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Figure for training and testing dataset

Figure S1. Proportion of compounds from each EMCDDA drug class in the training and test datasets.
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Inspection of representative MS/MS spectra predicted by NPS-MS

In general, dot products tend to be higher than the Dice coefficients. Notably, the dot product takes into account 

relative intensities in addition to the m/z values of the peaks themselves, and consequently, higher-intensity peaks 

have far more influence over dot product than lower-intensity peaks. For example, the predicted spectrum of 5F-

ADBICA at 40 eV has a Dice score of 0.44, since only two of the four predicted peaks correspond to an experimentally 

observed peak (Figure S2c). However, the two matching peaks have the greatest intensities, whereas the unmatched 

peaks in both the predicted and experimental spectra are of lower intensity, resulting in a dot product of 0.90.

Figure S2. Inspection of representative MS/MS spectra predicted by NPS-MS. Mirror plots of experimental (top) and predicted 

(bottom) spectra for (a) 5F-ABICA at 40 eV and (b) ADB-BICA at 10 eV, illustrating spectra with Dice coefficients close to the 

mean value across the test dataset. (c) Mirror plot for 5F-ADBICA at 40 eV, demonstrating that low Dice coefficients may be due 

to low-abundance peaks, however, the major peaks have been predicted thus yielding a high dot product.
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Details for cost score

The performance of each C2MS model was evaluated using a cost score. Cost scores are commonly used to evaluate 

the performance of models that produce a confidence score or rank. In this setting, a cost score was assigned to each 

compound identification based on the rank relative to the correct answer (or ground truth), considering the possibility 

of equally ranked candidates. This cost score reflects the amount of expected MS/MS experiments required to find 

ground truth compound given a list of identification result for a single task. Equation 1 defines the cost score. Here 

Ranki is the rank of the ground truth compound and Count(Ranki) is the number of compounds in this rank. 

Count(Rankj) denotes the number of compounds in the ranks higher than Ranki  (i.e. j < i).

(Equation S1)𝐶𝑜𝑠𝑡 𝑆𝑐𝑜𝑟𝑒 =  
𝐶𝑜𝑢𝑛𝑡(𝑅𝑎𝑛𝑘𝑖) +  1

2  +  ∑𝑛
𝑗 <  𝑖𝐶𝑜𝑢𝑛𝑡(𝑅𝑎𝑛𝑘𝑗)

For example, if the correct structure achieved the highest score but was ranked equally along four other candidates, 

its cost score would equal 3. However, if the correct structure was the highest scoring spectral match with no other 

candidates achieving the same score, then its cost score would equal 1. This scoring system circumvents the issues in 

using the top-k accuracy to evaluate performance when models may assign the same rank to many candidates.



S6

Figure for histograms displaying the number of candidate compounds in each MS2C task

Figure S3. Histograms displaying the number of candidate compounds in each MS2C task.  Candidate compounds are chosen 

based on its precursor ion mass (±10 ppm) from each task’s specific candidate dataset.
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Figure for MS/MS spectra prediction of the novel PCP derivative, 3-Cl-PCP

Figure S4. MS/MS spectra prediction of the novel PCP derivative, 3-Cl-PCP.  a) Comparison of MS/MS spectra predicted by 

NPS-MS and experimentally acquired spectra for 3-Cl-PCP at 10, 20, and 40 eV. Experimental MS/MS spectra are shown in blue, 

while predicted MS/MS spectra are shown in red. b) Structures of hypothetical fragment ions proposed by NPS-MS for each peak 

in the predicted MS/MS spectra at 10, 20, and 40 eV.


