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NEUROLOGICAL INVESTIGATIONS

Multimodal monitoring in neurointensive care

P J Kirkpatrick, M Czosnyka, J D Pickard

The pathophysiological mechanisms occurring
in cerebral ischaemia are multiple, complex,
and incompletely understood.' However,
despite the diverse aetiology for brain injury,
different processes operate to cause common
manifestations such a raised intracranial pres-
sure (ICP), derangements in cerebral blood
flow (CBF), and brain hypoxia.' 2 Such
changes in the pathophysiological state of the
cerebral tissues may be transient and last only a
few minutes. Although intermittent monitor-
ing with serial cranial imaging methods (such
as enhanced computed and emission tomogra-
phy) in specialised institutions3-5 provide good
spatial information, they are likely to miss
transient events. Also, the necessary intensive
support for these precarious patients is diffi-
cult to maintain within such imaging facilities.
Thus methods for assessing brain function in
an uninterrupted fashion have attracted
increased clinical attention,6-" particularly
those that can be adapted for bedside monitor-
ing, which reduces the need for patients' trans-
fer.
A single monitored cerebral event, such as a

period of raised ICP, may be a manifestation
of various different pathophysiological
changes. Cerebral swelling from ischaemia
(oligaemia), and increased cerebral blood vol-
ume from hyperaemia are examples in which
the contrast in pathology is extreme. Blind
ICP treatment in both instances using agents
such as mannitol may be beneficial in the first
case, but potentially aggravate the raised ICP
in the second.'2 13 Thus directing treatment
according to one measured variable may be
inappropriate. Similarly, whereas controlled
hyperventilation has traditionally been used to
treat raised ICP by encouraging reactive vaso-
constriction, recent evidence suggests that in
situations of cerebral oligaemia these manoeu-
vres can increase cerebral ischaemia and lactic
acid production. 14 By monitoring several
different variables, each providing relevant
information on different aspects of brain phys-
iology, a greater understanding of the individ-
ual situation can be gathered. The aim would
be a more accurate targeting and policing of
treatment. Computer support of multimodal-
ity monitoring'5 helps the observer to identify
important cerebral events among the back-
ground noise and artefacts (often induced
within the hostile environment of an intensive

care unit), and helps in the interpretion of
complex information.
The purpose of this chapter is to provide an

introduction to the novel methods that are
available for the continuous assessment of
cerebral perfusion, haemodynamics, and oxy-
genation. Continuous monitoring techniques
for different variables concerning the health of
the brain are now available, and these include
measurements of ICP, cerebral perfusion pres-
sure (CPP), jugular venous oxygen saturation
(Sjo2), and cortical electrical activity.6-1" 16-18
General systems monitors, such as pulse
oximetry, end tidal CO2, and temperature are
clearly of importance but will not be discussed
here. More recently additional methods
have been introduced such as transcranial
Doppler,68 laser Doppler flowmetry,9-'0 and
near infrared spectroscopy. "I

Computing support of data analysis
In an established neurointensive care facility
enormous quantities of data can be captured
from each patient from which information on
cerebral autoregulation, oxygenation, meta-
bolite production, and function can be
obtained. Recognition of changing cerebrovas-
cular haemodynamics and oxygenation
demands not only reliable monitoring tech-
niques, but also complex and time consuming
signal analysis. This can only be provided by
dedicated computer support.
The first specialised computer based sys-

tems for neurointensive care were introduced
at the beginning of the 1970s. Initially these
systems were oriented to the monitoring of
ICP and arterial blood pressure (ABP) allow-
ing calculation of CPP and a basic analysis of
the pulsatile ICP waveform.'920 By contrast,
contemporary systems are highly complex
multichannel digital trend recorders with built
in options for complex signal processing. The
considerable flexibility of such systems'5 20 21

permits almost unlimited signal analysis which
in itself can generate a state of data chaos.
Thus the modern user is faced with the
problem of which variables should be con-
sidered, and how the data should be inter-
preted. This information should then be
presented in a manner which is compre-
hensible to medical and nursing staff. The
mechanism of presentation is also important.

