these 

ORRAM responses? And do you see similar trends with cs-AFM across different regions of a single 

device? What caused the extra current spikes shown in 3c (i.e., 2 light pulses, but 3-4 current 

pulses?) It is unclear how plots on right of 3d and 3e correspond to plots on left (i.e. when were 

these long measurements recorded relative to the incremental increase in light intensity?)? 

6. How does electrical switching impact optical switching in the same device? If a device is switched 

from HRS to LRS using +0.7-1V, does this change the baseline conductance set by light? What 

happens if it’s then switched back to HRS using voltage? Does the same baseline restore? Or does it 

erase light-induced programming? 

7. The authors use FTIR to investigate changes in protein secondary structure upon exposure to light. 

But it remains unclear why 60 mW is a local min/max for Bs and Bt? How reproducible is this result? 

How does the thickness/area of the sample effect this critical intensity and changes in conductance 

upon light exposure? 

8. Image processing in Figure 3: how are images pre-configured and “mapped” onto an array of 

12x12 devices? Duration, pulse #? What properties do these images have (e.g., image 

type/requirements? color/binary? of varying intensities at 1 wavelength)? 

9. “After completing the image preprocessing, the MSFP-based memristor crossbar array could be 

erased by the light through the NPM effect with zero electrical power consumption.” But was power 

supplied to the light that you aren’t counting? 

10. Are the two banks of MSFP memristors really identical? Identical in composition, #, and 

dimensions? 

11. The configuration/operation of the neural network layers is hard to follow: Where is the fully 

connected network? “Considering the influence of interconnect resistance, the first three row of the 

memristor array in the rear 12×12 ERRAM mode array are not operated.” What does this mean? 

Consider adding/improving/labeling additional image(s) to show how information flows through the 

system. Also, the 3x3 convolution kernel and its use is unclear. Also, what determines the size of this 

kernel? # of images? number of pixels/devices? images aren't 3x3. “The convolution kernel adopted 

here for feature extraction is [[1/9,1/9,1/9], [1/9,1/9,1/9], [1/9,1/9,1/9]]” How were these values 

selected/determined? 



12. Simulations used in Figure S9 and S10 are not described anywhere. 

13. Power consumption or overall device footprints are not discussed despite suggesting this 

approach would lead to more compact, efficient systems for image processing. 

 

Minor 

• pg 4. “shortening” not “shorting” 

• The caption for Figure 1 does not comprehensively explain all parts of the figure. And these are not 

adequately discussed in the text. Either amend the caption or remove undiscussed content. 

• Figure 2b fails to label Pg3 and DHI compounds. And it isn’t clear what Sericin is. 

• The use of LRS and HRS terms are confusing for describing the changes in device conductance upon 

exposure to 405nm light at different intensities. maybe use different labels to differentiate from the 

ERRAM switching LRS/HRS states. 

• The FTIR spectrum for the MSFP film before light illumination shown in Figure S5 should be plotted 

in same wavenumber range and y-scale as Figures 2g-h for direct comparison. 

• Figure 2i isn’t mentioned in the text. 

• Poor/confusing wording throughout: 

o “…secondary structure outweighs of the decreased β-t (5.77%) secondary structure leading to the 

PPM effect.” don't both of these changes drive conductivity increase? therefore, one isn't 

outweighing the other to cause PPM. 

o 

o “The increasing amount β-t secondary structures then becomes higher than that of β-t secondary 

structures, which leads to an NPM effect.” 

o “The PPM effect presents an intensified growth trend with the pulse number under a higher light 

intensity.” Intensified growth = nonlinear increase in conductance? 

• Pg 15, “after 50 pulse stimulation”. after 200 pulses? 

• Define all acronyms: ADC, DAC, TIA, ARM, 

• Conclusion: “high image recognition accuracy of 95%.” Do you mean 99.5%? 

 

 



Point-by-point Response  

We are grateful for the reviewers’ positive comments on our work. We also thank 

for the reviewers’ time and efforts in providing us with detailed and valuable comments. 

These suggestions are greatly helpful to us in improving the quality of this work. We 

have addressed all the concerns raised by the reviewer point-by-point as follows and 

highlighted the revised parts in yellow.   

Reviewer #1 

Full Hardware Implementation of Neuromorphic Visual System Based on Multimodal 

Optoelectronic Resistive Memory Arrays for Versatile Image Processing (NCOMMS-

23-25136-T). This paper suggested that resistive memory arrays for versatile image 

processing, which was inspired by visual system. However, authors should revise the 

manuscript as following comments. 

Response: Thanks very much for your constructive comments and suggestions on 

this work. All the comments and suggestions are very precious to us to further improve 

the quality of this work.  

Comment 1: 

Authors claimed that modified silk fibroin protein (MSFP) is more effective, however, 

authors have not compared it with unmodified silk fibroin protein (USFP). Author 

should give comparative results between MSFP and UMSFP at least with respect to the 

I-V curves.  

      Response: Thanks very much for the valuable suggestion. The resistive switching 

memory behaviour exhibits obvious differences between the unmodified silk fibroin 

protein (USFP) memory and the modified silk fibroin protein (MSFP) memory. The 

USFP memory exhibits a bipolar resistive switching memory behaviour with sharp SET 

and RESET processes, demonstrating digital switching features, while the MSFP 

memory shows a bipolar resistive switching memory behaviour with continuous SET 



and RESET processes, demonstrating analogue switching features.   

Figures R1a-b are the typical I-V curves of the USFP memory with the precursor 

dialyzing times of 48 and 36 hours, respectively, all demonstrating digital-type 

switching featured by abrupt SET and RESET process which may be attributed to the 

formation of the Li+-based conduction paths. By comparison, the I-V curves of the 

MSFP memory device with different precursor dialyzing times of 48 and 36 hours 

exhibit analogue switching memory behaviours which may be attributed to the space 

charge limited current (SCLC) mechanism since most Li ions can be pinned by the rich 

hydrogen bond formed between USFP, Pg-3, and 5,6-DHI (Figs. R1c-d), therefore the 

electron trapping and de-trapping becomes the dominating mechanism.  

To be more specific, the differences in memory switching between the USFP 

memory device and MSFP memory device may be attributed to the strong hydrogen-

bond formation in the MSFP film. In the USFP memory device, without the hydrogen-

bond effect, the USFP network structure is relatively sparser, therefore the Li ions are 

relatively mobile in the USFP thin film to form Li-ion based conduction path.  While 

due to the formation of strong hydrogen bonds in the MSFP thin film as shown in Figure 

R2, the protein network in the MSFP film is relatively denser, leading to much lower 

Li ion mobility in the MSFP thin film.  In addition, since the residual ion such as Li+ 

can introduce a certain number of trap sites in the MSFP layers 1-3, the electron trapping 

and de-trapping in the MSFP thin film may become the dominating mechanism, 

contributing to the continuous SET and RESET process (analogue switching). 

Therefore, considering the multilevel storage capability for in-memory computing, the 

MSFP devices are adopted for systematic investigation in the manuscript. The revision 

has been added to the revised supplementary information. 



 

Fig. R1. Comparisons of the resistive switching behaviours between (a)-(b) USFP- and (c)-(d) 

MSFP-based memory devices with different precursor dialyzing times.  

 

Fig. R2.  FTIR spectra of the USFP and MSFP thin film. The major structures of USFP are 

reserved in the MSFP thin film while the –CH2-based chains emerge in the MSFP sample.  
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The corresponding revision is as follows:  

“In comparison with the SFP-based memory showing digital switching and abrupt set 

and reset process (Supplementary Figures 8a-c), the Au/MSFP/Au memory device 

shows an analogue switching behaviour with nonvolatile 16 multilevel resistance states 

as shown in Supplementary Figure 9.” 

“To further examine the structural change from SFP to MSFP thin films, the Fourier 

transform infrared spectroscopy (FTIR) characterizations are conducted, which suggest 

new structures such as -CH2-based chains formed and no observation of the chemical 

bond of C-O located at 1165 cm-1 in the MSFP films (Supplementary Figure 4), 

indicating that the change of C-O-based bond groups possibly provide the chemical 

reaction sites to form a large number of hydrogen bonds among SFP, Pg-3 and 5,6-

DHI. ” 

Comment 2: 

Further, to support the benefits of modification of silk fibroin protein, authors should 

provide the change in crystallographic and structural properties of UMSFP to MSFP 

with the help of the following characterization techniques such as XRD, and SEM. 

Response: Thanks very much for the reviewer’s suggestion. The changes in 

crystallographic and structural properties of USFP and MSFP were characterized by the 

XRD and SEM in Figure R3.  

Figure R3a exhibits the XRD patterns of the USFP thin films with different 

precursor dialyzing times of 12, 24, 36, 48 and 72 hours, a mixture of Pg-3 and USFP 

with the dialyzing time of 48 hours, a mixture of 5,6-DHI and USFP with the dialyzing 

time of 48 hours, and the MSFP thin film with the precursor dialyzing time of 48 hours. 

Both USFP and MSFP samples present poor crystallinity. In addition, no obvious 

crystallographic changes are detected between USFP and MSFP thin films. Then to 

further examine the structural change, we conducted the Fourier transform infrared 



spectroscopy (FTIR) characterizations of the USFP and MSFP thin films as shown in 

Figure R2, which suggest new structures such as -CH2-based chains are formed in the 

MSFP thin film compared with that in the USFP thin film, as shown in Figure R3. The 

FTIR results of USFP and MSFP demonstrated that the strong chemical bond vibration 

of the -OH, -C=O, C=C, C-OH respectively located at 3278, 1635, 1520 and 1230 cm-

1 existed in both USFP and MSFP thin films while a weak -CH2(s) vibration located at 

2856 cm-1 emerged in the MSFP thin film. It indicates that the major structures of the 

USFP can be reserved in the MSFP after the chemical reaction between SFP, 5,6-DHI 

and Pg-3 and the structures such as the connection between protein chains in the MSFP 

are changed during the reaction. In addition, the chemical bond of C-O located at 1165 

cm-1 in the USFP is not detected in the MSFP, indicating that the C-O-based bond 

groups can possibly provide the chemical reaction sites to form a large number of 

hydrogen bonds among USFP, Pg-3 and 5,6-DHI, as shown in Figure R2.  

Figures R3b-f show the field emission scanning electron microscope (FE-SEM) 

images of the USFP sample with different precursor dialyzing times from 12 to 72 hours, 

showing no obvious change in the USFP surface. After reaction with the Pg-3, the 5, 6-

DHI, or both of them, the formed MSFP film surface becomes denser and smoother, 

showing higher thin film quality (Figs. R3g-i), which may be responsible for the lower 

current density and higher stability in the MSFP memory device compared with that in 

the USFP memory device. The revision has been added to the revised supplementary 

information.  



 

Fig. R3. Crystallographic and structural characterizations of USFP and MSFP thin films. a, The 

XRD pattern of the USFP thin film with various precursor dialyzing times from 12 to 72 hours, 

and the MSFP thin film formed by the reaction of Pg-3, 5,6 DHI with USFP. b-f, FE-SEM 

images of the USFP thin films with dialyzing times of 12, 24, 36, 48, and 72 hours, respectively. 

g-j, FE-SEM image of the USFP thin films and MSFP thin film (dialyzing time of 48 hours), 

respectively.  The scale bar represents 500nm.  

 

The corresponding revision is as follows:  

“The MSFP thin film shows a denser and smoother surface than the SFP thin film, 

showing higher thin film quality (Supplementary Figure 3). To further examine the 

structural change from SFP to MSFP thin films, the Fourier transform infrared 

spectroscopy (FTIR) characterizations are conducted, which suggest new structures 

such as -CH2-based chains formed and no observation of the chemical bond of C-O 

located at 1165 cm-1 in the MSFP films (Supplementary Figure 4), indicating that the 
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change of C-O-based bond groups possibly provide the chemical reaction sites to form 

a large number of hydrogen bonds among SFP, Pg-3 and 5,6-DHI.”  

Comment 3: 

In this work, authors have used Au as a top and bottom electrode, however, we suggest 

authors should check their performance with several other electrode materials like Al, 

Ag, and ITO. 

Response: Thanks very much for the suggestion. We further compare the 

switching behaviours in the MSFP memory devices with different top electrodes such 

as Au, Al, Ag, and ITO. Figure R4 shows the I-V switching in the Au/MSFP/Au, 

Al/MSFP/Au, Ag/MSFP/Au and ITO/MSFP/Au memory devices, respectively. All 

devices exhibit similar analogue switching memory behaviours, indicating that this 

resistance switching mainly relies on electron trapping/detrapping in the MSFP 

trapping sites.  

For the Au/MSFP/Au memory device, the memory behaviours are featured by 

anticlockwise I-V sweepings, analogue switching, and a resistance ratio of ~10 (Figure 

R4a). For the Ag/MSFP/Au and Al/MSFP/Au memories, both of the memory devices 

exhibit similar switching behaviours with the Au/MSFP/Au memory device (Figures 

R4b-c). Generally, the Ag electrode and Al electrode can be electric-field-driven to be 

Ag ions and Al ions respectively and the migration in the switching function layer to 

form filaments that would exhibit an abrupt switching behaviour. However, the similar 

continuous switching observations for the Ag/MSFP/Au and Al/MSFP/Au memory 

devices compared with the Au/MSFP/Au device indicate that these resistive switchings 

are mainly dominated by the proposed electron trapping/detrapping mechanism in the 

MSFP function layer. This may be due to the dense network formed in the MSFP thin 

film, which may prevent the migration of Ag and Al ions to a certain degree. The 

ITO/MSFP/Au memory device also shows a similar analogue resistive switching 

compared with the Au/MSFP/Au device (Figure R4d). In comparison, the MSFP 



memory devices with different top electrodes such as Au, Ag, Al and ITO electrodes 

show similar analogue switching memory behaviours, resistance ratio and current 

magnitude. Therefore, the electron trapping and de-trapping in the MSFP switching 

function layer may play a dominant role in resistive switching.   

 

Fig. R4. Comparisons of the switching behaviours in the MSFP memory devices with 

different top electrodes such as (a) Au, (b) Al, (c) Ag, and (d) ITO. 

Comment 4: 

In order to argue with the current technology, authors should give a comparison table 

of your material efficiency concerning the previously reported materials. 

