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S1 Appendix

The technical details of numerical simulation and statistical analysis methods are presented
in Text L. Equation numbers without “S” and figure numbers with integers refer to those in

the main text.

Text A. Rate law overview and derivation

Consider two different molecules A and B that bind to each other and form complex AB. The
concentration of the complex AB at time t is denoted by C(t) and its dynamics is governed
by Eq (1). In Eq (1), A(t) and B(t) denote the total concentrations of A and B, respectively,
and their temporal profiles are allowed to be very generic, e.g., even with their own feed-
back effects as in the example applications in this study. In Eq (1), k, and kg are rate param-
eters. For the sake of generality, kg is not limited to AB’s dissociation event but encompasses
all rate events to lower the level of AB. Using the notations T = kgt, K = kg/k,, A(1) =
A(t)/K, B(r) = B(t)/K, and C(7) = C(t)/K, one can rewrite Eq (1) as

e _
dr

[A(7) = C(D][B(r) — C(D)] = C (D). (S1)
By definition, C(t) < A(t) and C(t) < B(t), and therefore
C(t) < min[A(¢t), B(t)] {i.e., C(v) < min[Z(r),E(r)]}. (S2)

On the other hand, Eq (S1) is equivalent to

ac@ _

‘O - [€) ~ Cu@{C@ ~ [Cig@ + M@}, (53)

where Cq(7) and Ayq (1) are given by

() = 3[1+ 4@ +B@) — M), (S4)

Aq(T) = \/[1 + A(1) + B(1)]? — 4A(1)B(1). (S5)

Of note, Ciq (1) = Ciq(t)/K and Aq(1) = Ayq(t) from the definitions of Cyq (t) and Ay ()
in Egs (2) and (3), respectively. In the tQSSA, the assumption is that C(t) approaches an
equilibrium (quasi-steady state) fast enough each time, given the values of A(t) and B(t)
[S1-53]. To understand this idea, notice that C'(t) = 0 in Eq (S3) when C(7) = Cyq(7) given
the values of A(7) and B(t) [we use symbol’ for a derivative, such as C'(7) here]. One can

prove that ftQ(T) < minﬁ(r),?(r)] and thus Eq (S2) is naturally satisfied when C (1) =



EtQ(T). The other nominal solution of C'(7) = 0 in Eq (S3) does not satisfy Eq (S2) and is thus
physically senseless.

According to the tQSSA, one takes an estimate C(7) =~ C_tQ(T), or equivalently, C(t) =
CtQ(t). The tQSSA is generally more accurate than the conventional MM rate law [S1-S4].
Under the assumption of Eq (4), which is essentially identical to the assumption in the sQSSA
[S5], the Padé approximant for ftQ(T) takes the following form:

A()B(1)

1+A(t)+B(7)" (S6)

C_‘tQ (1) =

Eq (S6) is equivalent to Eq (5). In the example of a typical metabolic reaction with B(t) «
A(t) for substrate A and enzyme B, Eq (4) is automatically satisfied and Eq (S6) further re-
duces to the MM rate law ftQ(T) ~ Z(T)E(T)/[l + Z(T)], the outcome of the sQSSA
[S1,55-S9].

Both the above tQSSA and sQSSA stand on the assumption that C(t) approaches the quasi-
steady state fast enough each time before the marked temporal change of A(t) or B(t). We
here relieve this quasi-steady state assumption and develop the ETS as the better approxi-
mation of C(t) in the case of time-varying A(t) and B(t). Suppose that C(t) may not neces-
sarily approach the quasi-steady state CtQ(t) but stays within some distance from it, satisfy-

ing the following relation:
|C(x) - ftQ(T)| K A (D). (S7)

This relation is readily satisfied in physiologically-relevant conditions (Text E). This relation
allows us to discard [C () — CtQ(T)]Z compared to Ay (1) [C(7) — Cq(7)] and thereby re-

duce Eq (S3) to

dC(7)
dr

~ Mg Cio(@) — C@)]. (58)

Multiplying both the left- and right-hand sides above by exp [f:o A7) d‘r’] (where 7, de-

notes an arbitrarily assigned, initial point of 7) and applying the product rule lead to
d[= ' Arq(z)dr’ = ¥ Ag(t')dr’
L1e@ef 2 | < ag@Gg@etn . (59)
The integral of Eq (S9) from 7 = 1 ends up the following solution of Eq (S8):
CE@) = [ M) Cig(t)e™ 8l ) g 1 C(zg)e ool (s19)

Assume that A (7") changes rather slowly over 7’ to satisfy



Aq(t") = Ayq(7) for 7' inthe range 1 — Ay (1) S 7’ < 7. (S11)

In physiologically-relevant conditions, Eq (S11) is readily satisfied (see Text E). We then apply
Eq (S11) to Eq (S10) and notice that fTT, Ag(t")d 1" = (T — 7")Aq(7) and fTTO At dr’ =

(T — T)Aq (1) for T 2 7 — Arg (1) and T S 7 + Ay (Tp), respectively. Subsequently,
7 72 7 " = AtQ ) " 7
exp[— f A(t")d "] = exp fT 8@ Ag(r")d 1" — f A(t)dt"| =

exp [—1 - 2@ AtQ(T”)dT”] exp[ f D) dr’ ] =

T

To+Agq (7o) ' T , /o L
exp [ fo At dr’ - fTo+A{Ql(To) Ag(t) d7’| ~ exp [—1
frTO+A;Ql(ro) A (") dr’], and the former and latter values become negligible for 7" «

T— A{Ql (t)andt > 10 + A{Ql (10), respectively. Also, exp[—(r — ’[’)AtQ(T)] becomes negli-
gible for 7 « 7 — Agq (7). Therefore, combined with Eq (S11), Eq (S10) for 7 %> 7, + Aq (7o)

is approximated as
~ ~ T A "N o= (=" )Aq(®) 31/
C() = Ag(D) [~ Cro()e O [ (512)

where the right-hand side is not sensitive to the specific lower limit of T’ for the integral as
long as this lower limit is << 7 — Agg (7). The Taylor expansion Cyq(t') = Ciq(7) —

(t = 1)Cio(1) + (r — 1)2C{y(7) /2 — -+ and the replacement of (7 — 7)Ao (7) by x lead

Eq (S12) to
C(1) = Cro(r) — A ( )dC_tQ(T) ooxe"‘dx +@% Omxze‘xdx —
= G0 — A (@ 22 4 22 () T290
= Crqe(™) + 0§ (T )d CtQ(T) (513)
where Cyqe(7) is defined as
dctQ(r)

Ceqe(7) = Crq(0) — Agg () —— (514)

For the approximation of C (), one may be tempted to use C_‘th(‘r) in Eq (S14). However, as
proven in Text B, the sheer use of C_th (1) is susceptible to the overestimation of the ampli-
tude of C(7) when C(t) is rhythmic over time. To detour this overestimation problem, we

take the Taylor expansion of the time-delayed form of C_tQ(T):



= - = - dCq(1) |, Axd (D) d2Ceq(v)
Ciolt = Mg (D] = Crq(@) — g () ==+ 4 —=—4 = — .

(S15)

Strikingly, the zeroth-order and first-order derivative terms of C_‘tQ(‘L') on the right-hand side
above are identical to C_‘th(T), and the second-order derivative term still covers a half of that
term in Eq (513). Hence, CtQ[T — A{Ql(r)] bears the potential for the approximants of C (7).
Besides, the overestimation of the amplitude of rhythmic C(z) by Cyq[7 — Ay (0)] would
not be as serious as by fth (1) and at worst equals that by C_‘tQ(‘c), because C_‘tQ[r - A{Ql (‘c)]
and ftQ(T) themselves have the same amplitudes. The detailed condition for the validity of
Eq (S15) is provided in Text E.

One caveat with the use of Cyq[7 — Ay ()] to estimate C (1) is that Cyg[7 — Ay (7)] may
not necessarily satisfy the relation ftQ[T - A{Q1 (T)] < min[Z(T), E(T)] favored by Eq (S2). As
a practical safeguard to avoid this problem, we propose the following approximant for C (1)

consistent with Eq (S2):
C,(0) = min{ftQ[T - Ay (D], A, B(D)}. (S16)

We refer to this formulation as the ETS, and its correspondent for C(t) is C, (t) in Eq (6). The
delay term A{Ql(r) in Eq (S16), that is [k5AtQ(t)]_1 in the domain of time t, is interpreted as
the molecular relaxation time in complex formation: this interpretation comes from Eq (512)
where the memory of instantaneous A and B concentrations in (ftQ(r’) has the duration with
the time-scale of A{Ql () during the formation of complex AB. To identify the underlying fac-

tors of this relaxation time, we rewrite Eq (S8) as

dCiq(7)
dr

% [C(D) = Cq@] = - —[8q(@® = 1][C(®) = Cq@] = [C(@) = Ciq(®)]. (517)

Regarding the above relaxation dynamics, notice that A¢q(7) — 1 = A(®) +B() -

2Cq(0) = [Z(T) — Ciq(@] + [B(x) = Cio(x)] = 0 from Eq (S4). In other words, Ay (1) — 1
indicates the total free molecule abundance at the quasi-steady state. Furthermore, the sec-
ond and third terms on the right-hand side of Eq (S17) are respectively contributed to by
[A(7) — C(0)][B(r) — C(t)] and —C(7) on the right-hand side of Eq (S1). Because

[A(T) — C(v)][B() — C(1)] is a free molecule binding rate, the second term on the right-
hand side of Eq (S17) reflects a decrease in the free molecule binding rate with an increase in
the complex abundance that depletes the free molecules. This effect results in the shorter
relaxation time than expected only by the decay of the complex reflected in the third term.

Because the second term is proportional to AtQ(T) — 1, the free molecule depletion effect



increases with the free molecule availability. Therefore, the relaxation time takes a decreas-
ing function of the free molecule availability, as the form of the delay term A{Ql () inEq
(S16).

Related to the relaxation time, Eq (S16) is ill-defined for T — A{Ql(r) < 19 where 14 is an ini-
tial point of 7. In fact, from the interpretation of At_& (1) as the relaxation time, T should sat-
isfy T > 79 + A{Ql (o) for any rate law (e.g., the ETS, tQSSA, or sQSSA) whose form does not

depend on the initial conditions. This point is also evident from the last term in Eq (S10).

Text B. Amplitude overestimation with Eq (S14)

We here consider a situation that C (1) in Eq (S3) is rhythmic over time. At the peak or trough
time of C(), C'(7) = 0 and therefore C(t) = Cq(7) at that time. Combined with
min,[Cyq(7)] < Ciq() < max,[Ciq(7)], it leads to max,[C(7)] < max,[Ciq(7)] and
min,[C(1)] = min,[Cyq(7)].

In addition, at the peak or trough time of C_‘tQ(‘c), C_‘t'Q(‘L') = 0in Eq (514) and therefore
Ciq (1) = Ciqe(7) at that time. It similarly leads to max,[Cyq ()] < max,[Ciqe(7)] and
min,[Ciq(7)] = min,[Cige (D]

Taken together, max,[C(7)] < max,[Ciq(7)] < max,[Ciqe(r)] and min [C(x)] =
minT[(ftQ(r)] > minr[(fth(T)]. As a result, Cyq(7) tends to overestimate the amplitude of
C(7) but C_‘th(T) does more seriously, through the over- and under-estimation of the peak

and trough levels of C (1), respectively.

Text C. Amplitude overestimation with simpler new rate laws

We here show that, unlike the ETS, any simpler new rate law without a time-delay term
would not properly work for actively time-varying molecular complex levels, because this
type of a rate law is susceptible to amplitude overestimation.

As a new rate law without a time-delay term, one may suggest a certain function of A(t),
B(t), A'(t), and B'(t). Here, A(t) and B(t) are the concentrations of A and B molecules in
Eq (1), and A’(t) and B'(t) are their time derivatives to reflect the past trajectory in place of
a time-delay term. Further consideration of higher-order derivatives is likely to make the
functional form even more complicated than with only the time-delay term, and we thus dis-
card the higher-order terms.