MRC Cambridge
Centre for Brain
Repair and Academic
Neurosurgical Unit,
Addenbrooke's
Hospital, PO Box 167,
Cambridge CB2 2QQ,
UK
P J Kirkpatrick
M Czosnyka
J D Pickard
Correspondence to:
Mr Kirkpatrick

131



Kirkpatrick, Czosnyka, Pickard

Although personal computers with designated
software are portable, they have yet to gain
widespread clinical acceptance as an intensive
care tool. They are seen as stand alone instru-
ments requiring specialised skills for their
operation, and occupying precious space. By
contrast, commercial hardware systems with a
customised console are more user friendly, but
are far more expensive and less flexible.
The intensive multimodality monitoring

system adopted in the Cambridge Neuro-
surgical Intensive Care Unit is based on soft-
ware for the standard IBM compatible
personal computer, equipped with a digital to
analogue converter and RS232 serial interface.
It was introduced into clinical practice in
Poland, Denmark, and the United Kingdom
in the late 1980s and has recently been
extended into a system for multimodal neu-
rointensive care monitoring and waveform
analysis.'" Most data have been derived from
patients with head injuries, common occu-
pants of the neurointensive care unit.
However, the same techniques are being
increasingly applied to those with severe
stroke, subarachnoid haemorrhage, cerebral
infections, and encephalopathies.22

Intracranial pressure and cerebral
perfusion pressure
Pathophysiological mechanisms responsible
for stabilisation of ICP within a rigid skull
vault are complex.6 Changes in the CSF and
cerebral blood volume may compensate for
longstanding volumetric changes of cerebral
tissue. However, in acute injury small changes
in cerebral parenchymal volume can cause
gross changes in ICP and CPP. Accom-
panying cerebral haemodynamic deterioration
may occur with the possible sequel of
secondary ischaemic brain damage. Thus the
continuous assessment of ICP is a key compo-
nent of any cerebral multimodality monitoring
system.

Reliable measurement of ICP still depends
on invasive systems. Non-invasive methods,
such as transfontanometry,23 tympanic mem-
brane displacement,24 and assessment of
transcranial Doppler flow velocity pulse wave-
form,25 are difficult to calibrate and have not
achieved suitable accuracy. The least invasive
systems available use epidural probes, but
there is still uncertainty regarding the precise
relation between ICP and pressure in the
extradural space. Intraventricular or subdural
fluid filled catheters with external pressure
sensitive elements can measure ICP directly
but display signal drift, have limited frequency
response,26 and present a risk of infection. By
contrast, ICP microtransducers measure CSF
or intraparenchymal pressures with high accu-
racy, minimum signal drift, and a good fre-
quency response,27 30 and as their support bolt
provides an airtight seal with the skull bone
they can be safely used for long term monitor-
ing without concern for infection.

Intracranial pressure measurements are
used to estimate CPP; providing that ICP
estimates intracerebral venous pressure:

mean CPP = mean ABP - mean ICP

Sufficient CPP is required to maintain a
stable CBF with an autoregulatory reserve. A
CPP below 60-70 mm Hg may result in a
compromise in various haemodynamic modal-
ities.3 8 31 32 There is also an increased chance of
a poor outcome if CPP falls below these
thresholds in patients with head injury.33 35