       Response: Thanks for the constructive suggestion.   

The superior advantages of our memory device are the multimodal resistive 

switching including optical multilevel resistive switching (ORRAM mode) and 

electrical multilevel resistive switching (ERRAM mode) due to the unique properties 

in the MSFP material. More importantly, the ORRAM mode shows unique positive 

photoconductance memory (PPM) and negative photoconductance memory (NPM), 

suggesting the device can be fully optical SET and RESET without the triggering of the 

electrical stimuli, which can be rarely realized in the previous report. It is the first time 

to report such a multifunctional and multimodal memory device integrated with both 
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NPM and PPM optical resistive switching and analogue electrical switching, leveraging 

from the unique properties in the MSFP materials. Such unique multimodal switching 

characteristics in the device enable it to mimic photoreceptor cells, bipolar cells, and 

visual cortex, and build a neuromorphic visual system for versatile low-level and high-

level processing functions with only one type of memory array, which has also not been 

realized in the previous report. In addition, the Au/MSFP/Au device is free-standing, 

flexible, and environmentally friendly, showing great potential in future flexible 

electronics. For the optical memory switching, the device shows good nonvolatile and 

multi-level resistive switching with a response time of ~100ms, retention time of ~104s, 

and low energy consumption of ~ 5pJ. For the electrical memory switching, our MSFP 

memory also shows good nonvolatile and multi-level resistive switching with low 

voltage operation of 1 V and low power consumption of ~250pJ.  We compared the 

optoelectronic memory devices based on different photoelectronic function materials 

(including oxides, 2D materials, and polymers) with our material, as shown in Table. 

R1. The revision has been added to the revised manuscript and supplementary 

information is as follows: 

“The comparison of our device in both optical switching and electrical switching 

with the devices based on other materials is shown in Supplementary Table 4.”  
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Table R1. Comparison of the optoelectronic memory devices based on different photoelectronic function materials.  

Device Material Optical 

switching 

memory 

Fully 

optical 

operation 

Optical 

response  

Optical 

retention 

Electrical 

switching 

memory 

Electrical 

switching 

type 

Electrical 

retention 

Electrical 

operation 

voltage 

Energy 

Consu-

mption 

On/off 

ratio 

Multimodal Applications Full 

hardware 

system 

Memristor 

(Ref.1) 

MoOx Yes, 

opt. 

memory 

No 100ms >102s No No - 2.5V/0.1V - - No contrast 

enhancement; 

denoising 

No 

Memristor

+ diode 

(Ref.2) 

InGaAs-

based 

No, 

opt. 

response 

No 100ms volatile  Yes 

 

 

 

digital >104s ~5V/~1V - ~102 Yes image 

classification 

No 

Memristor 

(Ref. 3) 

GeSe3 Yes, 

opt. 

memory 

No 5s ~102s Yes digital >104s ~0.6/- 0.39mJ ~103 No logical 

operation 

No 

Memristor 

(Ref. 4) 

Graphene No, 

opt. 

response 

No 2s volatility Yes digital >104s ~6V/0V - ~103 No image 

classification 

No 

Memristor 

(Ref. 5) 

InGaZnO Yes, 

opt. 

memory 

Yes ~2s ~104s Yes analogue  >104s ~2.0V/10mV - ~5 No - No 

Transistor 

(Refs. 6-9) 

WSe2-

based 

Yes, 

opt. 

memory 

No ~200ms ~102s - No - 1.5~9V/- - - No motion 

detection;  

No 

Transistor 

(Refs.10-

16) 

MoS2-

based 

No, 

opt. 

response 

No ~5ms volatile - -No - 3~6V/- - - No perception 

encoding; 

No 

Transistor 

(Refs. 17-

22) 

Organic-

inorganic-

based  

 

No, 

opt. 

response 

No ~5ms volatile  - -No - ~40V/ - - No - No 

Memristor 

(Our 

work) 

modified 

silk 

fibroin 

protein 

Yes 

opt. 

memory 

Yes 100ms >104s Yes analogue  >104s 1V/0.1V ~250pJ ~10 Yes feature 

extraction; 

contrast 

enhancement; 

background 

denoising; 

image 

recognition 

Yes 
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Comment 5: 

Authors should explain, what are the capabilities of the ORRAM mode array in image 

pre-processing, and what functions can the ERRAM mode array perform? 

Response:  Thanks very much for the suggestion.  

Figures R5a-b (Figures 4c-d) show the whole CNN neural network structure 

implemented based on the ORRAM mode array and ERRAM mode array. The ORRAM 

mode array can not only in-situ complete image preprocessing functions such as 

contrast enhancement, and background denoising but also perform optical 

convolutional operation for image feature extraction. The ERRAM mode array can 

complete the convolution layer computations and fully connected layer computations 

in the convolutional neural networks (CNN). Assisted by the external peripheral circuit, 

the whole CNN can be completed for image recognition. 

More specifically, for the ORRAM mode array, the contrast enhancement and 

background denoising are performed according to the NPM and PPM operations in the 

ORRAM mode array (Figure R5a). Utilizing PPM and NPM effects, the body pattern 

pixels in the input image represented by relatively higher brightness are enhanced by 



the PPM while the background pixels with relatively lower brightness are suppressed 

by the NPM effect, Therefore, a contrast-enhanced image can be obtained (Figure R5d). 

Additionally, the ORRAM array can also implement the in-sensor convolutional 

operation for image feature extraction (Figure R5c). ORRAM can firstly sense and store 

the image information in the conductances represented using Gml. For the optical 

convolution process, a reconfigurable 3×3 convolution kernel is first mapped into three 

reading voltages (V11, V12, V13) at the temporal domain (T1, T2, T3), which is then input 

into the ORRAM mode memory array for convolutional operations with the stored 

conductances. The output currents for every column at T1, T2 and T3 are defined to be 

I11, I12, I13; I21, I22, I23; and I31, I32, I33, respectively. The photoductance (Gml), reading 

voltage (Vkm), and current (Ikl) at each ORRAM array column obey Ohm's law. For each 

column of the memristor array, the summation current obeys Kirchhoff's law. Therefore, 

the relationship of cumulative current for each column, read voltage, and conductance 

can be described as follows: 

                                    

3

1

kl km ml

m

I V G
=

=                            (1) 

Then new output currents are extracted from a specific current group (I11, 122, I33; 

I12, 123, I34; I13, 124, I33
…) as follows:  

                 , , 1, 1 2, 2out k l k l k l k lI I I I− + + + += + +                     (2) 

The summed current Iout-k,l represents the result of the convolution operation. 

For the ERRAM mode array, the primary function is to perform multiply-

accumulate operations for both convolutional operation and fully connected layers in 

the CNN (FigureR5b). The image feature map output from the ORRAM array is divided 

into multiple 3×3 patches and input into ERRAM for convolutional computations. The 

convolution is implemented as follows: 

𝐼𝑁 =∑ 𝑋𝑚𝑊𝑚
𝑁

9

𝑚=1
=∑ 𝑉𝑚(𝐺𝑚

𝑁+ −
9

𝑚=1
𝐺𝑚
𝑁−) = 𝐼𝑁

+ − 𝐼𝑁
− 

Where 𝑋𝑚  represents the value of input data, and 𝑊𝑚
𝑁  denotes the weight of the 



neural network. The weight can be both positive and negative, which is represented 

using a pair of differential conductances 𝐺𝑚
𝑁+ and 𝐺𝑚

𝑁−. 𝑋𝑚 can be mapped to 𝑉𝑚. The 

𝑉𝑚  and Gm denote the bias voltage applied to the MSFP memory cell and the 

corresponding conduction value, respectively. 𝐼𝑁  is the differential result current 

between two columns, 𝐼𝑁
+ and 𝐼𝑁

−.The result of the convolution calculation is denoted 

as IN. Other network operations, such as max pooling layers and RELU activation 

function layers, are executed within the ARM core. The visual system based on the 

ORRAM and ERRAM array shows a high accuracy of 97.3% (Figure R5d). The 

manuscript has been revised accordingly. 

 

Fig. R5. CNN implementation based on the ORRAM mode array and ERRAM mode 

array. a, hardware convolution operations in the ORRAM mode array. b, hardware convolution 

operations in the ERRAM mode array for image recognition. c-d, image contrast enhancement 

through PPM and NPM, image feature extraction through hardware convolution operations in 

the ORRAM mode array. e, image recognition results of the system based on the ORRAM and 

ERRAM arrays. 

The corresponding revision is as follows:  

“The image preprocessing algorithms and a convolutional neural network (CNN) are 
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deployed on the hardware system. The 12×12 ORRAM array executes the image 

preprocessing of contrast enhancement and background denoising and performs the 

first-layer optical convolutional operation in CNN for image feature extraction. The 

ERRAM mode array is employed to complete one convolution layer and fully 

connected layer computations in the CNN. Other network operations, such as max 

pooling layers and ReLU activation function layers, are executed within the ARM core.  

Firstly, for the ORRAM mode array, contrast enhancement and background 

denoising are performed according to the NPM and PPM operations in the ORRAM 

mode array. Utilizing PPM and NPM effects, the body pattern pixels in the input image 

represented by relatively higher brightness are enhanced by the PPM while the 

background pixels with relatively lower brightness are suppressed by the NPM effect, 

Therefore, a contrast-enhanced image can be obtained (Figures 4d-e). Additionally, the 

ORRAM array can also implement the in-sensor convolutional operation for image 

feature extraction (Figure 4d). A novel optical convolution algorithm deployed on the 

ORRAM array as shown in Figure 4c is proposed for in-sensor convolution. Each cell 

in the ORRAM mode array corresponds to one pixel in the input image. The ORRAM 

mode array can firstly sense and store the image information in the photoconductance 

represented using Gml (Gml, m=1, 2, 3…n; l=1, 2, 3…n). For the optical convolution 

process, a reconfigurable 3×3 convolution kernel is first mapped into three reading 

voltages (V11, V12, V13) at the temporal domain (T1, T2, T3), which is then input into the 

ORRAM mode memory array for convolutional operations with the stored 

photoconductance. The output currents for every column at T1, T2 and T3 are defined to 

be I11, I12, I13; I21, I22, I23; and I31, I32, I33, respectively. The photoductance (Gml), reading 

voltage (Vkm), and current (Ikl) at each ORRAM array column obey the Ohm's law. For 

each column of the memory array, the summation current obeys Kirchhoff's law. 

Therefore, the relationship of the summation current for each column, read voltage, and 

photoconductance can be described as follows: 



                                    

3

1

kl km ml

m

I V G
=

=                            (1) 

In this approach, a convolution kernel is divided into T1, T2, and T3 segments. The 

current summation at T1 is first collected and stored in the ARM core, followed by the 

current summation at T2 and T3. Then new output currents are extracted from a specific 

current group (I11, 122, I33; I12, 123, I34; I13, 124, I33
…) as follows:  

                 , , 1, 1 2, 2out k l k l k l k lI I I I− + + + += + +                  (2) 

The employment of the novel optical convolutional operation the ORRAM convolution 

offers a 75% reduction in time complexity compared to the traditional convolution 

operation method based on RRAM.” 

Comment 6: 

With background denoising techniques from the images, most important features can 

be removed. How to define that important features are kept after applying background 

denoising? Authors should define them. 

Response:  Thanks very much for the reviewer’s comment. The input image is 

composed of two parts, the body pattern pixels and the background noisy pixels. The 

pixels of the body pattern in the input image have relatively higher brightness (higher 

intensities), while the pixels of the background noises have relatively lower brightness 

(lower intensities) (Fig. R7).  

       Specifically, the input image will first be mapped on the ORRAM mode arrays. 

Due to the PPM and NPM effects, the output current corresponding to the body pattern 

pixels with higher brightness will continuously increase because of the PPM effect, 

while the output current corresponding to the background pixels with relatively lower 

brightness will continuously decrease because of the NPM effect, therefore resulting in 

an obvious image contrast enhancement between the body pattern and background 

noise (Figs. R7a-c). Therefore, the important features are enhanced by correspondingly 

smoothing the background (Fig. R7d).  



After the image contrast enhancement, the in-sensor convolutional computations 

are performed in the ORRAM mode array for image feature extraction. Due to the 

convolution process, pixel values are influenced by neighbouring pixels, resulting in a 

feature map after convolution. Therefore, the feature extraction results (feature map) 

appear to become blurry but represent the specific features in the input image as shown 

in (Fig. R7d). The obtained features are further input into subsequent neural network 

layers for classification. The manuscript has been revised accordingly. 

 

 

Fig. R7. Image preprocessing in the ORRAM mode array. 

The corresponding revision is as follows:  

“When the images are input into the array, the body pattern pixels with higher light 

intensities were enhanced through the PPM effect while the background pixels with 

lower light intensities were reversely suppressed by the NPM effect, resulting in the 

enlarged pixel signal ratio between the body pattern pixels and the background pixels. 

With the increased epochs (increased pulse number), the contrast is continuously 

enhanced (Supplementary Figure 18), leading to an enhanced contrast of ~33 after 25 

epochs. By comparison, the input image shows a light intensity ratio of ~5 between the 

background pixel and body pattern pixel. Therefore, a ~6 times contrast enhancement 

is obtained after the image preprocessing based on the ORRAM mode array (Figure 

3g). Therefore, the body pattern is enhanced by correspondingly smoothing the 

background noising body features

+ =

Noisy image

NPM @ PPM
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background noise.” 

“Utilizing PPM and NPM effects, the body pattern pixels in the input image 

represented by relatively higher brightness are enhanced by the PPM while the 

background pixels with relatively lower brightness are suppressed by the NPM effect, 

Therefore, a contrast-enhanced image with smoothed background noise can be obtained 

(Figures 4d-e). Additionally, the ORRAM array can also implement the in-sensor 

convolutional operation for image feature extraction (Figure 4d).” 

 

Comment 7: 

In Figure 3, authors show NPM and PPM effects. Especially, Figure 3d and also show 

stability. However, Figure 3e is a little bit inconsistent in all respects compared to Figure 

d. Hence, authors should clearly explain NPM intensity flow and stability more. 

