Supporting Information

Discovery of a Small-molecule Modulator of the Autophagy-Lysosome Pathway that Targets Lamin A/C

and LAMP1, Induces Autophagic Flux, and Affects Lysosome Positioning in Neurons

Ryan S. Hippman,^{a‡} Amanda M. Snead,^{b‡} Zoe A. Petros,^{a‡} Melissa A. Korkmaz-Vaisys,^a Sruchi Patel,^b Daniel Sotelo,^a Andrew Dobria,^a Maryna Salkovski,^a Thu T. A. Nguyen,^a Ricardo Linares,^b Stephanie M. Cologna,^a Swetha Gowrishankar,^b* Leslie N. Aldrich^a*

[‡] Denotes Equal Contributions

* Corresponding Authors: Leslie N. Aldrich (aldrich@uic.edu) and Swetha Gowrishankar (swethag@uic.edu)

^a University of Illinois Chicago, Department of Chemistry, College of Liberal Arts and Sciences, 845 W. Taylor St. Chicago, IL 60607

^b University of Illinois Chicago, Department of Anatomy and Cell Biology, College of Medicine, 808 S. Wood St. Chicago, IL 60612

Table	of	Contents

S2.	Table S1
S3.	Table S2
S4.	Table S3
S5.	Figure S1
S6.	Figure S2
S7.	Figure S3
S8.	Figure S4
S9.	Figure S5
S10.	Uncropped Western Blots
S17.	NMR Spectra