However, policies to therapeutically maintain
a high CPP are controversial. Non-reactive
vessels may result in hyperaemia, increasing
vasogenic oedema, and secondary increase in
ICP. It is also probable that there are consid-
erable patient dependent differences in the
optimal level of CPP. Thus although many
authors evaluate such thresholds in their group
analysis3' 32 35 36 and demonstrate critical values
ranging from 55 to 80 mm Hg, a general
threshold between adequate and non-
adequate CPP for each patient is difficult to
define. The threshold of CPP causing haemo-
dynamic deficit should be considered as a time
dependent factor,37 38 hence the real time
assessments of the relation between haemody-
namic modalities and CPP is essential.
One approach to identifying a "safe pres-

sure" zone in the individual patient is to use
information derived from the ICP and CPP
waveforms. For example, the analysis of the
relation between the mean ICP and the ampli-
tude of its waveform,3940 the analysis of the
shape of pulse wave39 and its relation to respi-
ratory oscillations,4' the transmission of the
ABP wave into the intracranial compart-
ment,4243 and the spectral analysis of the fun-
damental4445 and subsequent ICP waveform
harmonics46 have all been considered. The
basic phenomenon of an increase in ICP
amplitude with rising mean ICP was seen in
the early recordings made by Ryder et al in
1953.47 Using a monoexponential model of
cerebrospinal pressure-volume relation
Langfitt et a148 later postulated that if an
increase in cerebral blood volume during one
heart contraction was constant, it would pro-
duce a higher pressure response when the ICP
level was raised. However, when the ICP
becomes very high with a compensatory maxi-
mal vasodilatation a secondary decrease in the
ICP pulse amplitude is seen (fig 1). The linear
correlation coefficient between mean ICP and
ICP pulse amplitude values can be calculated
and has been termed RAP (R = symbol of
correlation, A = amplitude, P = pressure).
This index describes time dependent changes
in the relation between mean ICP and the
pulse amplitude. The advantage is that the
coefficient has a normalised value from - 1 to
+ 1 (fig 1) allowing comparison between
patients. The relation of RAP and ICP or CPP
in pooled analysis of patients with head injury
shows that a positive index close to +1 is
expected in patients with head injury with
moderately raised ICP (> 15 mm Hg) and
CPP above 50 mm Hg. Decrease in RAP to 0 is
found with very high ICP and very low CPP
(fig 2), which are predictive of a poor outcome
(fig 3).53 The RAP index as a time related factor
often anticipates brainstem hemiation due to
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Figure 1 Pulse amplitude
(AMP) ofICP waveform
increases with mean ICP
until a critical threshold is
reached above which a
decrease occurs (upper
graph). The correlation
coefficient betweenAMP
and mean ICP (RAP-
bottom graph) marks this
threshold by switchingfrom
positive to negative values.
Redrawn from Pickard and
Czosnyka.6
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Figure 2 Relation
between the mean value of
RAP index and the day
average ICP (upper
graph) and CPP (bottom
graph) in a group of56
patients after head injury
(bars denote 95% confi-
dence intervals for mean
value). Redrawn from
Czosnyka et al.50
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Figure 3 A terminal
increase ofmean ICP and
decrease in CPP leading to
brain stem herniation at
12:30 (x axis: time in
hours). RAP coefficient
decreasedfrom positive to
negative values 1 5 hours
earlier showing generalised
deterioration of cerebrovas-
cular reactivity reserve.
AMP = pulse amplitude
ofICP waveform.
Redrawn from Czosnyka
et al.5
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an excessive rise in ICP (fig 4). Because the
RAP coefficient is calculated using the funda-
mental harmonic of the ICP pulse wave the
practical advantage of this index is that there is
no need to use a pressure transducer with a
wide bandwidth; a simple subdural catheter
connected to an external membrane trans-
ducer will suffice.

l/ 1 Transcranial Doppler ultrasonography
Transcranial Doppler ultrasonographyl' allows

1 ",|7'[.Irnon-invasive measurement ofblood flow velocity
v'- 1 i . in basal cerebral arteries. Most data have been

derived from the middle cerebral artery as this
vessel is technically the simplest to insonate,

D_____._____.._______ t and is the most relevant as 80% of supratentor-
ial cerebral blood flow passes through it.
Although blood flow velocity cannot express
volume flow,52 the dynamic changes of CBF are

almost always reflected in transcranial Doppler
-
--readings. Experience with transcranial Doppler