Response: Thanks very much for the comment. In previous Figure 3d-e, the NPM 

effect under different light intensities (10-60 mW) was individually displayed during 

200 pulse stimulations while the PPM effect was displayed from 0 to 500 pulses. We 

re-plotted the figures and revised the manuscript to avoid inconsistency according to 

the suggestions, as shown in Figure R8.  

The left of Figure R8a (Figure 3d) shows the PPM effect and conductance 

potentiation with the increased light pulse number (500 in total) and an increased light 

intensity ranging from 70 to 100 mW (the pulse number used for each light intensity is 

50). The conductance is increased with the continuously applied pulse number before 

reaching a saturation state at each light intensity. Overall, the conductance is increased 

with the light intensity level. The right of Figure R8a (Figure 3d) demonstrates the non-

volatile retention properties of the memorized states after the removal of the pulse 

sequence with 50 pulses at each light intensity (70, 75, 80, 82, 85, 87, 89, 90, 95, 100 

mW). The discrete photoconductance states can be well maintained after turning off the 

light stimuli, demonstrating the non-volatile multiple photoconductance states. The left 



of Figure R8b (Figure 3e) presents the NPM effect and conductance depression with 

the increased pulse number (1000 in total) at the different light intensities ranging from 

10 to 60 mW (the pulse number for each light intensity is 200 since NPM effect is less 

easily to reach a saturation at each light intensity compared with the PPM effect). The 

device current presents a continuously decreasing trend with the increased pulse 

number and the light intensity. The right of Figure R8b (Figure 3e) shows the retention 

of the conductance state after the removal of the pulse sequence with 200 pulses at each 

light intensity (10, 15, 25, 40 and 60 mW). After the removal of the light stimuli, the 

multiple conductance states can be well maintained. The manuscript has been revised 

accordingly.  

 

 

Fig. R8. PPM and NPM effects. Left, photocurrent density versus light pulse number at 

different light intensities ranging from 10 to 100mW; Right, retention time after the removal of 

the light stimuli with different intensities. a, The PPM effect with LTP features under the 

increased pulse number and the varied light intensities ranging from 70 100 mW. b, The NPM 

effect with LTP features under the increased pulse number and the varied light intensities 

ranging from 10 to 60 mW.  

The corresponding revision is as follows:  

0 10 20 30 40 50

0 10 20 30 40 50

0 20 40 60 80 100

0 50 100 150 200
22

24

26

28

30

0 5 10 15 20 25 30 35
50.46

50.47

50.48

50.49

0 5 10 15 20 25 30 35
50.43

50.44

50.45

50.46

0 100 200 300 400 500

30

35

40

45

50

 

 

 

 

 

 

 

 

C
u

rr
e

n
t 
 (

a
.u

.)

Pulse Number

C
u

rr
e

n
t 
 (

1
0

-2
A

 c
m

-2
) 

Pulse Number

C
u

rr
e

n
t 
(1

0
-2

A
 c

m
-2

)

Time (s)

C
u

rr
e

n
t 
(1

0
-2

A
 c

m
-2

)

Time (s)

Time (s)

C
u

rr
e

n
t 
(1

0
-2

A
 c

m
-2

)

Time (s)

Pulse Number

80 mw 
200 ms

40 mw 
200 ms

70mW

75 mW

80 mW

82 mW

85 mW

87 mW

89 mW

90 mW

95 mW

100 mW

200 ms

Light  off 

Light off 

20 mw10 mw
40 mw 60 mw

100 ms

70 mw 80mw 90mw 100mw

100 ms

10 mw 
15 mw 

25 mw 

40 mw 

60 mw 

65 mw 

200 ms

NPM

PPM

STP

STP

a b c

d

e

f

10~65 mW

70~100mW

NPM

PPM

0 t

i

t

i

0

PPM&NPM
NPM

Input image  Denoising /Enhancement  Erasing 0.1 mS

0.8 mS

g

X Title

Y Ti
tle

0.02400

0.1992

0.3744

0.5496

0.7248

0.9000

Sheet1

X Title

Y Ti
tle

0.02400

0.1992

0.3744

0.5496

0.7248

0.9000

Sheet1

0

1

L
ig

h
t 

In
te

n
s
it
y
 

PPM & NPM NPM

Read by 0.1V 

Read by 0.1V 

Read by 0.1V 

Light  on

Light on

PPM

NPM

Read by 0.1V 

a

b

0 10 20 30 40 50

0 10 20 30 40 50

0 20 40 60 80 100 0 5 10 15 20 25 30 35
50.46

50.47

50.48

50.49

0 100 200 300 400 500

30

35

40

45

50

0 200 400 600 800 1000

15

20

25

30

 

 

 

 

 

 

 

 

C
u

rr
e

n
t 
 (

a
.u

.)

Pulse Number

C
u

rr
e

n
t 
(1

0
-2

A
 c

m
-2

)

Time (s)

Pulse Number

Pulse Number

Light off 

10 mw 
15 mw 

25 mw 

40 mw 

60 mw 

200 ms

NPM

10~60 mW Read by 0.1V 

Light on

Read by 0.1V 

0 10 20 30 40 50

0 10 20 30 40 50

0 20 40 60 80 100

0 50 100 150 200
22

24

26

28

30

0 5 10 15 20 25 30 35
50.46

50.47

50.48

50.49

0 5 10 15 20 25 30 35
50.43

50.44

50.45

50.46

0 100 200 300 400 500

30

35

40

45

50

 

 

 

 

 

 

 

 

C
u

rr
e

n
t 
 (

a
.u

.)

Pulse Number

C
u

rr
e

n
t 
 (

1
0

-2
A

 c
m

-2
) 

Pulse Number

C
u

rr
e

n
t 
(1

0
-2

A
 c

m
-2

)

Time (s)

C
u

rr
e

n
t 
(1

0
-2

A
 c

m
-2

)

Time (s)

Time (s)

C
u

rr
e

n
t 
(1

0
-2

A
 c

m
-2

)

Time (s)

Pulse Number

0 10 20 30 40 50

0 10 20 30 40 50

0 20 40 60 80 100

0 50 100 150 200
22

24

26

28

30

0 5 10 15 20 25 30 35
50.46

50.47

50.48

50.49

0 5 10 15 20 25 30 35
50.43

50.44

50.45

50.46

0 100 200 300 400 500

30

35

40

45

50

 

 

 

 

 

 

 

 

C
u

rr
e

n
t 
 (

a
.u

.)

Pulse Number

C
u

rr
e

n
t 
 (

1
0

-2
A

 c
m

-2
) 

Pulse Number

C
u

rr
e

n
t 
(1

0
-2

A
 c

m
-2

)

Time (s)

C
u

rr
e

n
t 
(1

0
-2

A
 c

m
-2

)

Time (s)

Time (s)

C
u

rr
e

n
t 
(1

0
-2

A
 c

m
-2

)

Time (s)

Pulse Number



“The left of Figure 3d shows the PPM effect and conductance potentiation with 

the increased light pulse number and an increased light intensity ranging from 70 to 100 

mW (pulse number for each light intensity is 50). The PPM effect presents a growth 

trend with the pulse number under a higher light intensity. Overall, the conductance is 

increased with the light intensity level. The right of Figure 3d demonstrates the non-

volatile retention properties of the memorized states after the removal of the pulse 

sequence with 50 pulses at each light intensity (70, 75, 80, 82, 85, 87, 89, 90, 95, 100 

mW). The discrete photoconductance states can be well maintained after turning off the 

light stimuli, demonstrating the non-volatile multiple photoconductance states. The left 

of Figure 3e presents the NPM effect and conductance depression with the increased 

pulse number at the different light intensities ranging from 10 to 60 mW (pulse number 

for each light intensity is 200). The device current presents a continuously decreasing 

trend with the increased pulse number and the light intensity. The right of Figure 3e 

shows the retention of the conductance state after the removal of the pulse sequence 

with 200 pulses at each light intensity (10, 15, 25, 40 and 60 mW). After the removal 

of the light stimuli, the multiple conductance states can be well maintained. The effect 

of the electrical switching on the optical switching is also investigated, as shown in 

Supplementary Figure 16. The comparison of our device in both optical switching and 

electrical switching with the devices based on other materials is shown Supplementary 

Table 4.” 

Comment 8: 

How does the trap concentration in the MSFP-based memory affect its resistive 

switching behavior? Authors should describe it. 

         Response: Thanks very much for the comment. A suitable trap concentration can 

lead to the stable and analogue resistive switching memory behaviour.  

Since the residual ion such as Li+ can introduce a certain number of trap sites in 

the function layers 1-3, we fabricated the MSFP memories with different Li+ 



concentrations and thus different trapping concentrations. The Li+ concentrations can 

be modulated through the precursor dialyzing times. Therefore, to further examine the 

effect of trap concentration on the resistive switching behaviour, we prepared the MSFP 

memory devices with different precursor dialyzing times of 36, 48 and 72 hours 

respectively and estimate the number of Li+ in the MSFP materials by the inductively 

coupled plasma (ICP) with mass spectrometry, as shown in Table R2. The Li+ 

concentration in the MSFP materials decreases from 65.3 to 56.08 to 48.74 mg/Kg 

when the dialyzing time increases from 36 to 48 to 72 hours.  

Figures R9a-c show the I-V resistive switching curves of the MSFP-based resistive 

memories with different Li+ concentrations and the correspondingly different trap 

concentrations that are obtained by controlling the precursor dialyzing times. The 

MSFP resistive memory devices with dialyzing times of 36 and 48 hours all exhibit 

continuous and graded switching behaviours, while the MSFP memory with a dialyzing 

time of 72 hours exhibits abrupt switching. For the MSFP memory device with a 

dialyzing time of 72 hours, the device has the least number of Li+ and trapping sites, 

which cannot provide sufficient sites for continuous electron trapping. In comparison, 

the devices with dialyzing times of 36 hours and 48 hours have more trapping sites than 

those of 72 hours, therefore exhibiting continuous and graded switching.  

Comparing the switching between the devices with the dialyzing times of 36 hours 

and 48 hours, the device with the dialyzing time of 36 hours shows higher current 

density and a relatively unstable switching effect, while the device with the precursor 

dialyzing time of 48 hours shows lower current density and better analogue switching 

behaviours. This may be attributed to that a longer dialyzing time induces less Li+ and 

fewer trap states inside the MSFP thin films. Because of the lower trap concentration, 

the MSFP memory with a 48-hour precursor dialyzing time shows a lower current 

density at HRS, a smaller on/off ratio (~4 for 5 voltage sweeps) and more stable 

switching than that with a 36-hour precursor dialyzing time. Although a relatively high 



Li+ concentration and trap concentration will lead to a higher on/off ratio (~7 for 5 

voltage sweeps) in the MSFP device with a dialyzing time of 36 hours, the device shows 

a higher HRS current density and relatively unstable switching.  

In summary, the analogue switching behaviours mainly rely on the electron soft 

filling in the Li+-introduced traps in the MSFP thin film. The device shows a higher 

on/off ratio when the trap concentration is increased, however, the higher trap 

concentration could also lead to a relatively unstable switching and higher HRS current 

density. Therefore, the MSFP memory with dialyzing 48 hours as the optimizing sample 

was used in this work. The revision has been added to the revised supplementary 

information.  

  

Fig. R9. Trap concentration influences on the memory switching behaviours. Au/MSFP/Au 

memory with dialyzing times of (a) 36, (b) 48 and (c) 72, respectively.  

Table R2. Li ion concentration in the MSFP material measured by inductively coupled plasma 

(ICP) with mass spectrometry.  

 

 

 

 

 

The corresponding revision is as follows: 

“To further examine the trap concentration-based resistive switching memory 

behaviours, the MSFP memories with different Li+ concentrations and thus different 

trapping concentrations are fabricated to further prove the switching mechanism as 
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shown in Supplementary Figures 12a-c and Supplementary Table 1.” 

 

References 

1. Wang, W., et al. An analogue memristor made of silk fibroin polymer. J. Mater. Chem. C. 9, 

14583-14588 (2021). 

2. Min, K., Umar, M., Ryu, S., Lee, S., Kim, S. Silk protein as a new optically transparent 

adhesion layer for an ultra-smooth sub-10 nm gold layer. Nanotechnology 28, 115201 (2017).  

3. Shi, C., et al. New silk road: from mesoscopic reconstruction/functionalization to flexible 

meso-electronics/photonics based on cocoon silk materials. Adv. Mater. 33, 2005910 (2021).  

Comment 9: 

The computation complexity of the proposed method should be clearly described. 

Response: Thanks very much for the reviewer’s suggestion. According to this 

suggestion, the computation complexity of the proposed method in terms of time and 

space is described as follows:  

The novel optical convolution operation based on the ORRAM array as shown in 

Fig. R10 (Figure 4c) is proposed for in-sensor convolution computing (ICC). Each cell 

in the ORRAM mode corresponds to one pixel in the input image. The ORRAM arrays 

sense the pixel intensity (light intensity) and output photoconductance (Gml, m=1, 2, 

3…n; l=1, 2, 3…n). In the meantime, the ORRAM mode memristor array enables to pre-

process the images by implementing the optical convolutional algorithm. For the optical 

convolution process, a reconfigurable 3×3 convolution kernel is first mapped into three 

reading voltages (V11, V12, V13) at the temporal domain (T1, T2, T3), which is then input 

into the ORRAM mode memristor array for convolutional operations. The output 

currents for every column at T1, T2 and T3 are defined to be I11, I12, I13; I21, I22, I23; and 

I31, I32, I33, respectively.  

The photoductance (Gml), reading voltage (Vkm), and current (Ikl) at each column 

ORRAM mode memory cell obey Ohm's law. For each column of the memory array, 

the summation current obeys Kirchhoff's law. Therefore, the relationship of cumulative 



current for each column, read voltage, and conductance can be described as follows: 

                                    

3

1

kl km ml

m

I V G
=

=                            (1) 

Then new output currents are extracted from a specific current group (I11, 122, I33; 

I12, 123, I34; I13, 124, I33
…) as follows:  

                 , , 1, 1 2, 2out k l k l k l k lI I I I− + + + += + +                     (2) 

In this approach, a convolution kernel is divided into T1, T2, and T3 segments. The 

current summation at T1 is first collected and stored in the ARM core, followed by the 

current summation at T2 and T3.  