For simplicity, suppose that A(t) is rhythmic over time while B(t) is constant. In this case,
the above function just takes the form of f[A(t), A’(t)]. This function should satisfy

fIA(t), 0] = Ceq(t) with Cq(t) in Eq (2) as the exact steady-state solution of Eq (1). At the



peak and trough times of A(t) [i.e., A’'(t) = 0], Cyq(t) in its definition reaches maxt[CtQ(t)]
and mint[CtQ(t)], respectively. Together with this fact, min {f[A(t), A" (t)]} <
fIA®), A" O]l a7 (1)=0 < max {f[A(t), A’(£)]} and the above f[A(t), 0] = Ciq(t) lead to
max,[Cyq(£)] < max,{f[A(t), A’ ()]} and min,[Cq(t)] = min,{f[A(), A'(D)]}.

In addition, at the peak or trough time of C(t) in Eq (1), C'(t) = 0 and therefore C(t) =
Ciq(t) at that time. Combined with mint[CtQ(t)] < Cro(t) < maxt[CtQ(t)], it leads to
max;[C(t)] < maxt[CtQ(t)] and min,[C(t)] = mint[CtQ(t)].

Taken together, max,[C(t)] < maxt[CtQ(t)] < max{f[A(t), A’ ()]} and min,[C(t)] =
mint[CtQ(t)] = min {f[A(t), A'(t)]}. As a result, Cq(t) tends to overestimate the ampli-
tude of C(t) but f[A(t), A'(t)] does more seriously, through the over- and under-estimation
of the peak and trough levels of C(t), respectively. Therefore, f[A(t), A'(t)] as a simple rate

law without a time-delay term is prone to the amplitude overestimation.

Text D. Rate law derivation for TF-DNA interactions

Imagine that a TF binds to a DNA molecule in the nucleus. The highly discrete nature of the
TF—DNA binding number does not allow the use of Eq (1) that involves the time derivative of
C(t) with its assumed continuity. Instead of Eq (1), we can use the chemical master equation
[S10] to rigorously describe the TF-DNA binding dynamics. Let P(n, t) denote the probabil-
ity that n copies of the TF are occupying the DNA site at time t. If this DNA site can afford at
most N copies of the TFatonce,n = 0,1,:-,N and Y.N_, P(n, t) = 1. If we further define
P(n,t) =0forn # 0,1,---, N and assume that the DNA-binding TFs are hardly accessible by
molecular machineries such as for protein degradation, the temporal change of P(n, t) with

n=20,1,-,N is governed by the following master equation:

0P(n,t) n—1

Jt

= kaV [ATF(t) - nv;l] (BDNA - )P(Tl -1t -

{kaV [41e(®) = 2| (Bona —2) + nks} P(n,6) + (n + DksP(n + 1,1),

(S18)

where k, and kg denote the TF-DNA binding and unbinding rates, respectively, V is the nu-
clear volume, Arg(t) is the total TF concentration in the nucleus, and Bpy, is the “concen-
tration” of the target DNA site, i.e., Bpya = NV 1. Here, we assume Arg(t) to be uniquely
determined at each time t with little stochasticity in Apg(t) itself and a steady nuclear vol-

ume with constant V.

Introducing a quantity Crp(t) = (nV 1) = V"1 ¥N_ nP(n,t) to Eq (S18) results in



dCrg(t) _

N
a ka Z [ATF(t) - ;] (BDNA - g) P(n,t) — ksCrp(t)

n=0

= ko { [Are(®) = Crp(®]Bona — Cre(®] +(2) ) = &2} - ksCre (o),

(S19)

where (nV~"1)2) = V=2 ¥N_ n?P(n,t). Eq(S19) is reminiscent of Eq (1), when the stochas-
tic fluctuation in the TF binding [{(nV~1)2) — (nV~1)?] is negligible. The stochastic fluctua-
tion, however, cannot be ignored for small N. For simplicity, we will henceforth consider the
case of N = 1 and thus of Bpya = V1. In this case, Eq (519) is rewritten as

% = A%‘ET) — [1+ A (D1Crp(t) = [1 + A (][ Crrq (™) — Crp(0)],  (S20)

where 1 = kSt, K= kS/ka, ETF(T) = CTF(t)/KI ATF(T) = ATF(t)/KI and

ATg(T)

KV[1+Arp(™D)] (521)

C_TFQ(T) =

Eq (S21) is the dimensionless form of Eq (7) with ETFQ(T) = Crrq(t)/K.

Here, the quasi-steady state assumption is that Cpp(7) approaches an equilibrium (quasi-
steady state) fast enough each time, given the value of Atp(7). Because C1p(7) — 0in Eq
(520) when Crg(7) = Crrq(7) given the value of Apr(7), we take the approximation
Crr(7) = Crpq (1), or equivalently, Crg(t) =~ Crpq(t) under the quasi-steady state assump-
tion. As discussed after Eq (7), this approximation is neither exactly the tQSSA nor sQSSA,
and we thus refer to it as the QSSA for the TF-DNA interactions. Of note, ETFQ(T) corre-
sponds to a special case of the previously-studied, stochastic QSSA [S11,512] for arbitrary
molecular copy numbers such as for multiple DNA binding sites.

To improve the rate law for time-varying TF concentration beyond the quasi-steady state

assumption, notice that the exact solution of Eq (520) is

Cre(0) = frro[l + ATF(T,)]C_‘TFQ(T’)G_fTT'[1+ATF(T”)]dT”dT' + fTF(To)e_fTTO[HATF(T’)]dT,,

(S22)

where 1, denotes an arbitrarily assigned, initial point of 7. Assume that 1 + Apg(1") changes

rather slowly over 7' to satisfy

1+ App(t") = 1+ App(7) for T’ in the range 7 — st <t (523)

1+1‘ITF(T) ~ -



In physiologically-relevant conditions, Eq (S23) is readily satisfied (see Text E). With Eq (523),
Eq (522) for T > 15 + [1 + A1p(1y)] ™1 is approximated as

Crr(@) = [1 + Arp(2)] f_Too C_TFQ(T')E_[IMTF(T)](T_T’)dT'- (524)

The Taylor expansion Crrq(7') = Crrq(t) = (1 — 7')Crpq (1) + (7 — 1')2CRq (1) /2 — -

leads Eq (S24) to

_ _ 1 dETFQ(T) foo
Crr(1) = Cypo(T) — — xe *dx
r(7) TrQ(T) 1+ Ap(0)  do .
1 d?Crpo(7) (®
+ — TFS( ) xZe™*dx — -
2[1 + ATF(T)]Z dT 0
= _ 1 dCrrq(r) 1 d?Crrq(7) L
- CTFQ(T) 1+ATF(T) dr [1+ATF(T)]2 dr2
_ 1 dzéTFQ(T) .
- CTFQG(T) + [1+ATF(T)]2 dz2 ’ (525)
where Crpqe (7) is defined as
~ —F _ 1 dCrrq(7)
Crrqe(7) = Crpq(D) A ar (526)
On the other hand, the Taylor expansion of the time-delayed form of CTFQ(T) is
- _ ; — _ 1 dETFQ(T) 1 dZC:TFQ(T) .
Ctrq [T 1+ATF(T)] =G — T T 21+Arp (2 de? - (827)

Interestingly, the zeroth-order and first-order derivative terms of C_TFQ(T) on the right-hand
side above are identical to fTFQe (1), and the second-order derivative term still covers a half

of that term in Eq (S25). Hence, we propose the following approximant for Crp(7):

(528)

= _ A 1
CTFy(T) = CTFQ [T - —1+/TTF(r)]'

This formulation is the ETS of the TF-DNA interaction. The corresponding approximant for
Crr(t) is Crgy () in Eq (8). Of note, Eq (S28) is ill-defined for T — [1 + Arp(D)]7! < 19 where
To is an initial point of 7. In fact, from the last term in Eq (S22), T should satisfy T > 74 +

[1 + App(1y)]~? for the application of any rate law (e.g., the ETS or QSSA) whose form does

not depend on the initial conditions.

Text E. Preconditions of rate laws

We here clarify the preconditions of the ETS as well as those of the (t)QSSA. To first show the

preconditions of the ETS with C, (t) in Eq (6), or equivalently fy(r) in Eq (S16), we revisit the

9



condition in Eq (S7). Replacing C(t) in Eq (S7) by C_'th(T) in Eq (S14) leads to the following

self-consistency condition:

dCiq(7)
dt

& (1) = AZ () | L1, (529)

where C{4(7) is given by

dC(@®) _
dr

Ag D{[B@) = Cq@]A@ua (@) + [A(®) = Cio(D]B@up()}.  (S30)

Here, us(t) = A'(1)/A(7) , ug(r) = B'(7)/B(x), and the derivation of Eq (S30) is straight-
forward from Eq (S4). For the sake of simplicity, we will keep using these notations 5 (1)
and ug (7). Next, we revisit another condition in Eq (S11). By applying an expansion

Aq(t") = Aq(7) + (7" — T)Aiq(7) to Eq (S11), we obtain |(T’ — T)A{Q(T)| K A7) for 7’
in the range T — At_Ql(‘L') st , < 7 and therefore A{QZ(T)|A;Q(T)| & 1. By the definition of

Aq(7) in Eq (S5), this condition is equivalent to
£(1) = Ag (MI[1 + A@) = BMIA@pa() + [1 + B(r) — A@]B(0)up ()| < 1. (S31)

The last condition below arises from the comparison between Eqgs (S13) and (S15), which

show the difference of ~A§ (1) Cig (1) /2:

« 1, (S32)

€ (T) — At_QZ_(T) |d26tQ(T)
y =

ZC_‘tQ[T—At_Ql (r)] dr2

where C_{(’Q(T) is obtained from Eq (S30) as

L4900 — aZ O {83 @ — 2A@[1 + 4D - CeWD[B® = Go@A@IEE @ +

{85 = 2B@[1 + B(0) = CoM}A® — Ciq@[B@ug () + {1 + 28 (0) -

[A@) - B@IPA@B@ua@rp(®) + 8% @) {[B1) — Cio(D]A(2) L22 +

(4@ - Go@]Bm 222} (533)

In summary, our approximant fy(r) shall work when Egs (529), (S31), and (S32) are satisfied.
As we will show later, Egs (529) and (S31) are in fact easy to satisfy and thus only Eq (S32)
tends to serve as the relevant factor of the validity of Ey(’r).

On the other hand, the tQSSA in Eq (2) or (S4) would be valid in the following condition
from Eq (S13), instead of the condition in Eq (532):

_r
Crq ()

d2¢
~ A3 « 1, (s34)

_ dCeq ()
&Q () = tQT

I OE

10



where (ft’Q(T) and (ft’(’)('r) are given by Eqgs (S30) and (S33), respectively. Note that this condi-
tion for the tQSSA is more rigorous than the previously-reported condition [S3]. If molecular

concentrations vary over time with a characteristic time-scale of T, Eq (S34) roughly requires

the effective time delay [ké;AtQ(t)]_1 in Eq (6) to be smaller enough than T for the validity of
the tQSSA.

Regarding C (1) from Eqgs (S1) and (S40) in Text G, one may expect that the high accuracy of
the ETS compared to the tQSSA might be indicated by the range of its valid conditions in Eqs
(529), (S31), and (S32). In fact, most of our simulated, physiologically-relevant conditions in
Table C (88.1%) satisfy both max;[£,(7)] < 0.1 and max,[&,(7)] < 0.1 [i.e., &;(7) < 0.1 and
&,(7) < 0.1 during the entire simulation time], and therefore only &, (7) and & (7) remain
the key determinants of the validities of the ETS and tQSSA, respectively. Our analysis reveals
that max, [ey(r)] < 0.1 for 55.9% of the simulated conditions and max,[stQ(T)] < 0.1 for
45.4% of the same conditions. Among them, the conditions with max; [ey(r)] < 0.1 cover
99.8% of the conditions with max, [&“tQ(T)] < 0.1, supporting more general applicability of
the ETS than the tQSSA’s. In addition, Fig A(a) shows that the ETS is particularly more valid

than the tQSSA for larger K and smaller kg, which tend to lengthen the effective time delay
-1
Next, to clarify the preconditions of the ETS with Crg, (t) in Eq (8), or equivalently Crg, (7)
in Eq (528), we first revisit the condition in Eq (523). Applying an expansion 1 + Arp(t’) =
1+ App(t) + (7' — 1) ATp(7) to Eq (S23) gives rise to this condition:

Arp(T)

T A (02 lurr(M] « 1, (S35)

erp(7) =

where upp(t) = Atp(t)/Are(7). In addition, the comparison between Eqgs (525) and (527)
shows the difference of ~Crrq(7)/{2[1 + A7r(7)]?} and thereby offers this condition:

- 1 d*Crrq(®)
erry (D) = @ emeur @ | a | <L (536)
where CT{!FQ(T) is obtained from Eq (S21) as
d®Crpo(1) _ Crrq(?) [1-Arp(D) 2 dutr(t)
dt2 - 1+A_TF(T) 1+A_TF(T) HTF(T) + dr ] (537)

In summary, our approximant C_‘TFy(T) shall work when Eqgs (S35) and (S36) are satisfied. As
we will show later, Eq (S35) is in fact easy to satisfy and thus only Eq (S36) tends to serve as a

key factor for the validity of ETFV(T).
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On the other hand, the QSSA in Eq (7) or (S21) would be valid in the following condition
from Eq (525), instead of the condition in Eq (S36):

1 1 d(jTFQ(T) _ 1 dZCTFQ(T)
ETFQ(T) 1+A_TF (T) dt [1+A_TF(T)]2 dr2

erpq(T) = &1, (38)

where Crrqo (1) = prr(1) Crpq(7)/[1 + App(2)] from Eq (S21) and Crpq () is given by Eq
(S37).