0 30 60 90 in neurointensive care monitoring is still limited
ICP (mm Hg) because of problems of long term fixation of the

ultrasound probe and of interfacing with a com-
puterised system.'5 However, the high dynamic
resolution provided and confirmed correlation
with other haemodynamic modalities is encour-
aging increasing numbers of neurointensivists

_I - ~ to adopt the technique."'238 5 In addition to
calculating the time averaged meanflow veloc-
ity, recent transcranial Doppler machines pro-
vide information on the flow waveform which is
affected by pulsations of CPP and by the resis-
tance and compliance (mechanoelastic proper-
ties) of the cerebrovascular bed.56 Thus
transcranial Doppler provides great potential in

_ I I I I cerebrovascular investigations323738 for assess-
0 10 20 30 40 50 ment of cerebrovascular autoregulatory reserve,

ICP (mm Hg) reactivity, CPP, cerebral hyperaemia, post-trau-
matic spasm, and in the estimation of cerebral
tamponade.57
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CEREBRAL AUTOREGULATION
With continuous transcranial Doppler,
autoregulation can be assessed by observing
the responses to spontaneous changes in ABP,
transient changes in CPP induced by a three
second carotid compression, or longer periods
(20-40 s) of reduced CPP induced by inflating
and releasing large blood pressure cuffs
applied to the legs.58-6' Continuous assessment
of transcranial Doppler pulsatility indices
which vary according to the state of autoregu-
lation31 32 37 38 can be useful for the on line mon-
itoring of critical thresholds in CPP (see later).
More recently an evaluation of the gradient of
linear regression between the different compo-
nents of the flow velocity waveform (systolic,
mean, and diastolic) and the CPP (fig 5)37
show that these gradients are dependent on
mean CPP and correlate with outcome after
head injury (fig 6).

CEREBROVASCULAR REACTIVITY
The response of flow velocity to changes in

f CO2 concentration characterises vascular reac-
tivity. Decreased reactivity is reported with

13:00 decreasing CPP62 and in patients with poor
outcome after head injury.6'
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Figure 4 Mean values of
CPP, ICP, and RAP over
a 24 hour period in 42
patients with head injury in
different outcome groups.
ICP is significantly lower
for moderatelgood (mlg)
patients. RAP is signifi-
cantly lowerfor dead or
persistent vegetative
(PVSld) patients. RAP =
correlation coefficient
between pulse amplitude
(first harmonic) and mean
intracranial pressure; sd =
severely disabled patients.
Redrawn from Czosnyka
et al.37
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NON-INVASIVE ASSESSMENT OF CEREBRAL
PERFUSION PRESSURE

*: The pulsatility index (flow velocity amplitude /
flow velocity mean) is a dimensionless index
that is independent of sampling variation pro-
vided the signal to noise ratio is good and the
gain setting of the instrument is constant.
Most modem software packages provided with
transcranial Doppler automatically calculate

I the pulsatility index which is averaged from
m/g sd PVS/d Outcome several cardiac cycles. The potential impor-

tance of the pulsatility index in brain injury
is that increases in the index provide a non-
invasive artefact free measure of failing
autoregulation.82125 Clinical experience has

PERAEMIA shown a closer correlation between CPP and
in excess of 100 cm/s occurs in pulsatility index than between mean flow
Df patients after head injury,64 65 velocity and CPP which has facilitated the use
rentiation between hyperaemia of this variable for the non-invasive estimation
n can be difficult and often of CPP in patients with head injury (fig 7).

requires measurement of a further variable
such as jugular venous oximetry.48 If the ratio
of middle cerebral artery flow velocity to the
internal carotid artery flow velocity exceeds 3
then vasospasm is likely.66 Detailed flow veloc-
ity waveform analysis and detection of a
dicrotic notch in the pulse pattern67 are not
very helpful.