Therefore, in terms of time, if we define the process of applying a voltage pulse to 

each row of the ORRAM array and collecting all column currents at time T as one 

operation cycle, then we need 36 cycles to complete the convolution operations for a 

12×12 image. However, for traditional ERRAM convolution, the 3×3 pixel units of the 

image are stretched into a single column, and the 9×1 vector is sequentially sent to an 

array that stores ERRAM convolution kernels. For a 12×12 image, it requires 144 

cycles to complete all the convolution calculations. Therefore, the ORRAM ICC 

method requires only 25% of the time to complete the convolution operation compared 

to traditional ERRAM convolution, which also applies when scaling to larger images. 

Moreover, extra image sensors are required to be integrated with the ERRAM array. 

The sensor /ERRAM interface can introduce additional time for the completion of the 

convolution process.  

In terms of space, using in-sensor convolution computing, the current values of all 

columns are cached for each operation. T1, T2, and T3 operations require three times the 

column storage capacity in total. After these three operations, the cached current values 

can be shifted and summed to obtain the convolution result for one row. Once the result 

is obtained, the storage space used for caching the column current values at T2 and T3 

moments can be released. Although this method requires additional storage space, it is 

a temporary occupation. After completing the overall image convolution, the ORRAM 



in-sensor convolution and traditional ERRAM convolution occupy similar storage 

space for storing the computational results. For a 12×12 resolution image calculation, 

compared to traditional ERRAM convolution, the ORRAM convolution occupies 117% 

{(12+2)×12/(12×12)×100%=117%} of the storage space compared to that of the 

conventional ERRAM convolution. In summary, the ORRAM convolution offers a 75% 

reduction in time complexity compared to traditional ERRAM convolution, with only 

a 17% increase in memory consumption in terms of space complexity. The manuscript 

has been revised accordingly. 

 

Fig. R10. The convolution operation in the ORRAM mode array. 

The corresponding revision is following:  

“ The employment of the novel optical convolutional operation the ORRAM 

convolution offers a 75% reduction in time complexity compared to the traditional 

convolution operation method based on RRAM. ” 

Comment 10: 

In Figure 3g, how much epoch or repeat to get this result? Authors should define it. 

  Response:  Thanks very much for the valuable suggestion. As shown in Figures 

R11c-d (Figures 3f-3g), 25 epochs and 100 epochs are employed for the image 

enhancement and image erasing, respectively. More specifically, 25 PPM pulses 
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(85mW, 200ms) and 25 NPM pulses (40mW, 200ms) are employed in the experiment 

to demonstrate the image contrast enhancement based on the ORRAM array. 100 NPM 

pulses are used for the image erasing based on the ORRAM array.  

In fact, the image contrast enhancement is dependent on the epochs. Figure R11a 

shows the enhanced image contrast versus pulse number and the output current density 

through the PPM effect (corresponding to the body pixels with higher light intensities) 

and NPM effect (corresponding to the background pixels with lower light intensities) 

versus pulse number. It suggests that the contrast between the body pixels and 

background pixels is gradually enhanced as the pulse number increases, which is due 

to the enlarged output current between the body pixels and background pixels through 

PPM and NPM effects with the increased pulse number as shown in Figure R11a. As 

the pulse number increases to 25, the image contrast can be improved by 6 times 

compared with the original image. Therefore, 25 epochs are adopted in this 

demonstration. The manuscript has been revised accordingly. 

 

Fig. R11.  Method for image contrast enhancement and erasing through PPM and NPM effects. 

a, image contrast enhancement as a function of pulse number (epochs). b, a “fish” image was sensed 

and enhanced in a 12×12 ORRAM mode array. The memorized pre-processed image in the array 

can be further erased by light illumination. 

The corresponding revision is as follows:  
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“When the images are input into the array, the body pattern pixels with higher light 

intensities were enhanced through the PPM effect while the background pixels with 

lower light intensities were reversely suppressed by the NPM effect, resulting in the 

enlarged pixel signal ratio between the body pattern pixels and the background pixels. 

With the increased epochs (increased pulse number), the contrast is continuously 

enhanced (Supplementary Figure 18), leading to an enhanced contrast of ~33 after 25 

epochs. By comparison, the input image shows a light intensity ratio of ~5 between the 

background pixel and body pattern pixel. Therefore, a ~6 times contrast enhancement 

is obtained after the image preprocessing based on the ORRAM mode array (Figure 

3g).” 

Comment 11: 

Authors should give a more detailed explanation of the computer simulation for Figure 

4a. 

Response: Thanks very much for the suggestion. Figure R12a (Figure 4a) illustrates 

the full hardware architecture of our neuromorphic visual system. We conducted the 

image sensing and processing fully based on the hardware instead of the computer 

simulation. Figure R12b (Figure 4b) shows the photo of our full hardware system, 

composed of an ORRAM mode array, an ERRAM mode array, a memory array 

peripheral control system and an STM32 system. The detailed operation is described as 

follows:  

A complete CNN neural network consists of one layer of ORRAM convolution, 

max pooling, ReLU activation function, one layer of ERRAM convolution, max 

pooling, ReLU activation function, and one fully connected layer, as shown in Figure 

R12c. For the full hardware implementation, the ORRAM array first perceives image 

information, and then for the in-sensor convolution operation for image feature 

extraction. The values of the convolution kernels, ranging from -1 to 1, are mapped to 

a voltage range of -0.2V to 0.2V generated by the DAC and then input into the ORRAM 



array. The TIA on the column acts as a virtual ground, converting the incoming current 

into voltage, which is further collected and converted into a digital signal by the ADC. 

As depicted in Figure R12c, a 2×2 max-pooling operation and ReLU activation function 

are performed within the ARM core based on these extracted features. Subsequently, 

these features are further input into ERRAM for convolution and fully connected layer 

computations. Due to the ReLU activation function, all feature values become positive. 

When the features are input into the ERRAM array, all feature values are normalized to 

the range of 0 to 1, and then mapped to the voltage range of 0 to 0.2V. These normalized 

feature values are converted into voltage pulses using the DAC and are input into the 

ERRAM. The convolution operation is performed first, with the TIAs on the columns 

acting as virtual grounds, collecting the currents on the columns and converting them 

back into voltages. Afterwards, a 2×2 max-pooling operation and ReLU activation 

function are executed within the ARM core. Finally, the processed feature values are 

input into the ERRAM "fully connected layer" to perform classification and output the 

results. The manuscript has been revised accordingly. 
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Fig. R12.  Fully hardware implementation of the neuromorphic visual system based on the 

multimodal resistive memory arrays with ORRAM mode array for in-sensor pre-processing and 

the ERRAM mode array for near-sensor high-level processing. a, Architecture of the fully hardware-

implemented neuromorphic visual system composed of an ORRAM mode array, an ERRAM mode array, 

a memory array peripheral control system and an STM32 system. b, Optical image of the MSFP memory 

array-based system. c, The whole CNN neural network structure implemented with the ORRAM mode 

array and ERRAM mode array.  

The corresponding revision in the manuscript is as follows:  

“The image preprocessing algorithms and a convolutional neural network (CNN) are 

deployed on the hardware system. The 12×12 ORRAM array executes the image 

preprocessing of contrast enhancement and background denoising and performs the 

first-layer optical convolutional operation in CNN for image feature extraction. The 

ERRAM mode array is employed to complete one convolution layer and fully 

connected layer computations in the CNN. Other network operations, such as max 

pooling layers and ReLU activation function layers, are executed within the ARM core.”  

 

“Hardware system workflow 

A complete CNN neural network consists of one layer of ORRAM convolution, 

max pooling, ReLU activation function, one layer of ERRAM convolution, max 

pooling, ReLU activation function, and one fully connected layer. For the full hardware 

implementation, the ORRAM array first perceives image information, and then for the 

in-sensor convolution operation for image feature extraction. The values of the 

convolution kernels, ranging from -1 to 1, are mapped to a voltage range of -0.2V to 

0.2V generated by the DAC and then input into the ORRAM array. The TIA on the 

column acts as a virtual ground, converting the incoming current into voltage, which is 

further collected and converted into a digital signal by the ADC. A 2×2 max-pooling 



operation and ReLU activation function are performed within the ARM core based on 

these extracted features. Subsequently, these features are further input into ERRAM for 

convolution and fully connected layer computations. Due to the ReLU activation 

function, all feature values become positive. When the features are input into the 

ERRAM array, all feature values are normalized to the range of 0 to 1, and then mapped 

to the voltage range of 0 to 0.2V. These normalized feature values are converted into 

voltage pulses using the DAC and are input into the ERRAM. The convolution 

operation is performed first, with the TIAs on the columns acting as virtual grounds, 

collecting the currents on the columns and converting them back into voltages. 

Afterwards, a 2×2 max-pooling operation and ReLU activation function are executed 

within the ARM core. Finally, the processed feature values are input into the ERRAM 

"fully connected layer" to perform classification and output the results. 

Comment 12: 

Authors should put the resulting number in Figure 4g and h. 

        Response: Thank you very much for your reminder. We have updated Figures 4g 

and 4h in the manuscript, as shown below, including the numerical results within the 

figures. The confusion matrices of the classifications of “bear”, “fish”, and “butterfly” 

images before and after 50 training epochs are shown in Fig. R13a (Figure 4g) and Fig. 

R13b (Figure 4h), respectively, yielding an accuracy of 97.3%. The manuscript has been 

revised accordingly. 



 

Fig. R13.  Confusion matrices for the image classification based on the ERRAM mode array 

before and after 50 training epochs, yielding an accuracy of 97.3%.  

The corresponding revision in the manuscript is as follows:  

“The confusion matrices of the classifications of “bear”, “fish”, and “butterfly” images 

before and after 50 training epochs are shown in Figures 4g-h yielding an accuracy of 

97.3%.” 

Comment 13: 

In Figure 4i, it is hard to understand, so authors should explain the figure in more detail. 

         Response: Thanks very much for this comment and suggestion. Figure R14 

(Figure 4i) depicts the conductance distributions (weight maps) of the 12×12 MSFP 

memory array during the training. After initialization, the 12×12 MSFP memory array 

is in a completely random state. As the training epochs increase, the accuracy of 

network recognition also improves. We present the conductance distributions for five 

different training epochs (network accuracies), as shown in Figure R14 (Figure 4i). This 

result also suggests the good programming capability of the MSFP memory array.  

To be more specific, Figure R14 (Figure 4i) exhibits the conductance change of 

the 12 × 12 MSFP-based memory crossbar arrays from the initial conductance state to 

the conductance states at the different training epochs from 11 to 20 (corresponding to 

different network recognition accuracies from 93.7% to 97.3%). Firstly, random 

electrical pulses are applied to the memristor array in the top 3 rows × 12 columns and 

the rest of the memories in the 9 rows × 12 columns are biased with the half-reading 

voltage strategy by the memory control system, corresponding to the initial 
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conductance state in the memory array. With the training, one can see that the 

conductance distribution gradually presents a clear boundary between the top 3 rows × 

12 columns and the rest of 9 rows × 12 columns as the training epoch (accuracy) 

increases from 11 (93.7%) to 20 (97.3%), as shown in Figure R14 (Figure 4i).  The 

manuscript has been revised accordingly.  

  

Fig. R14 (Figure 4i). The conductance distributions (weight maps) in the ERRAM array under the 

initial state and different training epochs.  

The corresponding revision in the manuscript is as follows:  

“Figure 4i depicts the conductance distributions (weight maps) of the 12×12 MSFP 

memory array during the training. After initialization, the 12×12 MSFP memory array 

is in a completely random state. As the training epochs increase, the accuracy of 

network recognition also improves. The conductance distributions for five different 

training epochs (network accuracies) are presented as shown in Figure 4i.” 

Reviewer #2   

The article by Zhou, et al discusses testing and implementation of silk-protein based 

memristors that exhibit multi-modal variable conductance in response to both light 

exposure and applied voltage. In addition to voltage-controlled resistive switching, they 

show that device conductance is enhanced upon exposure to 405 nm light at intensities 

above 70mW, but it is lowered at intensities between 10-60 mW (with minimum 
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conductance occurring at 60 mW). This bidirectional change in baseline conductance 

enables them to perform contrast enhancement and denoising of images through a 

seemingly intrinsic intensity threshold to positive and negative changes in conductance. 

Because the same memristor can also be electrically programmed via resistive 

switching, they demonstrate in hardware that two memristor arrays can be built to 

perform image preprocessing and convolutional neural network-based classification. 

The device properties are interesting and the application of their use is potentially 

compelling.  

Response:  We sincerely thank for the reviewer’s positive comments. All the 

constructive comments and suggestions are very significant for us to improve this work.  

Comment 1: 

Missing device details: what is the thickness, footprint, and total area of each device? 

      Response: Thanks very much for the reminder. The footprint of a single memory 

cell is 200μm ×200μm (Fig. R15a).  The array area of the 12 × 12 Au/MSFP/Au 

memory crossbar array is 21.16 mm2 (Fig. R15b).  The thicknesses of the top Au 

electrode, MSFP switching layer and the bottom Au electrode are ~35, ~100, and 35 

nm, respectively. (Fig. R15c). The revision has been added to the revised supplementary 

information. 

 

Fig. R15. a, Optical microscopy image of the Au/MSFP/Au memory cells with an effective area of 

200 μm ×200 μm in a single cell. b, Optical image of a 12× 12 Au/MSFP/Au resistive memory 

crossbar array. c, Field emission scanning electron microscopy (FE-SEM) cross-section image of 

the Au/MSFP/Au resistive memory. The thicknesses of the Au and MSFP layers are ~35nm and 

~100 nm, respectively.  

The corresponding revision in the manuscript is as follows: 

200μm
2cm

a b c



“A two-terminal multimodal MSFP-based resistive memory with a cell area of 200 μm 

× 200 μm and a structure of 35 nm Au/100 nm modified silk fibroin protein (MSFP) 

switching layer/35 nm Au was fabricated on the MSFP flexible substrate (Figure 2a and 

Supplementary Figure 2). The optical image of a 12 × 12 crossbar array with an overall 

area of 4.6 mm×4.6 mm is shown in Supplementary Figures 2a-b.” 