Regarding C1g () from Eqgs (S20) and (543) in Text H, one may expect that the high accu-
racy of ETFV(T) in the phases might be indicated by the range of the valid conditions of
ETFY(T) in Egs (S35) and (S36). In fact, most of our simulated conditions (92.0%) in Table C
satisfy max,[e7p(7)] < 0.1 and therefore only erg, (7) and erpq (1) in Eqs (S36) and (S38)
remain the key determinants of the validities of CTFY (1) and Crpq (1), respectively. Our anal-
ysis shows that max, [eTFy(T)] < 0.1 for 81.6% of the conditions, slightly more than the con-
ditions (69.9%) with max, [ETFQ(T)] < 0.1. Among them, the conditions with
maxr[sTFy(T)] < 0.1 cover all of the conditions with maxT[STFQ(T)] < 0.1, supporting more
general applicability of the ETS than the QSSA’s. In addition, Fig A(b) shows that the ETS is
particularly more valid than the QSSA for larger K and smaller kg, which tend to lengthen

the effective time delay k5 *[1 + K™ Arp(t)]™1 in Eq (8).

Text F. Metabolic reaction and transport kinetics

Imagine that substrate A binds to enzyme B, which catalyzes a metabolic reaction to convert
A to another molecule. The formation of the enzyme—substrate complex follows Eq (1). In Eq
(1), we set kg = kq + 1. where 1, is interpreted as the catalytic rate constant of the reaction
(conventionally written as k., in literature), and ko = kgt = 0. In this system, the total
substrate concentration A(t) changes over time as

da()
dc

—1.C(D). (S39)

We further assume that the total enzyme concentration is constant over time [B(t) = B].
Egs (1) and (S39) fully determine the time course of the system with given initial conditions
and parameters.

Unlike other molecular events that we will consider later, the majority of known metabolic
reactions are likely to be modeled by the sQSSA or tQSSA to a sufficient degree, without the
need for the ETS. Indeed, (i) most enzymatic reactions in Table A satisfy Eq (534) as well as
Eqgs (S29) and (S31) (i.e., &1, &5, &g < 1 in Table A), although a malate dehydrogenase does
not follow Eq (534) very well when the substrate is oxaloacetate, and (ii) the enzyme levels in
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Table A are generally much lower than the substrate levels, despite two exceptions of malate
dehydrogenase and succinate dehydrogenase (fumarate as a substrate). These (i) and (ii) in-
dicate that the tQSSA [relevant to (i)] or sQSSA [relevant to (i) and (ii)] would often suffice for
the kinetic modeling of metabolic reactions. Yet, oxaloacetate conversion by malate dehy-
drogenase would be well described by the ETS, compared to the tQSSA and sQSSA. Indeed,
the time trajectory of Cy(t) in Eq (6) shows remarkable agreement with the simulated en-
zyme-binding substrate levels [C(t)] from Egs (1) and (S39), after some transient period of
C(t) that depends on the initial condition (Fig B); meanwhile, the tQSSA is ~0.3-ms more ad-
vanced than C(t) in the overall profile and the sQSSA severely overestimates C(t) [Fig B(b)].
For example, at t = 1.9 ms, C(t) = C,(t) = 0.13 uM and the sQSSA leads to 0.31 uM, while
the tQSSA results in 0.13 uM at t = 1.6 ms [Fig B(b)].

The overall time shift of the tQSSA from C(t) is caused by the discarding of the effective
time delay in enzyme—substrate complex formation in the tQSSA. In other words, the effec-
tive time delay included in the ETS satisfactorily fixes this time shift. The overestimation of
C(t) by the sQSSA comes from the unlimited enzyme—substrate binding with enzyme in-
crease {A(t)B(t)/[K + A(t)]} in the sQSSA.

In addition, we examine the case of nutrient transport into a cell, where an “enzyme” is a
transporter protein on the cell surface and a substrate is a small molecule nutrient in the ex-
tracellular environment. 7;. is then interpreted as the uptake rate of a transporter-binding nu-
trient. We assume that as the cells reproduce, the transporters increase over time with con-
stant B'(t)/B(t), which is equal to the cell growth rate. With this rate, Eqgs
(1) and (S39) govern the full kinetics of the nutrient transport. Our analysis of the well-docu-
mented, phosphotransferase system (PTS) in bacterium Escherichia coli reveals that the
sQSSA alone would suffice to describe this system without the need for the ETS, as in Table B

where ¢, &, &g < 1 and the transporter level is far below the nutrient level.

Text G. Protein—protein interaction

In the case of protein—protein interactions [S13-515], the tQSSA has recently been recom-
mended for their modeling, regarding its higher accuracy than the sQSSA’s [S1,54]. Here, we
will focus on the interactions between proteins whose abundances oscillate over time with
circadian rhythmicity, i.e., ~24-h periodicity. Such time-varying nature in protein abundances
might challenge the relevance of the tQSSA and would serve as a testbed for the ETS.

Suppose that proteins A and B have oscillating concentrations with sinusoidal forms:
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A = Amae {1 = [ 1+ cos (77) |} and B@) = B {1 = 2[1+ cos (77— 08) ]}

(S40)

where A(7) and B(7) are the dimensionless A and B concentrations in Eq (51), Apax (Bmax),
aacs), T, and @g denote the peak level of A(7) [B(7)], the peak-to-trough difference of A(7)
[E(T)] divided by the peak level, the oscillation period of a circadian or diurnal rhythm, and
the phase difference between A(7) and B(7), respectively. Here, @, and ag range from 0 to
1 (the closer they are to 1, the stronger the oscillations) and 0 < ¢ < m without loss of gen-
erality. In this study, we choose T = 24 h. Based on A(7) and B () in Eq (S40), we numeri-
cally solve Eq (S1) to obtain C(7) and evaluate how well C(7) is approximated by the ETS in
Eq (S16), the tQSSA in Eq (S4), and the sQSSA in Eq (S6).

As illustrated in Fig C(a), we observe that the ETS tends to better match the temporal tra-
jectory of C(7) than the tQSSA and sQSSA. For systematic evaluation, we define qb,ﬁ, ¢€Q, and
qng as the phase differences in hours between the ETS and € (1), between the tQSSA and
C (1), and between the sQSSA and C (1), respectively (Text L). The sign of a given phase dif-
ference is assigned positive (negative) if the corresponding trajectory has a more advanced
(delayed) phase than C (7). We observe that the signs of ¢)€Q and ¢§Q are always positive
and the sign of q,’)]i is mostly negative. In the example of Fig C(a), q,’)]i =—-04h, q,’)ttQ =24h,
$lq = 2.4 h, and hence |p]| is smaller than |pfy| and |pSq|- We did find that [¢f] tends to
be smaller than |¢ttQ| and |¢§Q| across physiologically-relevant conditions [Fig C(b), Table C,

and P < 107%]. Remarkably, when |¢]§

, |¢)€Q|, or |¢§Q| is 21 h, most parameter conditions
(86.2%) have |¢]§| less than both |¢€Q| and |¢§Q| at least by one hour, and some of them
(22.9%) even at least by two hours [Fig C(c) and C(d) and P < 1074].

These findings establish the tendency that the effective time delay in the ETS quantitatively
well matches the phase difference between C (1) and its quasi-steady state. Therefore, the
relaxation time in complex formation should be considered as a key to understand the devia-
tion of the complex profile from the quasi-steady state.

Other than phases, wave profiles (determined by the waveforms and peak levels) are the
important features of oscillatory molecular behaviors. Therefore, we define similarity S, be-
tween the wave profiles of the ETS and C(7) by aligning their phases to the same. S, is de-
vised to approach 1 away from 0, as the two wave profiles quantitatively better match each
other (Text L). We also define the similarity measures Siq and S, for the tQSSA and C(1),

and for the sQSSA and C (), respectively. In the example of Fig C(a), S, = 0.91, Siq = 0.90,
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and S5q = 0.88. Based on Eq (S16), one can expect that the main difference between the
ETS and tQSSA would be attributed to their phases, rather than to their shapes. As expected,
S, and S tend to be almost equal to each other [Spearman's p = 0.89 and P < 107%; see
Fig C(e)]. On the other hand, consistent with the previous suggestions that the tQSSA is more
accurate than the sQSSA [S1], Sqq tends to be below S, and Siq [Fig C(e) and P < 1074].
Therefore, the ETS and tQSSA better approximate the wave profile of C(7) than the sQSSA.
Although physiologically less relevant, the oscillatory protein levels with irregular rhythmic-
ity may provide another testbed for the approximating capability of the ETS. Hence, we con-

sidered the following A(t) and B(t) and numerically solved Eq (S1):

—- 1 - i 2
A(r) = ;Z?]ﬂAmax,i {1 - % [1 + cos (k : T— goA‘i)]},

STAL

B(7) = %Z?’:l Bmax,i {1 - a% [1 + cos (k Tn T— goB,i)]}. (541)

§1B,

We chose N = 10 and randomly selected kg from its range in Table C and the other parame-
ters from 0.1 < Zmax‘i,Emax,i <10,05 S appap; <1, —mT < @u;@p; <7 and10h

< Ta;, Tg; < 40h. We found that the ETS tends to better approximate such an irregular pro-
file of C(7) than the tQSSA and sQSSA, as illustrated in Fig C(f).

Next, we move to a real-world example of oscillating protein interactions. In plant Ara-
bidopsis thaliana, ZEITLUPE (ZTL) is an essential protein for a normal circadian periodicity.
ZTL is stabilized by a direct interaction with another protein GIGANTEA (Gl), and this interac-
tion is enhanced by blue light [S16-518]. As a result, ZTL protein levels oscillate in light—dark
cycles, despite the constitutive mRNA expression of ZTL [S16]. We here assess how well the
ETS accounts for the experimental ZTL profile over time, through the modeling of the ZTL-GI
interaction. If A(t) and B(t) represent the ZTL and GI concentrations, respectively, then the

ZTL turnover dynamics can be described by the following equation:

dae) _

20 = o —7C(®) —nalA®) — C @], (42)

where g, is the ZTL synthesis rate, C(t) is the concentration of ZTL-GI complex, and r, and
1. denote the degradation rates of free ZTL and Gl-binding ZTL, respectively. r, < 1, because
Gl stabilizes ZTL. C(t) is determined by Eq (1) and we assume kg = kq + 1 there. Because
blue light enhances the ZTL-Gl interaction, we further assume that k4 and K in light do not
exceed k4 and K in darkness, respectively. We set B(t) as the known Gl profile [Fig D(a)]
[S16] multiplied by a scaling coefficient wg;, because the original Gl profile is given by the

concentration levels at a relative scale, not at the absolute scale. For the same reason, when
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comparing A(t) with the experimental ZTL profile [Fig D(a)] [S16], we use A4 (t) =
A(t)/wzt, where wypy, is another scaling coefficient.

We compute three different versions of A(t) for their comparison with the experimental
ZTL profile: (i) the first version is the solution of A(t) from Egs (1) and (S42), (ii) the second
version is the solution of only Eq (S42) with the replacement of C(t) by C, (¢) in Eq (6), and
(iii) the last version is similar to version (ii), but with the replacement of C(t) by Ciq(t) in Eq
(2). In other words, version (i) is the full modeling result that we treat as the gold standard to
assess the relative accuracies of versions (ii) and (iii) from the ETS and the tQSSA, respec-
tively. We do not consider the sQSSA because the tQSSA has already proven to be more ac-
curate than the sQSSA in Fig B and C as well as in previous studies [S1,54].