DETECTION OF CEREBRAL TAMPONADE
Transcranial Doppler has been used to assist
in the diagnosis of brain death. At very low
levels of CPP the critical closing pressure for
cerebral arterioles is reached resulting in the
collapse of the microcirculation and vascular
infarction. Net forward blood flow diminishes
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Figure 5 Three specific patterns of relation between systolic (FVs), diastolic (FVd) and time averaged (FV) bloodflow velocity and CPP: Left: both
systolic and diastolic are pressure-passive (autoregulation exhausted). Middle: diastolic and time average FVpressure-passive but systolic FV not pressure
passive (autoregulatory reserve compromised). Right: systolic and diastolic FV are not pressure passive (good autoregulatory reserve). Figure redrawn
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Figure 6 Analysis of the
gradient of average, sys-
tolic, and diastolic flow
velocity time versus CPP in
different outcome groups
(62 patients with head
injury; transcranial
Doppler examinations done
daily). Black bars show 95
% confidence intervals for
mean. mlg =
moderatelgood outcome; sd
= severe disability; PVSld
= persistant vegetative or
dead patients. syst FV =
systolic flow velocity.
Redrawn from Czosnyka et
al. 37
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Figure 7 Relation
between real CPP (x axis)
and estimated CPP (y
axis) in 42 patients with
head injury. Graph shows
that the method overesti-
mates real CPPfor pres-
sure under 60 mm Hg.
From Czosnyka et al.25
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and the transcranial Doppler pattern shows
reversal of flow during diastole.57

Laser Doppler flowmetry
Laser Doppler flowmetry is a technique which
provides a continuous measure of relative
microcirculatory flow.68-70 The final signal gen-
erated is a measure of microcirculatory red cell
flux (the product of red cell concentration and
the red cell velocity). Experimental use of laser
Doppler flowmetry in vitro and in vivo has
consistently shown a close linear correlation
between laser Doppler flowmetry flux and
CBF measured with standard methods, and
the laser light used does not seem to alter the
morphological and physiological characteris-
tics of the vascular bed examined.71-73 The
method has shown particular use in the obser-
vation of changes in microcirculatory flow
induced by physiological and pharmacological
stimuli.74 However, laser Doppler flowmetry is
not quantitative, records from a small tissue
volume, and provides no information on the
direction of blood flow. Further, experience
has shown that the flux signal is very sensitive
to the artefacts of local tissue pressure and
movement, so that the reliability of the tech-

Figure 8 Laser Doppler
flowmetry in patients with
head injury: Left: closely
correlated changes in mid-
dle cerebral arteryflow
velocity and cortical laser
Doppler capiUaryflow dur-
ing plateau wave activity.
From Kirkpatrick et al. '°
Right: uncoupled "big"
and "small tube"flow in
head injury. FV = blood
flow velocity in the middle
cerebral artery. LDF =
cortical laser Dopplerflux.
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Figure 9 Effect of manni-
tol infusion on laser
Dopplerflux (upper) and
estimated cerebrovascular
resistance ( eCVR calcu-
lated using relative changes
in cortical laser Doppler sig-
nal lower graph) after a
200 ml bolus of 20% man-
nitol compared with a 200
ml bolus of normal saline.
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with differing pathologies. A measure of the
metabolic response to cerebral hypoperfusion
can be obtained by measuring the oxygen and

Tii metabolite concentrations in the venous efflu-
ent from the brain.'5 16 This is usually achieved

0 E by passing a cannula or optic fibre into the
jugular vein and subsequently into the jugular

O Saline bulb.'5 1678 The second allows continuous mea-
* Mannitol surement of Sjo,. Intermittent measures of

arteriovenous oxygen and lactate difference
l provides additional measures of the cerebral

Baseline End of infusion Resting oxygenation and metabolic state.78 However,
the technique is notoriously difficult and a
high percentage of Sjo2 readings are erroneous
due to complications of catheter position,
impaction, or thrombus formation.78X
Further, it is still unclear as to which side
should be cannulated.82 Consequently, other

0 * 1 l 1 I cerebral variables need to be monitored to
±T assist in the interpretation of changes in Sjo2.