Comment 2: 

Electrical resistive switching: What sweep rate(s) were used for the i-v traces shown in 

Figure 2c? how quickly do the devices change conductance? Is the memory volatile or 

nonvolatile? The counterclockwise hysteresis paths in both quadrants 1 and 3 suggest 

the devices exhibit volatile memory. But the data in Figure S3c show nonvolatile states 

were written (at unknown voltage levels, durations-details needed here)! Therefore, the 

reviewer questions whether these devices exhibit volatile or nonvolatile memory 

resistance. Their characteristic speeds of switching and memory loss also aren’t 

disclosed. For context, what dialyzing time/conditions were used to create the MSFP 

for the devices described in Figure 2? It isn’t clear from Figure 2d that changes are 

representative of LTP or LTD (i. e. do these changes persist after writing?). 

       Response: Thanks very much for the comment. According to this comment and 

concern, we carefully correct and revise the corresponding description in the electrical 

switching section.  

(1) What sweep rate(s) were used for the i-v traces shown in Figure 2c? 

Response: Figure R16 (Figure 2c) is the typical I-V sweeping curve (0→1→0→-

1→0V) with a voltage scanning rate of 0.2V/s of the Au/MSFP/Au resistive memory. 

The sweep rate has been added in the Figure.  



 

Fig. R16. Typical I-V switching under continuous 100 positive voltage sweeps from 0 V to 1 V to 0 

V and continuous 100 negative voltage sweeps from 0 V to -1 V to 0 V with a voltage scanning rate 

of 0.2 V/s.  

(2) how quickly do the devices change conductance? 

 Response: The response speed of the Au/MSFP/Au memory can reach around 

~10 μs, as shown in Fig. R17.  When a single electrical pulse with a voltage amplitude 

of 0.7 V and pulse width of 50 μs is applied to the device, the device conductance 

quickly changes from a lower conductance state to a higher conductance state. The 

response time can be extracted as ~10 μs. The revision has been added to the revised 

supplementary information.  

 

Fig. R17.  Conductance response in the Au/MSFP/Au resistive memory. Current response under 

the electrical pulse stimuli with amplitude of 0.7 V and pulse width of 50 μs, indicating a response 

time of ~10 μs for the MSFP-based resistive memory.  

The corresponding revision in the manuscript is as follows: 

“The response speed of the device is illustrated in Supplementary Figure 7, showing a 

response speed of 10 µs.” 

(3) Is the memory volatile or nonvolatile? The counterclockwise hysteresis paths in both 
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quadrants 1 and 3 suggest the devices exhibit volatile memory. But the data in Figure 

S3c show nonvolatile states were written (at unknown voltage levels, durations-details 

needed here)! Therefore, the reviewer questions whether these devices exhibit volatile 

or nonvolatile memory resistance. Their characteristic speeds of switching and memory 

loss also aren’t disclosed.  

Response: The Au/MSFP/Au resistive memory presents nonvolatile electrical 

switching as shown in Figure R18.  

For the electrical switching, Figure R18 (Figure 2c) and Figure R18a show the I-

V sweeping and the retention properties of the Au/MSFP/Au resistive memory. It can 

be noted that the current gradually increases when the bias voltage sweeps from 0 to 

1V (stage 1), and the corresponding low resistance at 1.0V can be maintained when the 

bias voltage sweeps from 1 to 0V (stage 2), forming an anticlockwise I-V curve in 

positive voltage region. The continuous positive voltage sweeping drives the 

continuous conductance increasing from HRS to LRS. This low resistance can be 

maintained under the voltage sweeping from 0 to -1V (stage 3), then the memory resets 

to a high resistance state when the voltage reverses its sweeping direction from -1 to 

0V (stage 4), causing a clockwise I-V curve in the negative voltage region, as shown in 

Figure R18a (Figure 2c). Similarly, the continuous negative voltage sweeping drives 

the continuous conductance decreasing from LRS to HRS. To further demonstrate the 

nonvolatile conductance state, Figure 18b shows the retention properties of the HRS 

and LRS programmed by voltage sweeping in Figure 15. The HRS and LRS can all be 

well maintained for over 104 seconds. The multilevel storage of 16 conductance states 

and retention properties are demonstrated in Figure R19. The 16 conductance states are 

programmed by consecutive electrical pulse groups, with each group composed of five 

pairs of a programming pulse (0.7V, 50μs) followed by a reading pulse (0.1V, 50μs). 

All 16 conductance states exhibit nonvolatile properties with a retention time of up to 

103 seconds. The revision has been added to the revised supplementary information.  



 

 
 

Fig. R18. Nonvolatile properties. a, Typical I-V switching under continuous 100 positive voltage 

sweeps from 0 V to 1 V to 0 V and continuous 100 negative voltage sweeps from 0 V to -1 V to 0 

V with a voltage scanning rate of 0.2 V/s. b, Retention time of the LRS and HRS read at 0.1 V for 

104 seconds. 

 

Fig. R19. 16 conductance states programmed by consecutive electrical pulse groups, with each 

group composed of five pairs of one programming pulse (0.7V, 50μs) and one reading pulse (0.1V, 

50μs). All 16 conductance states exhibit nonvolatile properties with a retention time of up to 103 

seconds. 

 

The corresponding revision in the manuscript is as follows: 

“The device shows good cyclic endurance and nonvolatile memory with a retention 

time of over 104 seconds (Supplementary Figures 6a-b). The cumulative probability of 

the low resistance state (LRS) and high resistance state (LRS) for 100 different devices 

suggests good device-to-device stability under the electrical stimuli (Supplementary 

Figure 6c).” 
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“The Au/MSFP/Au memory device shows an analogue switching behaviour with 

nonvolatile 16 multilevel resistance states as shown in Supplementary Figure 9.” 

(4) For context, what dialyzing time/conditions were used to create the MSFP for the 

devices described in Figure 2? It isn’t clear from Figure 2d that changes are 

representative of LTP or LTD (i. e. do these changes persist after writing?). 

Response: The dialyzing time used for the MSFP device demonstrated in Figure 

2 is 48 hours. The description has been added to the revised manuscript. According to 

the reviewer’s suggestion and concern about the long-term storage effects of the LTP 

and LTD presented in Figure 2d, we further conducted the retention test after the LTP 

and LTD processes. Figure R20a (LTP in Figure 2d) exhibits the conductance 

potentiation with consecutively applied 50 positive pulses (0.7V, 50μs) for the long-

term potentiation (LTP) process and the conductance retention after the removal of the 

LTP stimulus. It can be noted the conductance state can be well maintained. Figure 

R20b (LTD in Figure 2d) presents the LTD process with the consecutively applied 50 

negative pulses (-0.7V, 50μs). The programmed conductance state of LTD can also be 

maintained after the removal of the LTD stimulus. The read voltage for LTP and LTD 

and retention tests is controlled as 0.1 V. Therefore, the conductance states programmed 

by the LTP and LTP pulses demonstrate good nonvolatility. The revision has been 

added to the revised supplementary information.  



 

Fig. R20. LTP and LTD and the retention properties of the Au/MSFP/Au resistive memory. a, 

The conductance programmed by the 50 positive pulses (0.7V, 50μs) for LTP can be well maintained 

after the removal of the pulse stimulus. b, The conductance programmed by 50 negative pulses (-

0.7V, 50μs) for LTD can also be well maintained after the removal of the pulse stimulus. 

The corresponding revision in the manuscript is as follows: 

“Figure 2d exhibits the conductance updates with 50 pulses (0.7V, 50μs) for the 

long-term potentiation (LTP) process and another 50 pulses (-0.7V, 50μs) for the long-

term depression (LTD) process. These programmed conductance state after LTP and 

LTD processes can be well maintained (Supplementary Figure 10).” 

Comment 3: 

The paper makes little mention of device repeatability/stability and no mention of 

device-to-device reproducibility. These are major gaps that limits understanding how 

“identical” the various memristors are in the CNN arrays and how many times they can 

be programmed. 

 Response: Thanks very much for this important comment and concern. The 

device-to-device stability, and cycle-to-cycle stability in the Au/MSFP/Au resistive 

memory are demonstrated in Figure R21, indicating that good device-to-device 

reproducibility, and good cycling endurance. Figure 21a shows the cumulative plot of 
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the HRS and LRS in 100 MSFP memory devices, showing small device-to-device 

variation. Figure R21b shows repeated I-V sweeping for 1000 cycles, indicating good 

endurance and repeatability. The revision has been added to the revised supplementary 

information. 

  

Fig. R21. Device-to-device reproducibility and cycling endurance in the Au/MSFP/Au memory 

device. a, Cumulative plot of the HRS and LRS in the 100 MSPF memory devices. b, Endurance 

test for 1000 cycles. 

The corresponding revision in the manuscript is as follows: 

“The device shows good cyclic endurance and nonvolatile memory with a retention 

time of over 104 seconds (Supplementary Figures 6a-b).” 

Comment 4: 

The proposed switching mechanism isn’t backed by specific data other than i-v slope 

fitting. The authors state “The analogue resistive memory behaviors with multiple states 

are dependent on the ion doping concentration of Br- and Li+ in the MSFP thin film.” 

But this isn’t supported by any data. Therefore, the reviewer requests that the 

mechanism be described as “proposed” or “possible,” and that more evidence be used 

to support their statements.  

 Response: Thanks very much for the reviewer’s comments. We apologize for the 

inappropriate claim in the previous manuscript. We revised the claim into “The 

analogue resistive memory behaviours with multiple states are possibly dependent on 

the ion doping concentration such as Li+ in the MSFP thin film.” 

Since the residual ion such as Li+ can introduce a certain number of trap sites in 
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the function layers 1-3, we fabricated the MSFP memories with different Li+ 

concentrations and thus different trapping concentrations. The Li+ concentrations can 

be modulated through the precursor dialyzing times. Therefore, to further examine the 

effect of trap concentration on the resistive switching behaviour, we prepared the MSFP 

memory devices with different precursor dialyzing times of 36, 48 and 72 hours 

respectively and estimate the number of Li+ in the MSFP materials by the inductively 

coupled plasma (ICP) with mass spectrometry, as shown in Table R2. The Li+ 

concentration in the MSFP materials decreases from 65.3 to 48.74 mg/Kg when the 

dialyzing time increases from 36 to 48 to 72 hours.  

Figures R9a-c shows the I-V resistive switching curves of the MSFP-based 

resistive memories with different Li+ concentrations and the correspondingly different 

trap concentrations that are obtained through controlling the precursor dialyzing times. 

The MSFP resistive memory devices with dialyzing times of 36 and 48 hours all exhibit 

continuous and graded switching behaviours, while the MSFP memory with dialyzing 

time of 72 hours exhibits abrupt switching. For the MSFP memory device with 

dialyzing time of 72 hours, the device has the least number of Li+ and trapping sites, 

which cannot provide the sites for continuous electron trapping. In comparison, the 

devices with dialyzing time of 36 hours and 48 hours have more trapping sites than that 

of 72 hours, therefore exhibiting the continuous and graded switching.  

Comparing the switching between the devices with dialyzing time of 36 hours and 

48 hours, the device with the dialyzing time of 36 hours shows higher current density 

and a relatively unstable switching effect, while the device with the precursor dialyzing 

time of 48 hours shows lower current density and better analogue switching behaviours. 

This may be attributed to that a longer dialyzing time induces less Li+ and fewer trap 

states inside the MSFP thin films. Because of the lower trap concentration, the MSFP 

memory with a 48-hour precursor dialyzing time shows a lower current density at HRS, 

a smaller on/off ratio (~4 for 5 voltage sweeps) and more stable switching than that 



with a 36-hour precursor dialyzing time. Although a relatively high Li+ concentration 

and trap concentration will lead to a higher on/off ratio (~7 for five voltage sweeps) in 

the MSFP device with a dialyzing time of 36 hours, the device shows a higher HRS 

current density and relatively unstable switching.  

In summary, the analogue switching behaviours mainly rely on the electron soft 

filling in the Li+-introduced traps in the MSFP thin film. The device shows a higher 

on/off ratio when the trap concentration is increased, however, the higher trap 

concentration could also lead to a relatively unstable switching and higher HRS current 

density. Therefore, the MSFP memory with dialyzing 48 hours as the optimizing sample 

was used in this work. The revision has been added to the revised supplementary 

information. 

 

 

Fig. R9. Trap concentration influences on the memory switching behaviours. Au/MSFP/Au 

memory with dialyzing times of (a) 36, (b) 48 and (c) 72 hours, respectively.  

Table R2. Li ion concentration in the MSFP material measured by inductively coupled plasma 

(ICP) with mass spectrometry.  
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The corresponding revision in the manuscript is as follows: 

“To further examine the trap concentration-based resistive switching memory 

behaviours, the MSFP memories with different Li+ concentrations and thus different 

trapping concentrations are fabricated to further prove the switching mechanism as 

shown in Supplementary Figures 12a-c and Supplementary Table 1.” 

Comment 5: 

Test conditions and data presentation for ORRAM: What was the light exposure 

duration/distance for the data in Figure 2f-k, and what was the ERRAM state (HRS or 

LRS)? How long does optical switching take? What is the switching repeatability and 

device-to-device reproducibility in these ORRAM responses? And do you see similar 

trends with CS-AFM across different regions of a single device? What caused the extra 

current spikes shown in 3c (i.e., 2 light pulses, but 3-4 current pulses?) It is unclear how 

plots on right of 3d and 3e correspond to plots on left (i. e. when were these long 

measurements recorded relative to the incremental increase in light intensity?) 

      Response: Thanks very much for the comment. According to the reviewer’s 

suggestions, we have explained the given data with more details and supplement more 

experimental results.  

(1) What was the light exposure duration/distance for the data in Figure 2f-k, and 

what was the ERRAM state (HRS or LRS)? How long does optical switching take? 

       Response: For the I-V sweeping measurement in Figure R22a (Figure 2f), the light 

exposure duration used for each resistance transition is 2 seconds. The exposure 

distance between the laser and device is a constant distance of 25cm. The initial 

resistance state (dark state) is at the ERRAM HRS state. When the light illumination 

with 70~100mW is applied to the device, the conductance increases with the light 



intensity showing the PPM effect, corresponding to the transition to a lower resistance 

state. When the light illumination with 10~60mW is applied to the device, the 

conductance becomes lower than the initial resistance state (even higher resistance state 

than the ERRAM HRS state), showing the NPM effect.  For the FTIR measurements 

and CAFM measurements in Figures R22b-f (Figures 2g-k), the light duration used for 

each light intensity is also 2 seconds. For the optical pulse measurement in Figure 3 in 

the manuscript, the consecutive light pulses with the pulse width of 100 ms are 

employed for the optical switching to obtain more resistance states. The manuscript has 

been revised accordingly.  