We simulate the full model and its ETS and tQSSA versions in (i)—(iii) for randomly-selected
parameters ga, 1a, e, Wg1, and wyr, with kg and K in light and darkness (Table D). We de-
fine similarity Sz, between A¢(t) and the empirical ZTL profile when A¢(t) is calculated
from the full model by the above relation A;(t) = A(t)/wytL. Sz71, is devised to approach 1
away from 0, as A¢(t) quantitatively better matches the ZTL profile. Analogously, SzrLy and
SzrLq are defined for the ETS and tQSSA cases, respectively. Fig D(a) and D(b) present an ex-
ample that A¢(t) from the ETS is as close to the experimental ZTL profile as A¢(t) from the
full model, and is closer to that experimental profile than A¢(t) from the tQSSA (Sz, =
0.88, Szr1y = 0.88, and Sz, = 0.79). Indeed, most of our simulated conditions (78.2%)
show Szt higher than Szt [Fig D(c) and P < 10~%], while SzrLy and Szry, are almost the
same as each other [Fig D(d)]. We hence conclude that the effective time delay in the ETS is

important for capturing the experimental ZTL profile to a similar degree to the full modeling.

Text H. TF-DNA interaction

We here consider TF-DNA interactions with circadian rhythmicity. Suppose that the TF con-

centration oscillates over time in a sinusoidal form:

A =2 _%a 2
Arp(T) = Apax {1 5 [1 + cos (kST T)]}, (S43)
where ZTF(‘L’), Zmax, ap, and T are the dimensionless TF concentration in Eq (S20), the peak

level of A (1), the peak-to-trough difference of A (7) divided by the peak level, and the

oscillation period of a circadian or diurnal rhythm, respectively. Here, a ranges from 0 to 1
(the closer it is to 1, the stronger the oscillation) and we choose T = 24 h. Based on ZTF(T)

in Eq (S43), we numerically solve Eq (520) to obtain Cp(7), and evaluate how well Crg(T) is

approximated by the ETS in Eq (528) or by the QSSA in Eq (S21).
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As illustrated in Fig E(a), we observe that the ETS tends to better match the time trajectory
of Crp(7) than the QSSA. For systematic evaluation, we define (1))5 and q.'Jg2 as the phase dif-
ferences in hours between the ETS and Crp(7), and between the QSSA and Crg(T), respec-
tively (Text L). The magnitudes of these phase differences reach up to ~5 h in physiologically-
relevant parameter conditions [Fig E(b) and Table C]. The sign of a given phase difference is
assigned positive (negative) if the corresponding trajectory has a more advanced (delayed)
phase than Crg(7). In the simulated conditions (Table C), we observe gbé > 0 and qb)f <0.In
the example of Fig E(a), ¢, = —0.3 hand ¢§ = 2.3 h, and here |¢] is smaller than |¢a| In-
deed, our analysis suggests that |¢]§| tends to be smaller than |¢>6| over the physiologically-
relevant conditions [Fig E(b) and P < 10™*]. When |¢)§| or |q,’)é| is 21 h, most parameter con-
ditions (91.6%) have |¢]§| less than |¢6| at least by one hour, and a quarter of them even at
least by two hours [Fig E(c) and P < 10™4].

These results suggest that the effective time delay in the ETS tends to well match the phase
difference between Crp(7) and its quasi-steady state. Therefore, the relaxation time in TF—
DNA binding should be considered as a key to understand the deviation of Ctp(7) from the
guasi-steady state.

Unlike the cases of phases, we expect that the wave profiles predicted by the ETS and QSSA
would be almost the same, with regards to Eq (S28). To examine this issue, we define similar-
ity S, between the profiles of the ETS and Crr(7) by aligning their phases to the same. Sy is
devised to approach 1 away from 0, as the two wave profiles quantitatively better match
each other (Text L). We also define the similarity Sq for the QSSA and Crr(T). As anticipated,
Sy and S take almost the same values as each other (Spearman's p = 0.94 and P < 107%)
and both are > 0.7 for the physiologically-relevant conditions.

Although physiologically less relevant, the oscillatory TF level with irregular rhythmicity
may provide another testbed for the approximating capability of the ETS. Hence, we consid-

ered the following Arg(7) and numerically solved Eq (S20):

- 1 — i 2
Are(0) = 5 0 Ama {1 = %22 [1 4 cos (v = )|} (s44)

We chose N = 10 and randomly selected kg, K, and V from the conditions in Table C and
the other parameters from 0.1 < Zmax’i <10,05=<a,; <09, - <@p;<mand10h
< T,; <40 h. Even with such irregularity of the rhythms, the ETS is still found to improve

the approximation of Cr(T) compared to the QSSA, as illustrated in Fig E(d).
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Text I. Positive autogenous control

Consider a scenario of positive autoregulation that proteins enhance their own transcription
after homodimer formation and this dimer—promoter interaction is facilitated by inducer
molecules, as in Fig 2(a). The protein production is hence governed by the following equa-

tions:

% = §+ (ag — $)Crp(t) — (by + kqi)M (1), (545)
L0 = 0, M(0) - O + k) A, (s46)
L2 = 24D - 24,OF — (ka + 7 + kad Az (©), (547)
9me(0) — TR0 A (6 — [lerpa + ke + MRrrada (D] Cre(®). (548)

Here, M(t), A(t), A5 (t), and Cpg(t) are the total mRNA, protein, protein dimer, and pro-
moter-binding dimer concentrations, respectively. Eqs (S47) and (548) are based on Egs (1)
and (520), but modified for homodimerization and dilution with cell growth. s, a,, and a, de-
note the basal and maximal transcription rates (s << a,) and translation rate, respectively.
by, 1¢, and kg denote the mRNA and protein degradation rates and cell growth-related dilu-
tion rate, respectively. k,, kq, and ktpq denote the dimer association and dissociation rates
and dimer—promoter dissociation rate, respectively. 17 is a dimensionless quantity, monoton-
ically increasing with an inducer level. nIQTFa and V correspond to k, and V in the case of Eq
(S20), respectively. We here assume that the promoter-binding dimers are neither dissoci-
ated to monomers nor degraded. To be precise, — (1. + kqit)A(t) and —(kq + 7. +
kai) A, (t) in Egs (S46) and (S47) should be replaced by —1.[A(t) — 2Ctp(t)]—kqA(t) and
—(kq + 1)[A5(t) — Crp(®)] — kqitd2 (), respectively; however, this replacement does not
much alter our simulation results, and thus we keep the original forms of Eqgs (S46) and (547)
for the straightforward approximation of the dimer concentration later.

To systematically analyze the induction kinetics using dimensionless quantities, we rewrite

Eqgs (S45)—(S48) as

D = 5+ (1~ 0)Cre(?) — Bol (1), (s49)
di(:) = M(®) - A(D), (S50)
d%%(%) = RIA() — 24,(D)]* — DA, (D), (S51)
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dCrr(®)

== = P4, (%) — [Drp + nP Ay (D)]Cre(D), ($52)

where all the variables and parameters are dimensionless as £ = (1, + kqt, M(f) =
(e + kaag VML), A(?) = (e + kai)*(agar) TTVA(L), Ax(2) = (e +
kai)?(aoay) VA, (0), Cre(®) = VCrp(t), 0 = sag* « 1, By = (by + ka) (1 + kai) ™,
R = kaa0a1(2V) (1, + kqi) ™3, D = (kq + 7 + kai) (7 + kai) ™%, P = krpa@oa, V71 (e +
kai) ™, and Drp = (krpg + Kai) (7 + kai) ™

Egs (S51) and (S52) are equivalent to Eqs (S1) and (S20) with the mapping of D7,
4RD™1A, (%), and 2RD™1A(%) in Eq (S51) to 7, C(7), and both A(7) and B(7) in Eq (S1) and
that of Dypt, Crg(f), and nPDrt A, (%) in Eq (S52) to T, KV Crp(T), and A7g(7) in Eq (520),
respectively. From Eqgs (S4) and (521), the tQSSA and QSSA-based model then comprises Eq
(S50) and this equation:

nPDT Azt (7)

=0+ (1-o0) 140PDyf A (%)

— ByM(%), (S53)
where A,q(£) = [k + A(£) — Do (£)]/2 with Dy (£) = Vi[xc + 24(£)] and k = D/(4R).
We simply call this model with Eqgs (S50) and (S53) the QSSA-based model. The second term
on the right-hand side of Eq (S53) corresponds to a TF-DNA binding curve under the quasi-
steady state assumption. This binding curve is a sigmoid function of the protein level A(%),
the known feature of positive autoregulation.

On the other hand, from Egs (516) and (S28), the ETS gives rise to a model with Eq (S50)

and the following equation:

() "PDT_F“ZV[?‘7DTF+n;742ym] =
— =0+ (1—-0) - n — BoM (%), (S54)
dz 1+T)PD17F1A2Y[?———A
DTg+nPAzy(®)

where 4, (1) = min{A,q[f — R‘lz{é(f)/él],ff(f)/z} with the aforementioned A,q (%)
and ZtQ(f). The second term on the right-hand side of Eq (S54) corresponds to a TF-DNA
binding curve modified with the relaxation time in the dimer—promoter interaction and di-
merization.

As 7 increases from 0, the simulation of the full model with Eqs (S49)—(S52) shows that an
initially low, steady-state protein level undergoes a discontinuous transition at some point
n = 1. [Fig 2(b)]. Therefore, upon a sudden change of n = 0 ton > 1, the protein level
grows over time towards its new steady state. The induced protein time-series can be com-

pared between the full model [Eqs (S49)—(S52)], the ETS-based model [Egs (550) and (S54)],
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and the QSSA-based model [Egs (S50) and (S53)]. These three models with the common pa-
rameter set have the same steady states, but can differ in their transient behaviors. Specifi-
cally, we will focus on the response time, defined as the time taken for a protein level to
reach 90% of its steady state.

To seek the analytical expression of the response time, we consider the following condi-

tion:
A(t) K kand By > 1, (S55)

which allow us to take Apq (£) = A%(%)/(4x), R Ayg (1) /4 ~ 1/D, and an instantly accli-

mating mRNA level with M'(%) ~ 0 in Eqs (S53) and (S54). Plugging them in Eq (S50) leads to

P A
QU (el ® AD) (556)
¢ By Bo 1+(4£’TF)EZ ) '

P\ 2| DT 1
(4KDTF)A |:T 1+( nP ZZ(%_l) D]

d‘;(:) ~Z 42 b () | _ AG). (557)
° ° 1+( nP )AZ z D 1
4xkDTR 1+(%)7\2(%—%) D

Egs (S56) and (S57) come from the QSSA and ETS, respectively. A(f) — o /B, at the steady
state at 7 = 0 and the above ¢ < 1 and By > 1 ensure a/B,y < 1. Therefore, we treat the
initial A(£) as ~0 when 7 switches from 0 to > 7. To estimate the relevant protein re-
sponse time, we consider two different stages of the protein growth: (i) the early stage with
0 < A(£) < 2y/kDrpn~1P~1 and (ii) the late stage with 2,/kDren~1P~1 < A(%) < A, where
A, is the final steady state of A(%). The phase portrait of Eq (S56) in the early and late stages
is illustrated by Fig F. For the early and late stages, Eq (S56) respectively reduces to

@ T2(3Y _ A(+ 4D 1 pes
= ~ ¢ + aA“(t) — A(%) and TR A(1), (S58)

where a = nP(1 — 0)/(4xByDrg) and ¢ = g /B,. Eq (S58) gives the dimensionless form of

the QSSA-based response time, as follows:

[<Dre 5 _
[f]ﬁ(fﬁfz‘ﬁ _ fz np dA() +I€A* dA(%)
0 = —
o A@® L EET®
/M_l 1-2 (1-0)an«
arctan [*—2“—| 4 arctan +In|——-"—|, (559)

n=n« n=n« n=n« 1-¢
N N+ N

where A, ~ 1/B, from Eq (558), { = 0.9 by our definition of the response time, and
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— BgKDTF
M. = Po(1-0)" (560)

When n - n,, the response time in Eq (S59) diverges. 1, approximates the transition point,
i.e., ¢ = 1,. Applying this fact and o «< 1 to Eq (S59) for n — 7. informs the QSSA-based re-

sponse time near the transition point, as follows:

2m 1-2vo
=+ ln( - ) (S61)
Nc

Note that the first diverging term roots in the early stage of the protein growth and the sec-
ond term in the late stage. The above estimate tends to match the QSSA model simulation
with Egs (S50) and (S53) under the condition of Eq (S55) [9.6 + 9.0% relative error (avg. £ s.d.
in simulated conditions) and P < 1074].