Despite these difficulties the method has
o Saline added support to the notion that thresholds of
* Mannitol

CPP exist below which the cerebral oxygena-
I I tion and metabolic state deteriorates, and that

Baseline End of infusion Resting such states are associated with a poor out-
come. 31

nique is critically dependent on the method of
application.55 Despite these drawbacks, laser
Doppler flowmetry has already shown potential
for blood flow measurements in several clinical
disciplines including neurosurgery.11' 75 77

Using rigid support bolts which are fixed
into the skull, reliable long term recordings
from ventilated patients with head injury has
been achieved.'0 Figure 8 (left) shows an
example of a recording captured from one
patient with a severe diffuse head injury during
spontaneous changes in CPP. Fluctuations in
ICP resulted in variations in CPP which were
accompanied by changes in the laser Doppler
flowmetry signal. Although cerebral events
resulting in changes of CPP usually cause very
similar trends in middle cerebral artery flow
velocity, and laser Doppler flowmetry, uncou-
pling between flow velocity and laser Doppler
flowmetry can occur (fig 8 (right)).
The advantage of laser Doppler flometry is

that the technique provides a real time mea-
sure of relative changes in capillary perfusion
which is particularly suitable for assessing the
microcirculatory response to a therapeutic
challenge. Figure 9 shows the effect of manni-
tol infusion on cerebral microcirculatory flow
in patients with head injury indicating a fall in
cerebrovascular resistance with increased red
cell flow independent of any significant change
in CPP.

Jugular venous oximetry
Cerebral tissues can tolerate limited changes
in CPP without compromising neuronal func-
tion. A fall in CPP to below certain thresholds
results in loss of neuronal electrical activity
and, on further reduction, loss of membrane
stability resulting in cell death.' The critical
thresholds at which damage ensues is difficult
to ascertain in a patient, and may be different

Near infrared spectroscopy
Near infrared spectroscopy is a non-invasive
method which attempts to measure cerebral
concentrations of oxyhaemoglobin and deoxy-
haemoglobin by observing the absorption of
near infrared light. The method has been used
most extensively in the neonate where
interpterional transmission of light (transmis-
sion spectroscopy) can occur.8384 An absolute
measure of changing brain haemoglobin satu-
ration and blood volume is possible, and has
provided a means of monitoring the cere-
brovascular response to certain therapeutic
manipulations in critically ill infants.85

In adults, scattering of light during passage
through a greater thickness of tissue prevents
adequate transmission of light to the opposite
side of the skull.8188 Thus scattered light has to
be sampled by a receiving probe placed ipsi-
lateral to the source probe (reflectance
spectroscopy). This results in limited topo-
graphical resolution, as it is not clear to what
depth near infrared light penetrates the adult
brain. Further, the thicker extracranial tissue
will influence the sampled signal to a greater
proportion when near infrared spectroscopy is
used in adults, and the significance of this
remains unresolved.89 Hence, although an esti-
mate of the light path length transgressed is
possible, the use of near infrared spectroscopy
in the adult brain is presently considered non-
quantitative. Despite these concerns, the
technique has been used to demonstrate pre-
dictable physiological changes in cerebral oxy-
haemoglobin and deoxyhaemoglobin content
during respiration,90 in response to various
manoeuvres such as a CO2 stress test,9' and in
response to internal carotid artery cross
clamping during carotid endarterectomy.92