 

Fig. R22. The I-V curves, FTIR, and current-sensing AFM measurement. a, Tuneable and light 

intensity dependent NPM and PPM effects, indicating the fully optical set and reset processes. FTIR 

spectra peak fittings of the MSFP thin film secondary structures in the Amide first region under b, 

80 mW and c, 40 mW UV light, respectively, suggesting the light illumination can alter the MSFP 

secondary structure. d, Schematics of optically induced secondary structure changes leading to PPM 

and NPM effects. The PPM effect is mainly dominated by the net increasing amount of β-sheet 

secondary structures, while the NPM effect is dominated by the net increasing amount of β-turn 

secondary structures. e, Measurement setup of current-sensor atomic force microscope (CS-AFM) 

for the Au/MSFP sample. f, CS-AFM images of the Au/MSFP sample under a variety of light 

intensities. The sample exhibited obvious NPM and PPM effects when illuminated by the 10~65 

mW and 80~100 mW 405 nm light for 2 seconds, respectively.  

The corresponding revision in the manuscript is as follows: 
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“Figure 2k, CS-AFM images of the Au/MSFP sample under a variety of light 

intensities. The sample exhibited obvious NPM and PPM effects when illuminated by 

the 10~65 mW and 80~100 mW 405 nm lasers, respectively. The light-related 

measurements of f-h and k are conducted in air ambient with relative humidity of 45% 

with the light exposure duration of 2.0 seconds. ” 

(2) What is the switching repeatability and device-to-device reproducibility in 

these ORRAM responses?  

Response: The device-to-device and cycle-to-cycle repeatability in the ORRAM 

mode have been conducted as shown in Figure R23. The programmed resistance states 

at the intermediate state, PPM state and NPM state are recorded by a small voltage 

sweep from 0-0.2 V which will not cause the resistance change for 100 cyles, indicating 

a small cycle to cycle variation (Figure R23a). Figure R23b shows the cumulative plot 

of the intermediate state, PPM state and NPM state in 100 MSFP memory devices, 

suggesting good device-to-device reproducibility for the ORRAM mode. The revision 

has been added to the revised supplementary information.  

 

Fig. R23. Device-to-device and cycle-to-cycle stability in the MSFP memory device with 

ORRAM mode operation. a, The cyclically programmed resistance states at the intermediate state, 

PPM state and NPM state. b, The cumulative plot of the intermediate state, PPM state and NPM 

state in 100 different MSFP memory devices. 

The corresponding revision in the manuscript is as follows: 

“This optically PPM and NPN switching presents good cycle-to-cycle and device-to-

device stabilities (Supplementary Figures 13a-b).”  
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(3) And do you see similar trends with CS-AFM across different regions of a 

single device? 

            Response: The similar trends of the CS-AFM results can be observed in different 

regions in a single sample. The different regions of ①, ②, and ③ of Au/MSFP sample 

are illuminated by the 100 mW light to trigger the PPM effect. The conductance shows 

similar increasing trends in different regions. After completing the above PPM 

measurement, the 15 mW light illumination is used to trigger the NPM in regions ①, 

②, and ③ (Fig. R24), which also show similar decreasing conductance.  

 

Fig. R24. CS-AFM measurement of the PPM (100mW) and NPM (15mW) effects in the 

different regions of the Au/MSFP sample.  

(4) What caused the extra current spikes shown in 3c (i.e., 2 light pulses, but 3-4 

current pulses?) 

          Response: We apologize for the measurement inconsistencies in the previous 

manuscript, which wrongly indicate the pulse numbers in the previous figure. We have 

re-measured the short-term synaptic plasticity (STP) using the same condition as shown 

in Figure R25. Figure R25 shows the NPM STP triggered by paired pulses with a pulse 

width of 100 ms and different light intensities ranging from 10 to 60 mW.  The 

manuscript figure  has been revised accordingly.  
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Fig. R25. NPM STP triggered by paired pulses with a pulse width of 100ms at different light 

intensities ranging from 10 to 60 mW. 

(5) It is unclear how plots on right of 3d and 3e correspond to plots on left (i. e. 

when were these long measurements recorded relative to the incremental increase in 

light intensity?) 

 Response: The left of Figure R8a (Figure 3d) shows the PPM effect and 

conductance potentiation with the increased light pulse number (500 in total) and an 

increased light intensity ranging from 70 to 100 mW (the pulse number used for each 

light intensity is 50). The conductance is increased with the continuously applied pulse 

number before reaching a saturation state at each light intensity. Overall, the 

conductance is increased with the light intensity level. The right of Figure R8a (Figure 

3d) demonstrates the non-volatile retention properties of the memorized states after the 

removal of the pulse sequence with 50 pulses at each light intensity (70, 75, 80, 82, 85, 

87, 89, 90, 95, 100 mW). The discrete photoconductance states can be well maintained 

after turning off the light stimuli, demonstrating the non-volatile multiple 

photoconductance states. The left of Figure R8b (Figure 3e) presents the NPM effect 

and conductance depression with the increased pulse number (1000 in total) at the 

different light intensities ranging from 10 to 60 mW (the pulse number for each light 

intensity is 200 since NPM effect is less easily to reach a saturation at each light 

intensity compared with the PPM effect). The device current presents a continuously 

decreasing trend with the increased pulse number and the light intensity. The right of 

Figure R8b (Figure 3e) shows the retention of the conductance state after the removal 

of the pulse sequence with 200 pulses at each light intensity (10, 15, 25, 40 and 60 mW). 
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After the removal of the light stimuli, the multiple conductance states can be well 

maintained. The manuscript has been revised accordingly. 

 

Fig. R8. PPM and NPM effects. Left, photocurrent density versus light pulse number at 

different light intensities ranging from 10 to 100mW; Right, retention time after the removal of 

the light stimuli with different intensities. a, The PPM effect with LTP features under the 

increased pulse number and the varied light intensities ranging from 70 100 mW. b, The NPM 

effect with LTP features under the increased pulse number and the varied light intensities 

ranging from 10 to 60 mW.  

The corresponding revision in the manuscript is as follows: 

“The left of Figure 3d shows the PPM effect and conductance potentiation with 

the increased light pulse number and an increased light intensity ranging from 70 to 100 

mW (pulse number for each light intensity is 50). The PPM effect presents a growth 

trend with the pulse number under a higher light intensity. Overall, the conductance is 

increased with the light intensity level. The right of Figure 3d demonstrates the non-

volatile retention properties of the memorized states after the removal of the pulse 

sequence with 50 pulses at each light intensity (70, 75, 80, 82, 85, 87, 89, 90, 95, 100 

mW). The discrete photoconductance states can be well maintained after turning off the 

light stimuli, demonstrating the non-volatile multiple photoconductance states. The left 
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of Figure 3e presents the NPM effect and conductance depression with the increased 

pulse number at the different light intensities ranging from 10 to 60 mW (pulse number 

for each light intensity is 200). The device current presents a continuously decreasing 

trend with the increased pulse number and the light intensity. The right of Figure 3e 

shows the retention of the conductance state after the removal of the pulse sequence 

with 200 pulses at each light intensity (10, 15, 25, 40 and 60 mW). After the removal 

of the light stimuli, the multiple conductance states can be well maintained. The effect 

of the electrical switching on the optical switching is also investigated, as shown in 

Supplementary Figure 16. The comparison of our device in both optical switching and 

electrical switching with the devices based on other materials is shown Supplementary 

Table 4.” 

Comment 6: 

How does electrical switching impact optical switching in the same device? If a device 

is switched from HRS to LRS using +0.7-1V, does this change the baseline conductance 

set by light? What happens if it’s then switched back to HRS using voltage? Does the 

same baseline restore? Or does it erase light-induced programming? 

       Response: Thanks very much for this comment.  

       To investigate the impact of the electrical switching on the optical switching, the 

Au/MSFP/Au resistive memory is first set to the low resistance state (LRS) by 100 

electrical pulses (0.7V, 50μs). Then at this LRS triggered by the electrical pulses, we 

further employ 100 PPM optical pulses (80mW, 200ms) to set the device to a lower 

LRS, and then this lower LRS can be reset back to the low resistance state (LRS) 

through 100 NPM optical pulses (40mW, 200ms). The LRS is reset back to its initial 

HRS baseline through 100 electrical pulses (-0.7V, 50μs). After the above operation, 

the memory device can still be set and reset by the light pulses (set by 50 optical pulses 

(80mW, 200ms) and then reset by 50 optical pulses (40mW, 200ms)), showing 

unaffected optical switching behaviours, as shown in Fig. R26. Therefore, the electrical 



switching nearly does not impact the optical switching behaviours. The revision has 

been added to the revised supplementary information. 

 

Fig. R26.The conductance changes with the first 100 electrical pulses (0.7V, 50μs) and 100 optical 

pulses (80mW, 200ms) for the set process and 100 optical pusles (40mW, 200ms) and 100 electrical 

pulses (-0.7V, 50μs) for the reset process, followed with another 50 optical pulses (80mW, 200ms) 

for optical set and 50 optical pulses (40mW, 200ms) for optical reset. 

The corresponding revision in the manuscript is as follows: 

“The effect of the electrical switching on the optical switching is also investigated, as 

shown in Supplementary Figure 16.”  

Comment 7: 

The authors use FTIR to investigate changes in protein secondary structure upon 

exposure to light. But it remains unclear why 60 mW is a local min/max for B-s and B-

t? How reproducible is this result? How does the thickness/area of the sample effect 

this critical intensity and changes in conductance upon light exposure? 

       Response: Thanks very much for the reviewer’s comment. According to the 

comment, the corresponding experiment has been conducted. The detailed explanation 

is as follows:  

(1) But it remains unclear why 60 mW is a local min/max for B-s and B-t? How  

reproducible is this result? 

  Response: The protein secondary structures such as alpha-helix (α-h), beta-sheet 

(β-s), beta-turn (β-t) could be mutually converted under external stimuli such as heating 

and illuminating radiation1-3. For the MSFP thin films, the 60mW light intensity with a 
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specific wavelength may provide suitable heat and energy for the α-h unwinding to be 

the β-s and β-t, resulting in an increase of β-t and a decrease of the β-s secondary 

structure. The secondary structure conversion is quite reproducible as shown in Fig. R27. 

Figure R27 illustrates the molar ratio changes of the secondary structures with the light 

power in the samples fabricated in different batches, all demonstrating similar results. 

However, we have to admit that the critical value of 60 mW is based on our optical 

illumination setup. The absolute value can be changed for other optical illumination 

setups with different illumination distances or areas. However, the critical value is quite 

reproducible for a certain illumination setup. 

  

Fig. R27. Secondary structure conversion under different light intensities.  

Reference 

1. Zhang, L., Chen, T., Ban, H.& Liu, L. Hydrogen bonding-assisted thermal conduction in β-

sheet crystals of spider silk protein, Nanoscale 6, 7786-7791 (2014).  

2. Yun, Y. S., et al, Microporous carbon nanoplates from regenerated silk proteins for 

supercapacitors, Adv. Mater. 25, 1993-1998 (2013). 

3. Min, K., Umar, M., Ryu, S., Lee, S., & Kim, S. Silk protein as a new optically transparent 

adhesion layer for an ultra-smooth sub-10 nm gold layer. Nanotechnology 28, 115201 

(2017).  

(2) How does the thickness/area of the sample effect this critical intensity and 

changes in conductance upon light exposure? 

         Response:  First, for the effects of the MSFP thickness on the optical switching 

behaviours, we studied the optical switching behaviours in the MSFP memory with 

different MSFP thicknesses of ~63, ~97, and ~186nm, respectively, as shown in Figure 

R28. The thickness of the MSFP shows impacts on the resistive switching behaviours 

including current density, resistance ratio, and stability.  The memory device with ~63 
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nm MSFP function layer shows a relatively high current density (8~25Acm-2 at 0.2V) 

and a small resistance ratio (~3) between PPM and NPM states (Fig. R28a). A higher 

resistance ratio (~10), and lower current density (0.35~5Acm-2 at 0.2V) are obtained in 

the MSFP memory with ~97 nm MSFP thin film (Fig. R28b), which may be attributed 

to the higher secondary structure change volume compared with that of 63 nm. However, 

the higher resistance states and even smaller resistance ratio (~2) are observed in the 

MSFP memory with an MSFP thickness of 186 nm, which may be attributed to that the 

conversion volume of secondary structure in the MSFP thin film is limited under the 

light illumination with a certain power, therefore the secondary structure conversion 

ratio and the resistance change ratio is relatively small when the MSFP thin film 

thickness is relatively thick (186 nm) and the as-prepared MSFP memory device is 

already at very HRS  (Fig. R28c).  

     For the effects of the device area on the optical switching behaviours, the optical 

switching of MSFP memory devices with different device areas of 100×100μm2, 

150×150μm2 and 200×200μm2 are studied as shown in Figure R28d. It can be noted 

that the memory device with a large area exhibits a wider conductance range for both 

the NPM and PPM effects. The memory cell with an area of 200×200μm2 shows an 

optical switching ratio of ~10, while this ratio respectively decreases to ~8 and ~5 when 

the area decreases to 150×150μm2 and 100×100μm2, as shown in Figure R28d. The 

photoconductance change ratio shows increasing trends with the increased device area 

since the large area corresponds to a higher volume of the secondary structure change 

thus a larger photoconductance change. The area-dependent switching is also consistent 

with the conductance change in the MSFP thin films that arises from the secondary 

structure change. 

      The critical intensity is nearly unchanged when changing the device area and the 

MSFP thin film thickness. The critical intensity for the change from PPM to NPM effect 

mainly depends on the heat provided by the light 1-3. Therefore, for the devices with 



different areas or thicknesses, the threshold heat and optical power for turning PPM to 

NPM are nearly identical. The revision has been added to the revised supplementary 

information. 