Next, regarding the ETS, Eq (S57) in the early stage of the protein growth reduces to

= N 1 1 R
~ ¢ + aA? (T -5 E) —A(D), (s62)

where a and ¢ are the same as Eq (S58). Roughly, A(£ — D~! — Di}) > 0 only if A(%) >

Apin = ¢ [1 -(1+D71+ D{Fl)_ll, because A(f — D™t — D) = A(®) — (D71 +

Di#)A' (%) and A' (%) is given by

did®) _
dz 2a(p-1+p71)’

2a(D‘1+D171.1)A(‘?)+1—\/4a(D‘1+D—F§)2

1 Tra
<1+WD¥%>A(T) C]+1

(S63)

A’ (%) above is the solution of a(D™1 + DT_Fl)Z[A’(f)]Z —[2a(D~ + DF})A(®) + 1] A' (D) +
aA?(t) — A() + ¢ = 0. It comes from Eq (562) and A2(2 — D™ — D) ~ A%(%) —
2(D7*+ D) ADA ®) + (D~ + DT'Fl)Z[fT’(f)]Z as A" (£)~0 in the early growth stage
when 7 is not too larger than 7. so that A(%) exhibits prolonged slow growth. Apart from Eq
(S63) for A(f) > A, in the early growth stage, we obtain A'(£) ~ ¢ — A(%) for A(%) <
Apin by setting A(£ — D71 — D) in Eq (S62) as ~0. A'(£) in the late stage of the protein
growth is the same as the second equation in Eq (S58), i.e., not different from the QSSA.

Therefore, the response time from the ETS takes this form:
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(S64)

where u = \/,/nn;l(D‘l + Dig)? {2[1 + (D 1+ D)o 1(1-0) - \/rm;l} + 1 and
the other notations are the same as Eq (S59).

In a similar fashion to the previous trial, we put 7. = 7, and o < 1 into Eq (S64) whenn —

7N¢. The ETS then predicts the near-transition response time as follows:

27 1 1 1- 2o 1 1
—(1+—+—)+1n —_— +1n<1+—+—)

n—1c D Drp 1-¢ D~ Drp
Mc
1 1 DDTF(IT—l)[DDTF(ﬁ—1)—2(D+DTF)]
H(3+5=) {1+ e L (565)

where & = \/(D‘1 + Di#)?{2[1 4+ (D~ + Dif)~t]o~1/2 — 1} + 1. Remarkably, the full

model simulation with Egs (549)—(S52) under the condition of Eq (S55) does support the
above predicted response time [14.3 + 12.6% relative error (avg.  s.d. in simulated condi-

tions) and P < 10™*]. Although the predicted response time looks complex in its form, only

the first term 27 (1 + D~ + D) /\/(n — nc) /1 becomes dominating as 7 = 7.

D~ + D3 in the term represents the unique feature of the ETS, as will be discussed below.
Subtracting Eq (S61) from Eq (S65) suggests that the exact response time would be longer

than the QSSA-based estimate by

z_n(i_l_i) +1n (1 +%+DLTF)+(1+L) In {1 +DDTF(a_1)[DDTF(ﬁ_1)_2(D+DTF)]}‘ (S66)

n=nc \D ~ DtF D  DrF (D+D1p)?
Nc

The dimensional form of Eq (S66) is given by Eq (9) with a notation r = 1. + kgj;. This result
was verified by the full and QSSA model simulation difference, as discussed in the main text.
The above difference between the exact and QSSA-based response times originates in the
early stage of the protein growth, as evident from a comparison between Egs (559) and
(S64). This response time difference vanishes as D™! + D — 0. Because D™! and Dy are
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proportional to the effective time delays in dimerization and dimer—promoter interaction,
respectively, the total effective time delay D1 + DT_F1 is responsible for the retarded re-
sponse compared to the QSSA. Strikingly, the response time difference diverges asn = 7.
This relatively far retarded response near the transition point is an amplified effect of the ef-
fective time delay (i.e., the relaxation time in complex formation), attributed to the ultrasen-

sitivity of the protein growth around the trough of the near-transition phase portrait in Fig F.

Text J. Negative autogenous control

Consider a scenario of negative autoregulation that proteins repress their own transcription
after homodimer formation and this dimer—promoter interaction is inhibited by inducer mol-
ecules, as in Fig G(a). In fact, the homodimerization is not essential for our main results later,
but just considered for a fair comparison of this system and the above positive autoregula-
tion case. The protein production process is described by the following equations and Eqs

(S46) and (S47):

dm(t 1

_di ) = §+ (ag—s) [; - CTF(t)] — (by + kai) M (1), (567)
dCrg(t krra kra

dom® _ TR A (0) ~ [Ferpa + kaie + o 4,0 Cre (), (568)

where all the variables and parameters are the same as Eqs (S45) and (548) and ETFa/n cor-
responds to k, in the case of Eq (S20). As the simulated inducer level increases with 7, Fig
G(b) demonstrates that the steady-state protein level [A(t)] increases, but does not show a
discrete transition like the positive regulation case. Upon acute induction by ann = 0 ton >
0 switch, the protein level grows to the new steady state over time and this response be-
comes slower at larger 1 [Fig G(c)]. Still, the response is speedier than in the positive regula-
tion case, when the protein steady states are similar in that comparison [Fig 2(c) and G(c)]—
consistent with the previous finding of the beneficial effect of negative autoregulation [S19].
Adopting the dimensionless variables and parameters in Eqs (549) and (S52), we rewrite

Egs (567) and (S68) as

ﬂf) =0+ (1 - 0)[1—Crp(D)] — BoM(%), (S69)
di‘;ﬁ) = %"Tz (0 - [DTF + S/TZ (f)] Crp(D). (S70)
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Eq (S70) is equivalent to Eq (520) with the mapping of Dygt, Crp (%), and Py~ D5t A, (%) to
7, KV Crp(1), and A1p(7), respectively. Therefore, based on the same procedure as the posi-
tive regulation case, we obtain the QSSA-based model with Eq (S50) and the following equa-
tion:

a@) _ L (-0

dz N+PDtAgq(®) BoM(%). (571)

Likewise, the ETS leads to the model with Eq (550) and the following equation:

WO =g —— B ). (s72)
7 7]+PDTFAzy[T—inDTF_‘_PZZy(%)]

Ayq(t) and Ay, (1) in Egs (S71) and (S72) are defined as in Eqs (S53) and (S54).

When there is a suddenn = 0 ton > 0 change, the response time of the induced protein
can be compared between the full model [Eqgs (S50), (S51), (S69), and (570)], the ETS model
[Egs (S50) and (S72)], and the QSSA model [Egs (S50) and (S71)]. Across physiologically-rele-
vant conditions in Table E, we found that the ETS model tends to better agree with the full
model in the response time than the QSSA model, especially for small 7 values as exempli-
fied by Fig G(c) [P < 107%; in Fig G(c) (left), the ETS even reproduces an overshoot in the
protein level, whereas the QSSA does not]. Like the positive regulation case, we will try the
analytical formulation of the response times with the ETS and the QSSA.

We assume Eq (S55) for Egs (S50), (571), and (S72) and obtain the following expressions

with a notation g = P/(4kDrpB2):

dA@) o  1-0 1 e
dt B + By 1+’;—SBgA2(%) A(D), (573)
U@ 2 4 1o L —A@). (s74)
dz Bo By Nsp2 524 Dri 1
1+15p2 422 -
0 1+158232(2-5) D

Egs (573) and (S74) pertain to the QSSA and ETS, respectively. The phase portrait of Eq (573)
in Fig G(d) suggests that the closer to the steady state, the more rate-limiting in the protein

response process. We therefore focus on the late-stage dynamics and assume

A(%) = A, — ee 1@ 0), (S75)

where A4, is the steady state of A(%), A and € are positive constants, and £, denotes the ini-
tial point of £. Eq (575) would work for large 1 without an overshoot in A(f). We first set

A%2(f — D7 1) in Eq (S74) as ~A? and then apply Eq (S75) to Eq (S74). Consequently,
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ele—AGE-%) o T 4 170 1 —  +ee AT 4 (576)
By Bo 1+117—SBS[A_*—E€_A(T_TC1_TO)]

where t4 = Dip[1 + n~tnsB2A%]~1 + D~1. The Taylor expansion of Eq (S76) up to O(€)

gives rise to

215B0A(1-9) 224 _ 3 4 1 ~ 0. (577)
2
n(l +T;1—SBSA_§)

The use of relation e* = 1 + x for Eq (577) with x = A74 leads to

N2 _
s 77(1+7ZI—SB§A3) +215Bo A, (1-0)

n(1+’Z1—SB§A§)2—zfdnsBOA*(l—a)' (578)
In a similar manner to the positive regulation case, we treat the initial A(%) as ~0. Compati-
bly, we treat A(f — £4) as ~0 for £ < £, + %4, as well. In that time period, A’ (£) ~ By* —
A(%) from the modified Eq (S74), and therefore A(£, + 4) ~ By*(1 — e~%4). For the conti-
nuity of this result with Eq (S75) at T — T + T4, it should be satisfied that ¢ =

Byle@Dta — (B51 — A,)e*d. With this form of € and the quantity { used for Eqs (S59)
and (S64), we solve Eq (S75) for £ — £, when A(%) = {A,, and this value of £ — £, is the esti-
mated response time in a dimensionless form. For simplicity, if one focuses on the case of

n » ns, A, ~ By from Eq (S73) or (S74). Combining the current procedure with the relation
in Eq (578) suggests the upper limit of the ETS-based response time, as follows:

hﬂﬁg—zu—aﬂ1+%+iﬁan§)—%—iﬂ%, (S79)

Dtg

which is obtained by the Taylor expansion up to 0(ns/n) for n > ns. Although Eq (S79) in-
tends to be the upper limit, it is in practice close to the simulated response time from the full
model with Egs (S50), (S51), (S69), and (S70) under the condition of Eq (S55) [2.8 £ 1.6% rela-
tive error (avg. £ s.d. in simulated conditions) and P < 10™4].

Following the above way, one can also calculate the QSSA-based response time with Eq
(S73). In Eq (S78), one should replace 74 by zero and use = instead of =. When n > 7, the

QSSA-based response time up to 0(ns/n) is given by
2\ 1= —
hl(l_g)[l, 2(1-0)%|. (580)

This estimate tends to match the QSSA model simulation with Egs (550) and (S71) under the
condition of Eq (S55) [2.8 + 1.7% relative error (avg.  s.d. in simulated conditions) and P <

104].
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Subtracting Eq (579) from Eq (S80) informs the lower limit of the response time difference
between the QSSA-based estimate and our prediction, as follows:

2(1 - o) (%+DLTF) [ln (—)— 1—1——] Is (581)

1-¢ DtF

This minimum difference approaches zero when D™t + D7t — 0. Because D~! and Dy are
proportional to the effective time delays in dimerization and dimer—promoter interaction,
respectively, the total effective time delay D1 + DT_F1 is responsible for the advanced re-
sponse with the retarded inhibition of transcription.

Dividing Eq (S81) by .. + kg gives the dimensional form of Eq (S81). Consistent with our
analytical prediction, the QSSA-to-full model difference in their simulated response times is
linearly scaled to /1 (R? > 0.87) and its slope against 15 /n equals or exceeds that in the
dimensional form of Eq (S81) for most of the simulated conditions [88.8%; see Fig G(e)]. In
the example of Fig G(e), the QSSA model does overestimate the response time by about ten

minutes and the error diminishes for larger 1 values.