Experience using near infrared spectroscopy
in the neurointensive care setting is limited
due in part to the practical difficulties of main-
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Figure 10 Two successsive
episodes ofperipheral desat-
uration occur in this head
injured patient as recorded
with peripheral pulse
oximetry. The second event
arrowed shows the Sao2
falling to below 80% and is
accompanied by a fall in
oxyhaemoglobin and recip-
rocal rise in deoxyhaemo-
globin. The Sjo2 monitor
failed to register this event.
From Kirkpatrick et al."
ICP = intracranialpres-
sure (mm Hg); CPP =
cerebral perfusion pressure
(mm Hg), FV = right
middle cerebral arteryflow
velocity (cmls); LDF =
laser Dopplerflux from the
right frontal region (AU).
NIRS = near infrared
spectroscopy (recording
from the rightfrontal
region); HbO2 = oxy-

haemoglobin (Mmolll); Hb
= deoxy haemoglobin
(,umol/l), tHb = total
haemoglobin (gmolll),
(Sjo2 = rightjugular
venous oxygen saturation
(%). Sao2 = peripheral
oxygen saturation (%).
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taining probe positioning long term. However,
our own experience indicates that it can pro-
vide warning of a fall in cerebral oxygenation
with greater sensitivity than jugular venous
oximetry (fig 10).1" In addition, calculations of
total haemoglobin allow characterisation of
different events causing a fall in CPP (hyper-

aemia v primary increases in ICP (fig l1)).
The advantage of a non-invasive technique
which provides estimates of cerebral oxygena-
tion with high temporal resolution"93 is clear
to all those interested in monitoring cere-
brovasular status, but the use of near infrared
spectroscopy in adults is in a state of evolution
requiring considerable efforts with future clini-
cal validation studies.

Intraparenchymal probes
Direct measurement of substances in brain tis-
sue has been slow to evolve in the clinical set-
ting for practical and ethical reasons.
However, modem probes can now be placed
with minimal risks of added morbidity and
experience is accumulating. The measurement
of relevant chemicals (such as excitatory
amino acids) in traumatised adult brain using
micrQphoresis techniques indicate similar
chemical profiles to those seen in experimental
animals.94 Similarly, oxygen measuring elec-
trodes can be employed for direct measure-
ment of parenchymal oxygen concentration
and are beginning to provide novel informa-
tion regarding the response of the cerebral
tissues to specific manoeuvres such as hyper-
ventilation.9596 However, whether such focal
measures will provide a sufficiently accurate
estimation of the condition of the brain for tar-
geted treatment remains to be seen.

The future for multimodality monitoring
All the aforementioned techniques have
largely evolved independently of each other
and have all identified their own limitations
and artefacts. However, the disadvantages of
one modality does not necessarily overlap with

Figure 11 Examples of
different types ofICP
waveform detected using
multimodality monitoring
methods. From
Kirkpatrick et al." Left:
NIRS signals register a fall
in Hbo2 (arrowed) and
rise in Hb indicating cere-
bral oxygen desaturation
confirmed by the fall in
Sjo2. The CPP, FVand
LDF also fall indicating
primary intracerebral
hypertension with a sec-
ondary fall in cerebral
bloodflow. Right: In this
event (arrowed) increases
in tHb, FV, and LDF all
indicate that the rise in
ICP was due to cerebral
hyperaemia. Abbreviations
as infig 10.
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those of another. As a result there has been a
growing tendency to adopt a multimodality
approach to patients in neurointensive care
which allows a more informed interpretation
of an individual patient's cerebral state and
helps to identify artefacts. Thus an event char-
acterised by changes in several monitored vari-
ables (fig 11) provides credence to the finding.
As experience gathers we anticipate that cer-
tain modalities will eventually evolve as those
providing the essential key information. If the
errors provided by these selected modalities
are acceptable, the system can be trimmed for
simplicity and reliability, features which are
clearly necessary before these systems gain a
wider clinical acceptance.
The advantage of multimodality monitoring

is the increased power of interpretation. Most
patients with brain injury are treated according
to general principles maintaining low ICP and
adequate CPP. With increasing experience we
are learning to recognise situations in which
general principles of treatment may at best be
inappropriate, at worst detrimental. We envis-
age that the future management for brain
injury will become more precise and increas-
ingly dependent on monitored information
gathered real time.
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