  

Fig. R28. The influences of device area and MSFP thickness on the optical switching 

behaviours. a-c, The optical switching behaviours in the MSFP memory devices with different 

MSFP thicknesses of ~63, ~97, and ~186nm, respectively. d, Device area dependent optical LTPs 

and LTDs in the memory cell with different device areas of 100×100, 150×150 and 200×200μm2.  

References  

1. Wang, W., et al. An analogue memristor made of silk fibroin polymer. J. Mater. Chem. C. 9, 

14583-14588 (2021). 

2. Min, K., Umar, M., Ryu, S., Lee, S., Kim, S. Silk protein as a new optically transparent 

adhesion layer for an ultra-smooth sub-10 nm gold layer. Nanotechnology 28, 115201 (2017).  

3. Shi, C., et al. New silk road: from mesoscopic reconstruction/functionalization to flexible 

meso-electronics/photonics based on cocoon silk materials. Adv. Mater. 33, 2005910 (2021).  

The corresponding revision in the manuscript is as follows:  

“The effects of different MSFP film thicknesses and device areas on the optical PPM 

and NPM switching are also investigated as shown in Supplementary Figure 15.”  
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Comment 8: 

Image processing in Figure 3: how are images pre-configured and “mapped” onto an 

array of 12×12 devices? Duration, pulse#? What properties do these images have (e.g., 

image type/requirements? color/binary? of varying intensities at 1 wavelength)? 

     Response: Thanks very much for the reviewer’s comments. The 12×12 input image 

is mapped on the 12×12 MSFP memory array according to 12 different light intensities 

(12 gray scales) at a constant wavelength of 405nm and a constant pulse number of 50, 

as shown in Fig. R29. The detail is as follows:  

     As shown in Figure R29, the image mapping onto a 12×12 device array is conducted 

by applying the light pulses (pulse number of 50, pulse width of 100 ms, and 

wavelength of 405nm) to each device in the device array according to pixel intensities 

in the input image. More specifically, in the mapping process, each pixel corresponds 

to each device. The input images are grayscale images.  Each image has 12 grey scales, 

corresponding to 12 different light intensities of 40, 45, 50, 55, 60, 70, 75, 80, 85, 90, 

95, 100mW. Each input image is composed of two parts: body pattern pixels and 

background pixels, in which the body pattern pixels with relatively higher brightness 

corresponds to the higher light intensities of 70, 75, 80, 85, 90, 95, and 100 mW, while 

the background pixels with lower brightness corresponds to the lower light intensities 

of 40, 45, 50, 55, and 60mW.  

     Currently due to the limitations of the optical setup, we input the light stimuli to the 

devices in the array one by one. However, because of the nonvolatility in our device, 

the time required for completing the mapping operations would not cause the 

conductance degradation, which can be proved in our retention test for optical switching, 

as shown in Fig. R17. The revision has been added to the revised supplementary 

information. 



 

Fig. R29. The image mapping on the ORRAM model array according to different light intensities 

(12 grey scales) at a constant wavelength of 405nm and a constant pulse number of 50.  

The corresponding revision in the manuscript is as follows: 

“A “fish” pattern with background noise is mapped on the 12×12 MSFP-based memory 

crossbar array, outputting the responsive currents. The image mapping process is 

illustrated in Supplementary Figure 17.”  

Comment 9: 

After completing the image preprocessing, the MSFP-based memristor crossbar array 

could be erased by the light through the NPM effect with zero electrical power 

consumption.” But was power supplied to the light that you aren’t counting? 

     Response: Thanks very much for the reviewer’s reminder. The term “zero electrical 

power consumption” is indeed not suitable since we neglected the laser power 

consumption. We delete the claim of the “zero electrical power consumption during the 

image erasing”. 

Comment 10: 

Are the two banks of MSFP memristors really identical? Identical in composition, #, 

and dimensions? 

      Response: Thanks very much for the comment. The two banks of the MSFP 

memristor array are totally identical with the same fabrication conditions, same 

composition and dimensions (Fig. R30). The revision has been added to the revised 

manuscript.  
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Fig. R30. Optic images of the ORRAM and ERRAM array prepared under the same 

experiment condition.  

Comment 11: 

The configuration/operation of the neural network layers is hard to follow: Where is the 

fully connected network? “Considering the influence of interconnect resistance, the 

first three row of the memristor array in the rear 12×12 ERRAM mode array are not 

operated.” What does this mean? Consider adding/improving/labeling additional 

image(s) to show how information flows through the system. Also, the 3×3 convolution 

kernel and its use is unclear. Also, what determines the size of this kernel? # of images? 

number of pixels/devices? images aren't 3×3. “The convolution kernel adopted here for 

feature extraction is [[1/9,1/9,1/9], [1/9,1/9,1/9], [1/9,1/9,1/9]]” How were these values 

selected/determined? 

      Response:  Thanks very much for the reviewer’s questions. 

(1) The configuration/operation of the neural network layers is hard to follow: 

Where is the fully connected network? 

Response: The operation of the fully connected layer can be mapped to the 9×6 

ERRAM crossbar array as shown in Fig. R31. The last layer in the network is a fully 

connected layer with 9 input neurons, 3 output neurons and 27 synapses.  Since the two 

differential ERRAM conductances represent a weight value, the fully connected layer 

can be mapped to a 9×3×2 (9×6) array section in our memory crossbar array. 

(2) “Considering the influence of interconnect resistance, the first three row of the 

memristor array in the rear 12×12 ERRAM mode array are not operated.” What does 

this mean? 

2cm

ORRAM array ERRAM array



Response: Considering the impact of interconnect resistances, we choose not to use 

the first three rows of the 12×12 array. The reason is that the first three convolution 

kernels occupy a 9×6 array area, and the subsequent 9×3 fully connected layer also 

occupies a 9×6 array area. In total, a 9×12 array area will be occupied, but our array is 

in a size of 12×12, leaving a 3×12 array area unused. Placing this unused 3×12 array 

area in the bottom three rows would result in longer column lines when reading currents, 

leading to additional line resistance effects. Therefore, the first three rows of the 

memristor array in the rear 12×12 ERRAM mode array are not operated. 

(3) Consider adding/improving/labeling additional image(s) to show how 

information flows through the system. 

Response: We have illustrated the flow of signals and the implementation of the 

network based on the ORRAM and ERRAM array, as shown in Fig. R31. 

A complete CNN neural network consists of one layer of ORRAM convolution, 

max pooling, ReLU activation function, one layer of ERRAM convolution, max 

pooling, ReLU activation function, and one fully connected layer, as shown in Figure 

R31. For the full hardware implementation, the ORRAM array first perceives image 

information, and then for the in-sensor convolution operation for image feature 

extraction. The values of the convolution kernels, ranging from -1 to 1, are mapped to 

a voltage range of -0.2V to 0.2V generated by the DAC and then input into the ORRAM 

array. The TIA on the column acts as a virtual ground, converting the incoming current 

into voltage, which is further collected and converted into a digital signal by the ADC. 

A 2×2 max-pooling operation and ReLU activation function are performed within the 

ARM core based on these extracted features. Subsequently, these features are further 

input into ERRAM for convolution and fully connected layer computations. Due to the 

ReLU activation function, all feature values become positive. When the features are 

input into the ERRAM array, all feature values are normalized to the range of 0 to 1, 

and then mapped to the voltage range of 0 to 0.2V. These normalized feature values are 



converted into voltage pulses using the DAC and are input into the ERRAM. The 

convolution operation is performed first, with the TIAs on the columns acting as virtual 

grounds, collecting the currents on the columns and converting them back into voltages. 

Afterwards, a 2×2 max-pooling operation and ReLU activation function are executed 

within the ARM core. Finally, the processed feature values are input into the ERRAM 

"fully connected layer" to perform classification and output the results. The manuscript 

has been revised accordingly. 

The information flow starts with a 12×12 image, which undergoes in-sensor 

convolution using a 12×12 ORRAM array for feature extraction, resulting in a 12×12×3 

feature map. This is followed by a 2×2 max pooling layer and ReLU activation function, 

further reducing the feature map to 6×6×3. Subsequently, convolution calculations are 

performed using three 3×3 convolutional kernels with an ERRAM size of 9×6, resulting 

in a feature map size of 6×6, followed by another 2×2 max pooling layer and ReLU 

activation, yielding a 3×3 feature map. Finally, the feature map is flattened into a one-

dimensional vector and sent into a 9×3 fully connected network for classification output 

implemented with the 9×6 ERRAM array. The supplementary information has been 

revised accordingly. 
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Fig. R31. Fully hardware implementation of the neuromorphic visual system based on the 

multimodal resistive memory arrays with ORRAM mode array for in-sensor pre-processing and 

the ERRAM mode array for near-sensor high-level processing. a, Architecture of the fully hardware-

implemented neuromorphic visual system composed of an ORRAM mode array, an ERRAM mode array, 

a memory array peripheral control system and an STM32 system. b, Optical image of the MSFP memory 

array-based system. c, The whole CNN neural network structure implemented with the ORRAM mode 

array and ERRAM mode array. 

The corresponding revision in the manuscript is as follows: 

Hardware system workflow 

“The image preprocessing algorithms and a convolutional neural network (CNN) 

are deployed on the hardware system. The 12×12 ORRAM array executes the image 

preprocessing of contrast enhancement and background denoising and performs the 

first-layer optical convolutional operation in CNN for image feature extraction. The 

ERRAM mode array is employed to complete one convolution layer and fully 

connected layer computations in the CNN. Other network operations, such as max 

pooling layers and ReLU activation function layers, are executed within the ARM core. 

(Supplementary Figure 19 and Supplementary Note 7). For the full hardware 

implementation, the ORRAM array first perceives image information, and then for the 

in-sensor convolution operation for image feature extraction. The values of the 

convolution kernels, ranging from -1 to 1, are mapped to a voltage range of -0.2V to 

0.2V generated by the DAC and then input into the ORRAM array. The TIA on the 

column acts as a virtual ground, converting the incoming current into voltage, which is 

further collected and converted into a digital signal by the ADC. A 2×2 max-pooling 

operation and ReLU activation function are performed within the ARM core based on 



these extracted features. Subsequently, these features are further input into ERRAM for 

convolution and fully connected layer computations. Due to the ReLU activation 

function, all feature values become positive. When the features are input into the 

ERRAM array, all feature values are normalized to the range of 0 to 1, and then mapped 

to the voltage range of 0 to 0.2V. These normalized feature values are converted into 

voltage pulses using the DAC and are input into the ERRAM. The convolution 

operation is performed first, with the TIAs on the columns acting as virtual grounds, 

collecting the currents on the columns and converting them back into voltages. 

Afterwards, a 2×2 max-pooling operation and ReLU activation function are executed 

within the ARM core. Finally, the processed feature values are input into the ERRAM 

"fully connected layer" to perform classification and output the results.” 

(4) Also, the 3×3 convolution kernel and its use is unclear. Also, what determines 

the size of this kernel? # of images? Number of pixels/devices? Images aren’t 3×3. 

Response: The 3×3 convolution kernels are mainly used for feature extraction in 

image processing [1], and these kernels are updated and obtained through back-

propagation and training of the neural network (Fig. R32).  

The size of the convolution kernel is generally much smaller than that of the image 

to perform convolution computations efficiently. The purpose of convolution 

computations is to extract new features from the image, forming a new feature map. 

Different kernel sizes result in different fields of view in the extracted feature map. For 

instance, a 5×5 kernel has a wider field of view compared to a 3×3 kernel, but it comes 

with a higher computational cost. Moreover, two 3×3 kernels can be equivalent to a 

single 5×5 kernel1. Therefore, we have used 3×3 convolution kernels. Here the input 

image is in a size of 12×12 and the kernel size is 3×3. Initially, a 3×3 pixel patch from 



the image is selected, and a dot product sum operation is performed between the 3 × 3 

convolution kernel and the 3×3 pixel patch to obtain a new pixel value. After this 

calculation, the 3×3 convolution kernel is shifted by one pixel to the right on the image 

and performs convolution calculations for the entire row, which is followed by being 

shifted by one pixel downward for the convolution calculations. This process is 

repeated iteratively to perform convolution calculations across the entire image. The 

convolution operation based on the ERRAM mode crossbar array is shown in Fig. R32. 

The feature values extracted by ORRAM are convolved within the ERRAM mode array. 

The image features, after being processed by ORRAM, are divided into multiple 3×3  

patches. These patches are flattened into column vectors and input into ERRAM for the 

convolution operations. In this configuration, ERRAM functions as the convolutional 

kernel, with the convolutional kernel being mapped to the conductance values. The 

input column vectors of the patches are transformed into voltage pulses and fed into 

ERRAM for efficient multiply-accumulate computations, facilitating convolution 

calculations.  

The formula for convolution computations In ERRAM mode array is as follows: 

𝐼𝑁 =∑ 𝑋𝑚𝑊𝑚
𝑁

9

𝑚=1
=∑ 𝑉𝑚(𝐺𝑚

𝑁+ −
9

𝑚=1
𝐺𝑚
𝑁+) = 𝐼𝑁

+ − 𝐼𝑁
− 

Where 𝑋𝑚 represents the value of input data, and 𝑊𝑚
𝑁 denotes the weight of the neural 

network. The weight can be both positive and negative, which is represented using a 

pair of differential conductances 𝐺𝑚
𝑁+ and 𝐺𝑚

𝑁−. 𝑋𝑚 can be mapped to 𝑉𝑚. The 𝑉𝑚 and 

Gm denote the bias voltage applied to the MSFP memory cell and the corresponding 

conduction value, respectively. 𝐼𝑁 is the differential result current between two columns, 

𝐼𝑁
+ and 𝐼𝑁

−. The result of the convolution calculation is denoted as IN. The manuscript 

has been revised accordingly.  



 

Fig. R32. Convolution implementation in the ERRAM mode array. 

 

 Reference 

1. Kim, J., et al. Accurate image super-resolution using very deep convolutional networks, 

Proceedings of the IEEE conference on computer vision and pattern recognition. 1646-1654 

(2016). 

(5) “The convolution kernel adopted here for feature extraction is [[1/9,1/9,1/9], 

[1/9,1/9,1/9], [1/9,1/9,1/9]]” How were these values selected/determined ? 