Text K. Rhythmic protein degradation

To understand the rhythmicity in the experimental degradation rates of circadian proteins,
we constructed the kinetic model of circadian protein production and degradation. Here,

Ay (t) and A, (t) represent the concentrations of unmodified and modified proteins, respec-
tively, while the protein modified by ubiquitination undergoes degradation. The protein

turnover dynamics is described by

dA
220 = g(6) — apAo (D), (s82)
dA4(t

20 = 4540(8) — 1AL (0), (s83)

where g(t) and a, are the protein synthesis (translation) and modification rates, respec-
tively, and 7. is the modified protein’s turnover rate. If the protein turnover requires multiple
preceding PTMs like mono- or multisite phosphorylation and subsequent ubiquitination, we

consider Eq (582) and the following equation instead of Eq (S83):

dA;(t
0 = 0,1 A1 (6) — Ay (D), (s84)

where A;(t) denotes the concentration of the i-th modified protein withi = 1,2,:--,n (nis
the total number of the PTMs), a; for i < n — 1 denotes the rate of the (i + 1)-th modifica-

tion, and a,, = 1, the turnover rate of the n-th modified protein. In the case of n = 1, Eq
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(584) becomes the same as Eq (S83). Therefore, we will consider Eqs (S82) and (S84) whether
n =1orn > 1 [these equations are identical to Eqgs (10) and (11) in the main text].

For the total protein concentration A(t) = X/, A;(t), Eqs (S82) and (S84) result in

LR = g(t) — (AW, (585)

where r(t) is the protein degradation rate given by

Ay (t
r() =1 #(t)) (586)

To exclude the possibility of the time-dependent regulation of the degradation process, a;’s
with 0 < i < nin Eqgs (S82) and (584) are constants. Given the circadian profile of protein
synthesis rate g(t), the numerical solution of Egs (S82), (S84), and (S86) gives rise to the deg-

radation rate r(t). In this calculation, we use the sinusoidal form of g(t):

9(®) = Gmax [1 — [1 + cos (%)]} (S87)

where gmax, &g, and T are constants.

On the other hand, the ETS provides the analytical estimate of r(t) through the compari-
son of seemingly unrelated but mathematically equivalent systems. Because the periodic
g(t) assures (A;(t)) = (A;(t)) = 0 ((") is a time average), (g(t)) = a;(4;(t)) and (4;(t)) is
then inversely proportional to a;. Hence, A(t) =~ A, (t) + A, (t) fori = u,v (u < v) that
hold the two smallest a; values among all a;’s. In addition, a;’s are larger for i # u, v by defi-
nition and therefore the corresponding 4;(t)’s are likely to follow A;(t) ~ 0 with the effect
of —a;A;(t) in Eq (S84). Subsequently, a,A,(t) = a,114,41(t) = -+ = 1.4,,(t). As a result,
Egs (584) and (S86) reduce to

dA,(t) ~ z d4;(6) = a, Ay (t) — a,A4,(t)

dt ) dt
i=u+1
~ay [A(t) - Av(t)] - avAv (t): (588)
r(t) = a, i”(—(:)). (S89)

Whenn = 1, it is obvious that u = 0, v = 1, and symbol = replaces =~ in Eqs (588) and (S89).
Egs (588) and (S89) may not satisfactorily work for large n due to accumulating errors in the
approximation, but still capture the core structure of the dynamics.

We then observe the mathematical equivalence of Eqs (S20) and (S88) despite their differ-

ent biological contexts: Crg(t) and A, (t), V=1 and A(t), k,Arg(t) and a,,, and ks and a,, in
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correspondence. Based on this correspondence and Eqgs (7), (8), and (S89) with the condition
A, (t) < A(t), the ETS gives the estimate of r(t) as ;,(t) in Eq (12). Following a similar pro-
cedure, the QSSA gives the estimate of r(t) as a, a,,/(a, + a,). The ETS-estimated degrada-
tion rate 7, (t) is rhythmic when the protein level A(t) is rhythmic, but the QSSA-based deg-

radation rate is just constant over time.

Text L. Simulation and analysis methods

Overview

Numerical simulations and analyses were performed by Python 3.7.0 or 3.7.4. Ordinary dif-
ferential equations (ODEs) were solved by LSODA (scipy.integrate.solve_ivp) in SciPy v1.1.0
or v1.3.1 with the maximum time step of 0.05 h. Delay differential equations were solved by
a modified version of the ddeint module with LSODA [S20].

Splines of discrete data points were achieved with scipy.interpolate.splrep in SciPy v1.3.1.
Linear regression of data points was performed with scipy.stats.linregress in SciPy v1.3.1 and
then the slope of the fitted line and R? were obtained.

For the parameter selection in numerical simulations or for the null model generation in
statistical significance tests, random numbers were sampled by the Mersenne Twister in ran-
dom.py.

Spearman's p was measured with scipy.stats.spearmanr in SciPy v1.1.0 or v1.3.1. To test
the significance of p between two groups of variables, we randomized the pairing of the vari-
ables between the groups (while maintaining the original group membership) and measured
the P value (one-tailed) from the 10* null configurations. This method was also applied to
the significance test of the average of the relative errors of analytical estimates against ac-

tual simulation data in Texts | and J.

Malate dehydrogenase system in Text F

The numerical solution of A(t;) from Eqgs (1) and (S39) {t; =t — [kSAtQ(t)]_l} is needed to
obtain Cy(t) in Eq (6) through the calculation of Cio(t;). However, that solution at t; may
not be available for given time t because of a finite single time step in ODE solving. There-
fore, we took the solution at time t, which is earlier than but the closest to t; among the
available time points, and set this solution as the initial condition to solve again Egs (1) and

(539) from time t; to t;. We used the resulting solution A(t;) to calculate Cyq(t;) and then
G, (®).
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Protein—protein and TF—-DNA interaction models in Texts G and H

10° parameter sets were randomly selected for Egs (S1) and (S40) or for Eqgs (S20) and (S43),
according to Table C. We found that the simulated C () and Crg(7) were insensitive to their
initial conditions. A phase difference between two periodic time-series was calculated by
maximizing their cross-correlation with a varying displacement of one series relative to the
other [S21]. For the cross-correlation calculation, the time average of each series was shifted
to zero and ten duplicates of a single time period (10 X T) was used. The cross-correlation
was obtained with signal.correlate in SciPy v1.1.0 or v1.3.1 (mode = ‘same’ and method =
‘fft’). In the case of irregular oscillation simulations, 10> parameter sets were randomly se-
lected for Egs (S1) and (S41) [Egs (520) and (S44)] from the ranges noted below Eq (S41) [Eq
(S44)]. To test the significance of the observation in Text G that |¢,§| tends to be smaller than
|¢€Q|, we obtained A = med(|(;bttQ|) - med(|¢)]§|) [where med(-) is the median over param-
eter sets] and randomized the labeling of (fy (7) and the tQSSA [EtQ(T)] for each parameter
set. We then measured A, = med(|¢{y|) — med(|p]|) with the new sets of |p{y| and |p]|
in this null configuration. The P value was given by the probability of A. = A across 10* null
configurations. The analogous methods were applied to the cases of |¢]§| Vs. |¢>§Q|, Sy vs.
Ssq, and Siq vs. Ssq in Text G, and |q,'>}§| Vs. |q,'>é| in Text H. In Text G, we tested the signifi-
cance of the fraction (g) of parameter sets with |¢,§| < min(¢€Q, ¢§Q) —v (v =1hor2h)as
follows, when |¢)§|, |<;bttQ|, or |¢§Q| is 21h: for each parameter set, we randomized the label-
ing of C_y(r), the tQSSA, and the sQSSA, and measured the fraction (g,) of the parameter sets
of |pf| < min(d)ttq, qbstQ) — v with the new |¢¢], |¢)€Q ,and |¢§Q| when |pf|, bigl, or |¢§Q|

is 21h. The P value was given by the probability of . = g across 10* null configurations. The

analogous method was applied to the case of |¢))E| VS. |¢)6| in Text H.

We measured the similarity between two time-series f; (t) and f,(t) as

{f:” min[f; (t), f5 (t’)]dt’} / ftHT max[f; (t"), f>(t)]dt’, where T is an oscillation period of

f1(t) and f,(t) [S22]. This quantity takes a range of 0 to 1, and becomes large for quantita-
tively similar profiles of f;(t) and f,(t). In the cases of S, Siq, and Ssq in Text G and S, and
Sq in Text H, the phase difference between two time-series in the comparison was set to
zero by the phase shift of the one series to the other, before measuring their profile similar-
ity.

ZTL-Gl interaction in Text G

We achieved the cubic splines of the experimental Gl and ZTL levels in equal length light—

dark cycles [S23] (data originally from Ref. [S16]). For ZTL profile simulation, we multiplied
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this Gl spline by a scaling coefficient wg;, and used this profile as B(t). From Table D, 10° pa-
rameter sets were randomly selected for the full model and its ETS and tQSSA versions. We
found that the simulated ZTL profile from the full model was insensitive to the initial condi-
tion of C(t). To test the significance of the fraction (q) of parameter sets with Sz, >
SzrLqQ, We randomized the labeling of the ETS and tQSSA results for each parameter set and
measured the fraction (q;) of the parameter sets of Szrr, > Szt With the new Szt and

SzrLq- The P value was given by the probability of g = g across 10* null configurations.

Positive and negative autoregulation in Texts | and J

(associated with Section Autogenous control in the main text)

10° and 500 parameter sets were randomly selected for simulation without and with the
condition of Eq (S55), respectively, as described in Table E. The simulation results were in-
sensitive to the initial conditions of variables. The steady state of a protein level was heuristi-
cally identified by the conditions of |A(;) — A(f; — 1)| < |A(%; — 1) — A(; — 2)] and
max[A(%,),A(f; — 1),A(£; — 2)] — min[A(£,),A(; — 1), A(%; — 2)] <

0.01 min[A(%,), A(f; — 1), A(£; — 2)]: we considered A(%,) in these conditions as the
steady state of A(%). The steady states of other variables were determined in a similar way,
too. To ensure A, (t), A(t) — 24,(t) > V™1 (at least at the steady state) for the validity of
Eqgs (S47) and (S48) [or (S68)], we first obtained the analytical solution of the steady states of
A(t) and A, (t) from a model without autoregulation [M'(t) = sV~ + n(n + 1) (a, —
)V — (bg + kqir)M(t) and Egs (S46) and (S47)] and used these rough estimates to select
only the parameters with A, (t), A(t) — 24,(t) > 10V ~1; after this crude initial screening,
the actual simulation results with the correct model were considered only when they satis-
fied A,(t), A(t) — 24,(t) > 10V 1 at the steady states.

The protein response time was defined as the first time of the protein level to cross 90% of
the steady state with the initial condition of A(%,) = d/B, (/B is the exact steady state
forn = 0 at T < ). For the simulated response times from the full model (Z), the ETS-
based model (X), and the QSSA-based model (Y), we tested the significance of the fraction
(q) of parameter sets with |(X — Z)/Z| < |(Y — Z)/Z] as follows, when |(X — Z)/Z| or
|(Y —Z)/Z] is >0.1: for each parameter set, we randomized the labeling of X and Y, and
measured the fraction (q,) of the parameter sets of |(X — Z)/Z| < |(Y — Z)/Z| with the
new X and Y when |(X — Z)/Z| or |(Y — Z)/Z| is >0.1. The P value was given by the proba-
bility of q. = q across 10* null configurations. On the other hand, in the case of positive au-
toregulation, the full model simulation showed that the transition point n = . was very
close to 17, in Eq (S60) within a range of 1.057, < n. < 1.17.. Therefore, we identified 1. by
the full model simulation across 1,000 grid points of n from 1.057, to 1.1n,—the right point
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of the abrupt increase of the response time, more than twice the immediate one. To com-
pare the linear regression of simulation data to Eq (S66) [equivalently, Eq (9) in its dimen-
sional form], n was uniformly sampled from the following range for each parameter set in
the condition of Eq (S55): 1.1, < n < 2n,.. We selected this range to consider 1 close to 7,
but not too close because of a small difference between 1, and 1. as 1.057n, < 5. < 1.1n,.
To compare the linear regression of simulation data to Eq (S81), n was uniformly sampled
from the following range for each parameter set in the condition of Eq (S55): 10, < n <

1007ns. We selected this range to consider n > 7.

Rhythmic protein degradation in Text K

(associated with Section Rhythmic degradation of circadian proteins in the main text)

10° parameter sets were randomly selected for Eqs (582), (S84), (S86), and (S87) as described
in Table F. To make a fair comparison of simulation results between different n’s, we se-
lected the same gpax, B, 1, and k,,_; (for given i, i = 1, 2,--) across different n’s. We found
that the simulated A(t) was insensitive to the initial conditions. Although A(t;) [t; =t —
(a, + a,)~1]is needed for the calculation of 7,(t) in Eq (12), it may not be available for a
given moment t because of a finite single time step in ODE solving. Therefore, we used the
cubic spline of the solved A(t) to estimate A(t;), and this estimated A(t,) was almost iden-
tical to the higher time-resolution solution of the ODEs at time t;. This interpolation method
saves the computational time compared to the ODE solving with higher time resolution. Re-
garding Table F, we considered A(t) as periodic if the minimum-to-maximum difference of
the peak levels over three periods [3 X T with T in Eq (S87)] was less than 1% of the mini-
mum peak level. The peak times of (t) and —A’(t)/A(t) were averaged over three periods.
To compare the probability distributions of r(t)’s relative amplitude (or its estimate) from
different n’s, we used the simulation results with similar A(t) profiles: for a given value of x,
we chose the simulation results with A(t)’s relative amplitude between x — 0.05 and x +

0.05 [e.g., x = 1 in the case of Fig 3(e)].

Section Parameter estimation in the main text

We considered protein—protein interactions with time-varying protein concentrations A(t)
and B(t) from Eq (540) by A(t) = KA(z), B(t) = KB(1), and t = k7. Likewise, we con-
sidered TF-DNA interactions with time-varying TF concentration App(t) from Eq (S43) by

Arp(t) = KArp(t) and t = ks 't. We randomly sampled 25,000 parameter sets from Table
C. Given the A(t) and B(t) profiles [Atg(t) profile] and sampled parameter set, C(t)
[Crr(t)] was determined by Eq (1) [Eq (S20)]. A series of C(t) or Ctp(t) at 408h < t < 480h
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every two hours [C(0) = Crp(0) = 0] was used as a “true” dataset for the estimation of pa-
rameters K and kg. We then fitted the ETS [Eq (6)], tQSSA [Eq (2)], or sQSSA [Eq (5)] to those
series of C(t) by minimizing the mean squared error. Similarly, we fitted the ETS [Eq (8)] or
QSSA [Eq (7)] to Cpr(t). For the error minimization, we applied Powell’s method [S24]
(scipy.optimize.minimize) in SciPy v1.5.2. Alternatively, we also tried Trust Region Reflective
algorithm [S25] (scipy.optimize.least_squares) in SciPy v1.5.2 for the fitting of the tQSSA and
QSSA, but this method did not much change the estimated parameters. During the error
minimization, the ranges of K and kg were constrained as 0.01 nM < K < 1,000 nM and 0.1
h™ < ks < 10 h™%, consistent with Table C. For each parameter estimation, we tried ten ini-
tial conditions of the parameters and considered the output parameters with the smallest

error among these ten cases.
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Fig A. Preconditions of rate laws. (a) The ranges of K and kg valid for the ETS with

max,[g ()] < 0.1, max,[e, ()] < 0.1, and maxT[sy(T)] < 0.1 cover the ranges for the
tQSSA with maxT[EtQ(r)] < 0.1 instead of maxr[sy(‘r)] < 0.1. Green represents the ranges
common for both the ETS and tQSSA, and blue represents those only for the ETS. The calcu-
lations are based on Eqs (S4), (S5), (S29), (531), (S32), (S34), and (S40) (Texts E and G). (b) In
the case of TF-DNA interactions, the ranges of K and kg valid for the ETS with

max,[epp()] < 0.1and max,[eTFy(r)] < 0.1 cover the ranges for the QSSA with

max, [STFQ(’L’)] < 0.1 instead of max; [sTFy (T)] < 0.1. Green represents the ranges com-
mon for both the ETS and QSSA, and blue represents those only for the ETS. The calculations
are based on Egs (521), (S35), (S36), (S38), and (S43) (Texts E and H). In (a) and (b), parame-

ters are selected from Table C, and their specific values are presented in Table K.
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Fig B. Oxaloacetate (substrate) conversion by malate dehydrogenase (enzyme). (a) The to-
tal substrate concentration over time, calculated by the full model of Egs (1) and (S39). (b)
The enzyme-binding substrate concentrations from the full model (black dotted line for a
transient period described below), ETS, tQSSA, and sQSSA. These calculations are based on
the total substrate concentration in (a). An inset shows a more complete range of the en-
zyme-binding substrate concentration from the sQSSA. In (a) and (b), we used the parame-
ters and total enzyme concentration in Table A and set the initial substrate concentration as
the substrate concentration in Table A. When solving Egs (1) and (539), the initial concentra-

tion of the enzyme-binding substrate was set to zero. As discussed in Text A, any rate law

without the initial-condition dependency would work only for t > [kSAtQ(O)]_l, and also
-1

the ETS is ill-defined for a period t < [ksAtQ(t)] ; therefore, for the right comparison with

the ETS, (b) presents the tQSSA and sQSSA results only after t = [kSAtQ(t)]_l (vertical
dashed line).
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Fig C. Protein—protein interaction modeling. (a) Example time-series of substrate protein
levels A(7) and B(t) in Eq (S40) at the top, the full model-based complex level C(t) and the
ETS at the center, and C(7), the tQSSA, and the sQSSA at the bottom. t = kglr as defined
before Eq (S1). (b) Probability distributions of |} | (“ETS”), |pfo| (“tQSSA”), and |¢Ly|
(“sQSSA”) over randomly-sampled parameter sets in Table C. (c,d) Scatter plot of |¢€Q| and
|pL| (c), or that of [Pl | and |pL] (d), when |pf], |pig
pled parameter sets in Table C. A solid diagonal line corresponds to |¢]§| = |¢§Q| (c)or
|} = |$lq| (d), a dashed diagonal line to |pf| = |pfg| — 1h (c) or [pL] = |p&g| — 1h (d),
and a dotted diagonal line to || = |pfo| — 2h (c) or |pL| = |pSg| — 2h (d). Although not

’

,or |plq| is 21 h with randomly-sam-

covered in (b) and (d), |¢§Q| > 6h for a tiny portion of the parameter sets (0.03%), in which

still |f |, |pfq| < 1h. (e) Probability distributions of S, (“ETS”), Syq (“tQSSA”), and Ssq

39



(“sQSSA”) over randomly-sampled parameter sets in Table C. (f) Example time-series of sub-
strate protein levels A(t) and B(t) with irregular rhythmicity in Eq (S41) at the top, the full
model-based complex level C(7) and the ETS at the center, and C(7), the tQSSA, and the
sQSSA at the bottom. For more details of (a)—(f), refer to Text G and Tables L and M.
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Fig D. Protein ZTL-GIl interaction in Arabidopsis. (a) The experimental Gl levels [S16] and
their interpolation at the top, and the experimental ZTL levels [S16], their interpolation, and
the full model-simulated ZTL profile at the bottom. (b) The experimental ZTL profile in (a), to-
gether with the ETS-based profile at the top and the tQSSA-based profile at the bottom. In
(a) and (b), horizontal white and black segments correspond to light and dark intervals, re-
spectively. For model parameters in (a) and (b), refer to Table N. (c,d) Scatter plot of Szr1q
and Szt (c), or that of Szry, and Sz71,, (d), over randomly-selected parameter sets in Table

D. A diagonal line corresponds to Szt = SzrLq (€) Or SzT11,, = SzT1 (d). For more details of

(a)—(d), refer to Text G.
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Fig E. TF-DNA interaction modeling. (a) Example time series of TF level ZTF(T) in Eq (S43) at
the top, the full model-based TF-DNA assembly level ETF(T) and the ETS at the center, and
ETF(T) and the QSSA at the bottom. t = kgl‘r as defined under Eq (520). (b) Probability dis-
tributions of |d))§| (“ETS”) and |¢é| (“QSSA”) over randomly-sampled parameter sets in Table
C. () Scatter plot of || and |¢%| when |p§| or |¢L] 21 h with randomly-sampled parame-
ter sets in Table C. A solid diagonal line corresponds to |q,'>]§| = |¢)6|, a dashed diagonal line
to |pf| = |p| — 1h, and a dotted diagonal line to |pf| = |p§| — 2h. (d) Example time se-
ries of irregularly oscillating TF level ZTF(T) in Eq (S44) on the left and the full model-based

TF—DNA assembly level ETF(T), the ETS, and the QSSA on the right. For more details of (a)—
(d), refer to Text H and Tables O and P.
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Fig F. Phase portrait of induction kinetics with 7 > 7. in the case of positive autoregula-
tion. A vertical dashed line splits the early and late stages of protein growth. A stable fixed

point is indicated by a filled circle. For more details, refer to Text | and Table H.
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Fig G. Negative autoregulation and induction kinetics. (a) Protein production mechanism
with negative autoregulation in the presence of inducers. (b) Bifurcation diagram of the sim-
ulated protein level as a function of ) (proxy for an inducer level). (c) Time-series of protein
levels from the full, ETS, and QSSA models upon acute induction at time 0 h with n = 2 (left)
or 1 = 80 (right). The n values were chosen for similar steady states to Fig 2(c). (d) Phase
portrait of induction kinetics. The stable fixed point is indicated by a filled circle. (e) The
QSSA-to-full model difference in response time as a function of n5/n for n > n,. Both the
simulated difference and its analytically-estimated lower limit are presented. For more de-

tails of (b)—(e), refer to Text J and Tables Q and R.
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Fig H. The sQSSA- and tQSSA-based parameter estimation. The scatter plot of the relative
errors of the sQSSA- and tQSSA-estimated K values for a protein—protein interaction model.
A diagonal line corresponds to the cases where the two estimates have the same relative er-
rors. Most of the sQSSA-based estimates (77.4%) exhibit larger relative errors than the
tQSSA-based ones, demonstrating the sQSSA’s poorer parameter estimation. A subset of
simulated conditions gave relative errors outside the presented ranges here, but they did not

alter the observed tendency. For more details, refer to Text L.
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Table A. Enzyme-substrate pairs of metabolic reactions in E. coli (refer to Text F). €1, &, &g,
and g, stand for max.[&; (7)], max.[&, ()], maxT[EtQ(T)], and maxr[ey(r)] with known en-
zyme and substrate concentrations (“enzyme conc.” and “substrate conc.”), calculated by
Eqgs (S29), (S31), (S32), and (S34). In this calculation, we applied rough approximations
C(t)~Ceq(t), Cq {t - [kSAtQ(t)]_l} ~Ciq(t), and ks~1;. The enzyme and substrate con-
centrations and kinetic parameters were collected from Refs. [S26-528], respectively, except

the oxaloacetate concentration [S29].

Enzyme |Substrate Enzyme | Substrate | K Te £ & £ £

¥ conc. (mM)|conc. (mM)| (mM) | (ms™?) 1 2 wQ L4
6-Phos- Fructose
phofruc- | 6-phos- 0.01 8.8 0.16 | 0.17 |3.6x107'°[ 1.9x107°|3.5x1077 | 6.5x107*2
tokinase phate
Arginine
decarbox-| Arginine 0.002 0.6 0.65 | 0.08 [3.2x1077|3.9x107*|4.4x107*| 1.7x1077
ylase
Aspartate
ammonia-| Aspartate 0.08 4.2 1.2 | 0.18 |8.3x10®| 0.003 |7.3x107*| 1.8x10°°
lyase
Aspartate
carbamo-| ) tate|  0.08 4.2 12.4 | 042 |3.6x10%]9.5x10*| 0.003 |2.7x10°¢
yltransfe-
rase
Aspartate
transami- | Aspartate 0.02 4.2 4.0 | 0.53 |8.6x1077|6.6x107*|6.3x107*| 4.2x1077
nase
Glutama-
te decar{Glutamate| 0.15 96.0 2.32 | 0.02 |1.3x107°|3.6x107° | 8.8x1077|3.2x107*
boxylase
Ornithine
decarbox-| Ornithine | 5.9x107 0.01 3.3 |0.003 |9.6x107!|5.4x1077 | 1.8x107*|9.6x107!
ylase
Z:gfprﬁ:—_ Phospho-
Vatepycar_ enolpyru-|  0.007 018 | 019 | 0.54 |5.0x10°| 0.005 | 0.005 |2.5x10°

vate

boxylase
Succinate
dehydrog-| Succinate 0.09 0.57 0.002 | 0.09 |5.9x107|7.6x107*|3.2x107%| 2.4x107°
enase
Succinate
dehydrog-| Fumarate 0.09 0.12 0.005 | 0.002 0.03 0.08 0.02 0.002
enase
Malate Oxaloace-
dehydrog- tate 0.09 4.9x10™ | 0.04 | 0.93 |4.1x107*|2.3x10™*| 0.40 0.11
enase
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Table B. The PTS system of E. coli (refer to Text F). The cellular concentration of the PTS subu-

nit IICB (transporter) is 0.025 nmol/mg cell dry weight [S30] and we considered 0.76 mg/L in-

itial cell dry density in a culture medium [S31] to calculate the transporter concentration

here. Glucose (nutrient) concentration was obtained from Ref. [S31] and K, 1, and kg from

Ref. [S30]. We used a cell growth rate of 0.89 h™ [S31]. &4, &5, €, and g, stand for

max; [, (1)], max;[e,(7)], max, [StQ(’[)], and max, [sy(r)] with known transporter and nu-

trient concentrations, calculated by Eqgs (529), (S31), (532), and (S34). In this calculation, we

applied rough approximations C(t)~Cyq(t) and Cyq {t - [kaAtQ(t)]_l} ~Ciq ().