Response: The convolution kernel used for feature extraction is [[1/9, 1/9, 1/9], 

[1/9, 1/9, 1/9], [1/9, 1/9, 1/9]]. This kernel is manually set as a mean filter, which is a 

common image processing algorithm used to effectively smooth images, reduce 

sharpness, and reduce noise 1. Alternatively, we can train a recognition network online 

on a computer and then transfer the trained convolution kernel values to our memory 

crossbar array using weight transfer methods. 

Reference 

1. P. Coupe, P., et al. An Optimized blockwise nonlocal means denoising filter for 3-D magnetic 

resonance images. IEEE Trans. Medic. Imag. 27, 425-441 (2008).  

Comment 12: 

Simulations used in Figure S9 and S10 are not described anywhere. 

       Response: Thanks very much for this reminder. The corresponding description has 
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been added to the revised manuscript. Fig. R33 (Figure S9) illustrates the simulated 

image preprocessing results by the ORRAM mode array for images with larger size. 

We used Nosiy Albert Einstein photos (457×381) for image preprocessing simulation 

according to the ORRAM mode device performance characteristics (Fig. R33). Based 

on the device-level NPM and PPM characteristics, denoising and contrast enhancement 

of images were achieved. Additionally, based on the in-sensor convolution capability 

in the ORRAM mode array, the edge feature in the Albery Einstein images can be 

effectively extracted.  

Figures R34a-c (Figures S10a-c) demonstrates the conductance programming 

capabilities in the 12×12 MSFP ERRAM mode array and the image processing using 

the MSFP ERRAM array-based hardware. We first randomly programmed a 12×12 

ERRAM mode crossbar array, resulting in a random conductance distribution (state 1). 

State2 shows to the randomly programmed conductance states in the ERRAM mode 

array using the pulses with input voltage ranging from 0.7V to 0.7V. State3 shows the 

conductance states in the ERRAM mode array with columns 5, 9, and 10 selected for 

programming. This demonstrates ERRAM's programmability for high-level image 

processing. Figures R34d shows the processing of Lenna images through the 

convolution operations implemented by the ERRAM mode array-based hardware. The 

convolution kernels set by random pulses are used for image processing, which can 

result in the various image processing functions such as image blurring and colour 

inversion of grayscale images, as shown in Figures R34d. The revision has been added 

to the revised supplementary information. 

 

Fig. R33. Simulations of the preprocessing capabilities of the ORRAM mode array for larger size 



images. 

 

Fig. R34. a-c, Conductance programming in the MSFP-based ERRAM mode array. d,Lenna image 

processing through the convolution operations implemented by the ERRAM mode array-based 

hardware. 

The corresponding revision is following:  

“This result also suggests the good programming capability of the MSFP memory array. 

To demonstrate this point, a series of voltage pulses were randomly input into the 

ERRAM mode memristor crossbar array to evaluate the weight tuning capability 

(Supplementary Figure 21a). The ERRAMs can be cyclically and repeatedly 

programmed into different conductive states, as shown in Supplementary Figures 21b-

c. To further demonstrate the convolutional capabilities of the ERRAM array, higher-

resolution images are tested. Supplementary Figure 21d presents the feature extraction 

result of the “Lenna” image after the convolution operation.” 

Comment 13: 



Power consumption or overall device footprints are not discussed despite suggesting 

this approach would lead to more compact, efficient systems for image processing. 

        Response: Thanks very much for the reviewer’s significant suggestions. To 

examine the potential of this approach, the power consumption and overall device 

footprints have been discussed.  

The footprint of the current single memory cell with current fabrication technology 

is 200μm×200μm (Fig. R14) due to the fabrication limitation in the lab, however, the 

MSFP device can be potentially and easily scaled down to 0.5μm×0.5μm through 

aqueous multiphoton lithography (Nat. Commun. 2015, 6, 6812).  Therefore, to evaluate 

the potentiality of the system, we adopted the 0.5μm×0.5μm device area for the 

potential system performance evaluation. 

Limited by the board-level testing system of the printed circuit board (PCB), the 

readout speed can be less than 25 ns in the peripheral control system of the application-

specific integrated circuits (ASICs) at low process nodes (28nm technology node). 

Therefore, assuming an individual device size of 0.5×0.5μm2 and a readout speed of 

25ns, the chip-level system performance is calculated as shown in Table R2. We also 

compared our systems with the previously reported system, as shown in Table R4. 

implying that our system shows a comparable energy efficiency (151.579 TOPS/W) but 

higher performance density (18.626 TOPS/mm²) compared with the state-of-the-art 

visual computing systems based on emerging devices. The revision has been added to 

the revised supplementary information. 

Table R2: The system performance based on the ORRAM mode and ERRAM mode array when our 

memory device is scaled down to 0.5μm×0.5μm. 

Performance 12×12×2×2/25ns=23.04GOPS 

Power 3.8pJ/25ns=0.152mW 

Area 0.001237mm² 

Energy efficiency 23.04GOPS/0.152mW=151.579TOPS/W 

Performance density 23.04GOPS/0.001237mm²=18.626TOPS/mm² 

Table R4: System performance comparison. 

 Ref. 1 Ref. 2 Ref. 3 This work 



Memory 
Transistor 

+RRAM 

Transistor 

+RRAM 

Transistor 

+RRAM 
ORRAM+ERRAM 

Energy efficiency 

(TOPS/W) 
- 75.17 11.014 151.579 

Performance density 

(TOPS/mm²) 
8.5 7.008 1.164 18.626 

Area(mm²) 0.217 0.0263 0.0704 0.001237 

Additional CMOS 

image sensor 

required 

Yes Yes Yes No 

In-sensor computing NO NO NO Yes 

 

The corresponding manuscript has been revised as follows: 

“By comparison, this multimodal array-based visual system shows promising 

potential for future in-sensing neuromorphic computing systems, exhibiting system 

advantages in terms of integration density and power efficiency compared with the 

state-of-the-art system (Supplementary Tables 5-6).” 

 

Reference  

1. Correll J. M., Jie L., Song S., et al. An 8-bit 20.7 TOPS/W multi-level cell ReRAM-based compute 

engine, VLSI Technology and Circuits, 2022, 264-265. 

2. Spetalnick S. D., Chang M., Konno S., et al. A 2.38M cells/mm 2 9.81-350 TOPS/W RRAM 

compute-in-memory macro in 40nm CMOS with hybrid offset/I OFF cancellation and I cell R BLSL 

drop mitigation, VLSI Technology and Circuits, 2023, 1-2. 

3. Yao P., Wu H., Gao B., et al. Fully hardware-implemented memristor convolutional neural 

network. Nature 2020, 577, 641-646. 

Minor Revision  

(1) Page 4. “shortening” not “shorting” 

        Response: The “shorting” is corrected as “shortening”. 

(2) The caption for Figure 1 does not comprehensively explain all parts of the figure. 

And these are not adequately discussed in the text. Either amend the caption or remove 

undiscussed content. 

Response: According to the suggestion on the Figure 1, we revised the caption of 

Figure 1 as below:  

Fig. 1 | Neuromorphic vision chip based on multimodal resistive memory arrays 



with ORRAM mode array for in-sensor image preprocessing and ERRAM mode 

array for high-level image recognition. An advanced neuromorphic vision system 

based on MSFP-based multimodal resistive memory arrays with both ORRAM mode 

for image pre-processing and ERRAM mode for high-level image recognition, 

simulating the functions of retina cells and visual cortex, respectively. In the biological 

visual system, the human retina is organized into three nuclear layers and two synaptic 

layers, in which bipolar cells that include the off and on cells as an inner nuclear layer 

(INL) connect the outer nuclear layer (ONL, photoreceptors) with the ganglion cell 

layer (GCL).  The images are firstly sensed by the ONL and then are pre-processed by 

the INL and GCL, and the pre-processed information will be finally transmitted to the 

visual cortex layer to complete high-level processing. The neuromorphic vision chip 

consists of an ORRAM mode array with NPM and PPM features for the in-sensor image 

pre-processing (e. g. contrast enhancement and background denoising) and in-sensor 

convolution for feature extraction, and ERRAM mode array with analogue resistive 

switching for in-memory high-level image recognition through convolutional neural 

network (CNN) operations.  

(3) Figure 2b fails to label Pg3 and DHI compounds. And it isn’t clear what Sericin is. 

The use of LRS and HRS terms are confusing for describing the changes in device 

conductance upon exposure to 405nm light at different intensities. maybe use different 

labels to differentiate from the ERRAM switching LRS/HRS states. 

Response: The sericin, Pg3 and DHI compounds have been labelled in Figure 2b. 

The sericin and fibroin are the major components of the natural silk. We revised the 

LRS and HRS terms in optical switching throughout the manuscript into the PPM states 

and NPM. The manuscript has been revised accordingly. 

(4) The FTIR spectrum for the MSFP film before light illumination shown in Figure S5 

should be plotted in same wavenumber range and y-scale as Figures 2g-h for direct 

comparison. 

Response: Thanks very much for the suggestion. The Figures 2g-h have been 

replotted as shown in Figure S5. The manuscript has been revised accordingly. 



(5) Figure 2i isn’t mentioned in the text. 

       Response:  The corresponding Figure 2i description has added in the revised 

manuscript.  

(6) Poor/confusing wording throughout: 

“…secondary structure outweighs of the decreased β-t (5.77%) secondary  structure 

leading to the PPM effect.” don't both of these changes drive conductivity increase? 

therefore, one isn't outweighing the other to cause PPM. “The increasing amount β-t 

secondary structures then becomes higher than that of  β-t secondary structures, which 

leads to an NPM effect.” 

       Response:  To avoid the confused expression, we revised the description 

accordingly. The β-s secondary structure with layer-by-layer structure contributes to 

higher conductivity while the β-t secondary structure with turn structure contributes to 

lower conductivity 1-3.  Firstly, we define the secondary mole ratio of a specific 

secondary structure under darkness as “A”, and under specific light illumination 

defined as “B”. The increasing ratio of a specific secondary structure is 𝐵−𝐴 
𝐴

×100%. 

After the MSFP film was exposed to 80 mW UV light, the mole ratio of β-s obviously 

increased by 11.70% while the mole ratio of r-c, a-h, and β-t decreased by 9.86%, 

24.0%, and 5.77%, respectively (Figure 2h). Therefore, the increase of the β-s structure 

(contribute to a higher conductivity), along with the decrease of the β-t (contribute to a 

higher conductivity) is possibly responsible for the PPM effect observed in the 

Au/MSFP/Au memristor array. When the light intensity changes from 80 to 40 mW, 

the mole ratio of the β-s decreases from 59.30% to 55.76% while the mole ratio of β-t 

increases from 12.41% to 14.51%, causing the NPM effect in the Au/MSFP/Au 

memory array.”  

The corresponding revision has been added to the revised manuscript as 

follows:  

“Interestingly, these secondary structures in the MSFP film can be modulated by light 



intensities. After the MSFP film was exposed to 80 mW UV light, the mole ratio of β-

s obviously increased by 11.70% while the r-c, a-h, and β-t decreased by 9.86%, 24.0%, 

and 5.77%, respectively (Figure 2g). When the light intensity changes from 80 to 40 

mW, the mole ratio of the β-s decreases from 59.30% to 55.76% while the mole ratio 

of β-t increases from 12.41% to 14.51% (Figure 2h), causing the NPM effect. The 

optically induced PPM effect can be mainly due to the increased concentration of beta-

sheet (β-s) with layer-by-layer structures that contribute to higher conductivity, while 

the optically induced NPM effect can be attributed to the increased beta-turn (β-t) or 

other non-layered structures that contribute to a lower conductivity 29-31, as shown in 

Figure 2i. Therefore, the increase of the β-s structure (contributing to higher 

conductivity), along with the decrease of the β-t (contributing to higher conductivity), 

is possibly responsible for the PPM effect observed in the Au/MSFP/Au memory. It 

can also be noted that when the UV light intensity changes to 60mW, the mole ratios 

of the β-s and β-t secondary structures increase by 2.7% and 29.15%, corresponding to 

an enhanced NPM effect (Supplementary Figure 14b). The comparisons of the changes 

in these secondary structures under the light illumination with different light intensities 

(40, 60, and 80 mW) are shown in Supplementary Table 3.” 

 

References 

29. Zhang, L., Chen, T., Ban, H.& Liu, L. Hydrogen bonding-assisted thermal conduction in β-sheet 

crystals of spider silk protein, Nanoscale 6, 7786-7791 (2014).  

30. Yun, Y. S., et al, Microporous carbon nanoplates from regenerated silk proteins for 

supercapacitors, Adv. Mater. 25, 1993-1998 (2013). 

31. Min, K., Umar, M., Ryu, S., Lee, S., & Kim, S. Silk protein as a new optically transparent 

adhesion layer for an ultra-smooth sub-10 nm gold layer. Nanotechnology 28, 115201 (2017).  

(7) “The PPM effect presents an intensified growth trend with the pulse number under 

a higher light intensity.” Intensified growth = nonlinear increase in conductance? 

        Response:  Thanks for the reminder. The PPM effect presents a growth trend 



instead of intensified growth. The “intensified” has been removed from the description.  

 (8) Pg 15, “after 50 pulse stimulation”. after 200 pulses? Define all acronyms: ADC, 

DAC, TIA, ARM, Conclusion: “high image recognition accuracy of 95%.” Do you 

mean 99.5%? 

  Response:  The “after 50 pulse stimulation” and “high image recognition accuracy 

of 97.3%.” have been corrected and all acronyms have been defined in revised 

manuscript.  



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I think that authors answered the comments satisfactorily. Hence I recommend it can be published 

on Nature Communications. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have sufficiently addressed my questions and prior concerns, which has significantly 

improved the manuscript. I support its publication in Nature Communications. 



Point-by-point Response  

We are appreciative of the reviewers' and editors’ supportive remarks. We 

appreciate their time and helpful feedback, which has allowed us to significantly 

improve our study.  

Reviewer #1 

I think that authors answered the comments satisfactorily. Hence, I recommend it can 

be published on Nature Communications. 

Response: Thanks very much for the recommendation. 

Reviewer #2 

The authors have sufficiently addressed my questions and prior concerns, which has 

significantly improved the manuscript. I support its publication in Nature 

Communications. 

Response: Thanks very much for the recommendation. 
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