Transporter| Nutrient K T, kg € € < €
conc. (mM) | conc. (mM) | (mM) |(ms™)|(ms™) 1 2 Q £
1.9x10°8 11.1 0.02 | 0.08 | 0.09 |8.8x10782.8x1071?|5.1x107°|1.3x1077
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Table C. Parameter ranges of protein—protein and TF-DNA interaction models (refer to Texts

G and H). Columns “PPI” and “TDI” indicate the relevance to the protein—protein and TF-DN
interaction models, respectively. T = 24 h. "The parameter is sampled uniformly on a loga-
rithmic scale to cover a wide range of the order of magnitude. "It is sampled to assign K in
Eq (S21) by dividing the sampled value by Zmax. "The value is relevant to the TF-DNA inter-
action model: the minimum value is set to ensure the practically-meaningful oscillation of

Crr(7) and the maximum value is set to avoid any instance of Arp(t) = 0 for the condition
of little stochasticity in Atp(t) (Text D). For the practically-meaningful oscillation of C(7) in

the case of protein—protein interactions, we consider only the parameters of ¢z = 0.2 whe

A

re

ac denotes the peak-to-trough difference of € () divided by the peak level. ""After the sam-

pling of the value, we only consider the case App(t)V = 10 to satisfy the condition of little

stochasticity in Atg(t) (Text D).

Parameter | PPl | TDI |Minimum Maximum Remarks
Zmax* v v 0.01 100 Inferred from Refs. [S4,532].
Biax v 0.01 100 The same range as Ay
szax (nM)™ y 1 10 EZise.d[SognZTQ:sr]c.Jugh range of clock protein levels in
an v | v | 0(.2" | 1(0.99
ag v 0 1
ks (h™4)" v |V 0.1 10 Inferred from Ref. [S4].
¥B v 0 r(
V (nM)* v 10 100 Based on Ref. [S13].
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Table D. Parameter ranges for ZTL profile simulation (refer to Text G). We narrowed down
the initial parameter ranges from the sources listed here, to focus on the regime where at
least the full model-based A¢(t) reasonably approximates the experimental ZTL profile. “Rel-
evant to a light condition. "Relevant to a dark condition. “"The sampled parameter value for a

light condition was used as the lower bound of the dark condition parameter.

Parameter |[Minimum | Maximum Remarks

Inferred from simulated A(t) belonging to the range of

-l
ga (nM-h7) 0.5 2:5 protein levels in Table C [S34].

Chosen to satisfy 1, < 1, (from ZTL stabilization by Gl)
Ty (h7Y) 4.0 10.0 [[S16-S18] and roughly based on the order of magni-
tude of very high protein degradation rates.

Inferred from Ref. [S35] and chosen to satisfy 1. < 1,

7e (h) 01 02 | from ZTL stabilization by GI [S16-518].

kg (hY)* 0.1 0.5 Derived from the range of kg in Table C.

kg (h)" k™ 05 Chosen to satisfy .kd < ’fd " because blue light en-

hances the ZTL—Gl interaction [S16].
K (nM)* 0.02 0.5 Derived from the range of K determined in Table C.
- isfy K" < K i

K (nM)' K 05 f:;;?rrcfglsiz:‘tngr\ggion [Is(lé)]e.zcause blue light enhances
wg (M) 4.0 10.0 Derived from the range of protein levels in Table C.
Wzt (nM) 2.0 5.0 Derived from the range of protein levels in Table C.

48



Table E. Parameter ranges for induction kinetics simulation [refer to Texts | and J (associated
with Section Autogenous control in the main text)]. We randomly selected the parameter values
from the ranges here and chose s = 0.05a, for s < ay. We then only considered the param-
eter values with 4, (t), A(t) — 24,(t) > V™! (at least at the steady state) for the validity of
Eqs (S47) and (548) [or (568)] (Text L). 'K = (kg + kqit + 7.)/k, and Kyp =

(krpq + kair) /kra Whereby k, and kg, are calculated. ““The value is relevant to the model
of negative autoregulation. 'In the case of Eq (S55), we only considered b, = 100 h™%, 7. = 0
h=%, and the other sampled parameters with 10 < kB, (and ; < 10* in the negative auto-
regulation case) to satisfy Eq (S55) (and to cover n > 7, in the negative autoregulation case;
Text L). "The parameter is sampled uniformly on a logarithmic scale to cover a wide range of

the order of magnitude.

Parameter |Minimum |Maximum Remarks
n" nc(10°°7)|  10°
a, (h™) 90 500 Inferred from Ref. [S36].
a; (h™) 50 300 Inferred from Refs. [S37,538].
by (h™Y)7 10 100 Inferred from Ref. [S39].

Corresponding to 20-200-min bacterial

-1
kae (W) | 0.2079 | 2.079 doubling time.

kq (h7Y)™ 0.1 10 The range of kg in Table C.
krggq (WY 0.1 10 The range of kg in Table C.
7. ()" 0 5 Inferred from Ref. [S40].
K (um) 0.0001 1000 Derived from Refs. [S38,541,542].
Krp (uM)™ | 0.0001 1000 Derived from Refs. [S38,541,542].
V (nM™2) 0.1 1 Inferred from Ref. [S42].

49



Table F. Parameter ranges for protein degradation simulation [refer to Text K (associated with

Section Rhythmic degradation of circadian proteins in the main text)]. We randomly selected the

parameter values from the ranges here with n = 1, 2, 3 and only considered the simulation

results with periodic A(t) of 1 nM < max;[A(t)] < 10 nM as in Table C. We chose T = 24 h

and ag = 1. ‘a; = k;B (0 <i <n-—1)andk; and B denote the protein’s (i + 1)-th modifi-

cation rate coefficient and the ubiquitin ligase or kinase concentration, respectively.

Parameter |Minimum|Maximum Remarks
Inferred from simulated A(t) belonging to
Imax (NM-=h1) 0.1 3.0 the range of protein levels in Table C and in-
clined to have rhythmic r(t) [S34].
k; (nMh™%)* | 0.006 0.06 Based on Ref. [S22].
« Roughly based on ubiquitin ligase and ki-
B (nM) 10 100 | ase levels in Refs. [543,544].
. (h™) 0.5 5.0 Based on Refs. [S22,535].

Table G. Parameters used in Fig 1(a) and 1(b).

Parameter | (a) (b)
ks (h™) | 0.13| 0.28
K (nM) 8.25
V (M) 48.41

Apax 1.79 | 0.47
Binax 0.52
ay 0.76 | 0.67
ag 0.59
©5 0.59
T (h) 24 | 24
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Table H. Parameters used in Fig 2(b)-2(d) and F.

Parameter 2(b) | 2(c),left | 2(c),right | 2(d) S6
n 2.42 200 1.64
s (h) 23.37
a, (h™) 467.38
a, (h?) 297.98
by (h™) 100
kai (h™) 0.56
kq (h7) 0.58
krrq (h7) 3.83
1. (h™) 0
k, (uM~h™) 0.019
krga (nNM71h72) 0.37
V (hM7) 0.53

Table I. Simulated values of the full model-to-QSSA difference in Fig 2(d).

1/\/(n —no)/n. | Simulated difference (h)
1.00 5.94
1.24 7.66
1.48 9.30
1.72 10.88
1.96 12.51
2.21 14.09
2.45 15.62
2.69 16.94
2.93 18.23
3.17 19.45

Table J. Parameters used in Fig 3(c). "k, = 0.04 nM~*h~! (protein modification rate coeffi-

cient) and B = 33.87 nM (ubiquitin ligase concentration).

Parameter Value

Imax (NM-h71) | 2.98

Qg 1
T (h) 24
a, (h™) koB®

7. (h7?) 1.30




Table K. Parameters used in Fig A(a) and A(b). T = 24 h.

Parameter (a) (b)
KAp., (NM) | 5.86 4.2
KBpax (NM) | 14.63

a 0.61 0.71
ag 0.51
¥B 1.77

V (nM)* 453

Table L. Parameters used in Fig C(a).

Parameter | Value
ks (h™) 0.17
Amax 1.79
Brax 0.52
ay 0.76
ag 0.59
©p 0.59

T (h) 24

Table M. Parameters used in Fig C(f). N = 10, ks = 0.18 h™*, and Tz ; = T, ;.

Parameter Valuesfori=1,2,---,N (N = 10)
Aaxi 065 | 1.31 | 1.18 | 6.00 | 0.53 | 0.14 | 2.71 | 570 | 1.42 | 9.32
Braxi 0.13 | 538 | 0.31 | 0.45 | 0.13 | 0.47 | 9.07 | 0.25 | 3.51 | 5.60
ap; 1.00 | 0.73 | 0.76 | 0.57 | 0.72 | 0.60 | 0.60 | 0.58 | 0.86 | 0.97
ag; 0.50 | 0.75 | 0.93 | 0.51 | 0.52 | 0.87 | 0.87 | 0.52 | 0.65 | 0.76
Pai -2.68 | -1.02 | -2.69 | 2.59 | -2.56 | -2.60 | -0.75 | 1.16 | -2.12 | 0.29
©B,i -0.07 | -294 | 251 | -0.20 | -1.26 | -2.37 | -2.58 | 0.72 | -3.07 | -2.92
Ty (h) 129 | 12.0 | 27.7 | 142 | 29.2 | 38.1 | 323 | 325 | 13.6 | 279
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Table P.
nM™,

Table N. Parameters used in Fig D(a) and D(b).

Table O. Parameters used in Fig E(a).

Parameter Value
ga (nM-hT) 2.17
s (h™) 9.23

7. (h7%) 0.11

kg4 inlight (h™) 0.159

kqindarkness (h™?) | 0.163

K in light (nM)

0.22

K in darkness (nM) | 0.24

wgr (nM)

6.87

wzr (nM)

3.04

Parameter | Value
ks (h™) 0.28
K (nM) 8.25
V (hM7) | 48.41

Amax 0.47
ay 0.67
T (h) 24

Parameters used in Fig E(d). N = 10, ks = 0.19 h™}, K = 6.63 nM, and V = 82.43

Parameter Valuesfori =1,2,---,N (N = 10)

Zmax,i 0.47 | 1.01 | 1.06 | 0.17 | 0.92 | 1.49 | 0.57 | 1.49 | 0.21 | 1.09
ap 0.79 | 0.86 | 0.74 | 0.73 | 0.67 | 0.88 | 0.62 | 0.70 | 0.66 | 0.80
Pai 299 | 060 | 1.73 | 2.45 | -0.49 | 1.25 | 0.84 | 0.32 | 1.19 | -2.19

Ty, (h) 31.0 | 298|385 |36.4 | 29.7 | 26.6 | 17.6 | 21.6 | 23.9 | 25.8
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Table Q. Parameters used in Fig G(b)-G(e).

Parameter (b) (c), left (c), right (d) (e)
n 2 80 1.64
s(h™) 23.37
ag (h™) 467.38
a, (h™Y) 297.98
by (h™) 100
kqie (h7) 0.56
kq (h™) 0.58
krrq (h7) 3.83
1. (h™) 0
k, (uM~th™) 0.019
krpa (nM71h7Y) 0.37
V (nM1) 0.53

Table R.

Simulated values of the QSSA-to-full model difference in Fig G(e).

ns/n | Simulated difference (min)
0.01 1.57
0.02 3.05
0.03 4.42
0.04 5.72
0.05 6.93
0.06 8.06
0.07 9.13
0.08 10.14
0.09 11.10
0.10 12.01
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