001.2 Dun1	Controlo	Aug pupeta /coll	Std dou	7'	8/01/	001 2 Dun2	Controls	Aug puncto /coll	Ctd dou	7'	NCV.	017.2 Dun1	Controls	Aug puncto (coll	Std dou	7'	8/01/	017.2 Dun2	Controls	Aug nuncto (coll	Std dou	7'	8/01/
001-5 Dup1	DMSO	2 515	0.221	0 569	12 160	001-3 Dup2	DMSO	1 974	0.200	0.562	10.612	017-3 Dup1	DMSO	2 206	0.200	0.695	12.470	017-5 Dup2	DMSO	1 090	0.246	0.542	12 252
	CO 20 uM	10 764	0.351	0.508	7 953		CO 20 UM	9.002	0.205	0.302	9.063	1	CO 20 uM	9.441	0.233	0.085	4 658		CO 20 uM	8 305	0.240	0.342	8 655
	eq.co µm	201704	0.050		11555		eq.co µm	51002	0.010		5.005		cajzo pin	5.111	0.110		1.050		edjeo pin	0.000	0.725		0.000
002-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	002-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV	018-3 Dup1	Controls:	Ave puncta/cell	Std dev	Z'	%CV	018-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	DMSO	2.586	0.246	0.694	9.521		DMSO	2.566	0.313	0.736	12.211		DMSO	2.850	0.357	0.604	12.515		DMSO	0.272	0.272	0.611	9,430
	CQ,20 µM	11.123	0.625		5.616		CQ,20 µM	11.064	0.435		3.932		CQ.20 uM	10.415	0.641		6.157		CQ.20 uM	10.715	0.743		6.933
003-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	003-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV	019-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	019-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	DMSO	2.107	0.241	0.509	11.430		DMSO	1.993	0.220	0.461	11.061		DMSO	2.703	0.150	0.587	5.547		DMSO	2.560	0.215	0.635	8.417
	CQ,20 µM	8.958	0.881		9.835		CQ,20 µM	8.723	0.988		11.328		CQ.20 uM	10.115	0.871		8.611		CQ.20 uM	9.875	0.674		6.822
004-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	004-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV	020-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	020-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	DMSO	2.307	0.250	0.671	10.824		DMSO	2.542	0.202	0.711	7.932		DMSO	2.343	0.261	0.648	11.127		DMSO	1.897	0.925	0.335	48.782
	CQ,20 µM	10.831	0.684		6.314		CQ,20 µM	10.823	0.596		5.503		CQ,20 µM	9.735	0.606		6.225		CQ.20 µM	10.292	0.935		9.084
005-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	005-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV	021-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	021-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	DMSO	2.728	0.257	0.670	9.426		DMSO	2.685	0.282	0.629	10.498	_	DMSO	2.640	0.305	0.711	11.534		DMSO	2.764	0.237	0.692	8.618
	CQ,20 µM	10.627	0.610		5.745		CQ,20 µM	9.899	0.610		6.157	_	CQ,20 µM	10.607	0.462		4.355		CQ,20 µM	10.826	0.592		5.467
006-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	006-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV	022-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	022-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	DMSO	2.856	0.230	0.595	8.070		DMSO	2.863	0.318	0.595	11.121	-	DMSO	2.589	0.323	0.666	12.494		DMSO	2.478	0.346	0.654	13.975
	CQ,20 µM	10.496	0.801		7.633		CQ,20 µM	10.768	0.749		6.960		CQ, 20 µM	10.083	0.511		5.073		CQ,20 µM	10.552	0.586		5.555
												_											
007-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	007-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV	023-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	023-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	DMSO	2.221	0.387	0.584	17.416		DMSO	2.584	0.353	0.600	13.673	_	DMSO	2.683	0.189	0.736	7.062		DMSO	2.697	0.352	0.682	13.057
	CQ,20 µM	9.239	0.586		6.338		CQ,20 µM	10.189	0.661		6.484	-	CQ,20 µM	10.673	0.514		4.818		CQ,20 µM	10.529	0.477		4.530
										-		-											
008-3 Dup1	Controls:	Avg puncta/cell	Std dev	<u><u> </u></u>	%CV	008-3 Dup2	Controls:	Avg puncta/cell	Std dev	<u><u> </u></u>	%CV	024-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	024-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	DMSO	2.3/1	0.373	0.632	15.743		DMSO	2.422	0.282	0.678	11.628	_	DMSO	2.086	0.335	0.436	16.043		DMSO	2.469	0.256	0.635	10.375
	CQ,20 μM	9.886	0.548		5.542		CQ,20 μM	9.753	0.505		5.180	-	CQ,20 µM	9.668	1.091		11.286		CQ,20 µM	10.292	0.696		6.767
000 3 0	Controlo	A	Chall aloue	71	8/01/	000 3 0	Controlo	Aver average (and)	Children	71	0(0)	-											
009-3 Dup1	Controis:	Avg puncta/cell	Std dev	2	760.0	009-3 Dup2	Controis:	Avg puncta/cell	Std dev	4 502	760.0	025-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	025-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	0000	2.275	0.265	0.550	11.652		CO 20 UNA	2.594	0.555	0.592	15.692	-	DMSO	2.214	0.310	0.480	13.979		DMSO	2.142	0.227	0.581	10.582
	CQ,20 µivi	9.400	0.649		0.902		CQ,20 µM	9.902	0.097		0.995	-	CQ,20 µM	9.558	0.940		10.089		CQ,20 µM	9.399	0.786		8.364
010 3 Dun1	Controlau	Aver munches (and	Chal aloue	71	8/01/	010 3 0	Controler	Aug augets (and)	Chil days	7!	NOV	-											
010-3 Dup1	DMSO	2 290	0.263	0.624	11.046	010-3 Dup2	DMSO	2 464	0.222	0.649	12 106	026-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	026-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	CO 20 UM	2.380	0.203	0.024	6 912		CO 20 UM	0.970	0.525	0.048	15.100		DMSO	1.899	0.237	0.499	12.484		DMSO	1.919	0.478	0.490	24.900
	cu, zo µm	5.000	0.000		0.011		cu, zo µm	3.075	0.540		3.343		CQ,20 µM	8.929	0.936		10.486		CQ,20 µM	9.208	0.760		8.257
011-3 Dun1	Controls:	Avg nuncta/cell	Std dev	7'	%CV	011-3 Dun2	Controls:	Avg puncta/cell	Std dev	7'	%CV												
orr o bupr	DMSO	2.051	0.202	0.690	9.865	our o bape	DMSO	2.286	0.201	0.655	8,775	027-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	027-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	CO.20 uM	9.967	0.616	0.000	6.182		CO.20 uM	10.224	0.712	0.000	6.968		DMSO	2.639	0.176	0.669	6.680		DMSO	1.917	0.236	0.383	12.299
													CQ,20 µM	10.982	0.746		6.789		CQ,20 µM	8.621	1.143		13.259
012-3 Dup1	Controls:	Avg puncta/cell	Std dev	7'	%CV	012-3 Dup2	Controls:	Avg puncta/cell	Std dev	7'	%CV												
	DMSO	2.397	0.228	0.657	9.498		DMSO	2.201	0.331	0.734	15.031	028-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	028-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	CQ.20 µM	10.124	0.656		6.477		CQ.20 µM	10.331	0.391		3.781		DMSO	2.729	0.227	0.721	8.319		DMSO	2.762	0.198	0.657	7.171
													CQ,20 µM	10.226	0.469		4.586		CQ,20 µM	9.974	0.627		6.287
013-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	013-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV												
	DMSO	1.737	0.184	0.598	10.600	1	DMSO	2.232	0.235	0.681	10.530	029-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	029-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	CQ,20 µM	8.383	0.707		8.429		CQ,20 µM	9.630	0.552		5.730		DMSO	2.098	0.213	0.622	10.161		DMSO	2.244	0.256	0.535	11.385
													CQ,20 µM	10.463	0.839		8.023		CQ,20 µM	10.552	1.032		9.770
014-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	014-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV												
	DMSO	2.370	0.221	0.725	9.337		DMSO	2.310	0.592	0.464	25.635	030-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	030-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	CQ,20 µM	10.221	0.498		4.871		CQ,20 µM	10.547	0.879		8.333		DMSO	2.090	0.282	0.455	13.494		DMSO	2.153	0.256	0.560	11.891
													CQ,20 µM	9.889	1.134		11.472		CQ,20 µM	10.334	0.944		9.133
015-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	015-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV												
	DMSO	2.177	0.224	0.694	10.294		DMSO	2.571	0.404	0.605	15.720	031-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	031-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	CQ,20 µM	9.601	0.533		5.553		CQ,20 µM	9.780	0.545		5.573		DMSO	2.372	0.177	0.673	7.467		DMSO	2.294	0.290	0.424	12.636
													CQ,20 µM	9.257	0.573		6.192		CQ,20 µM	8.696	0.940		10.809
016-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	016-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV												
	DMSO	1.868	0.187	0.688	9.991		DMSO	2.021	0.316	0.616	15.639	032-3 Dup1	Controls:	Avg puncta/cell	Std dev	Z'	%CV	032-3 Dup2	Controls:	Avg puncta/cell	Std dev	Z'	%CV
	CQ,20 µM	8.603	0.515		5.981		CQ,20 µM	8.681	0.536		6.171		DMSO	2.366	0.268	0.445	11.347		DMSO	2.512	0.262	0.678	10.437
						1						1	CO.20 uM	8.673	0.898		10.357	1	CO.20 uM	9.503	0.488		5.140

Table S1: Reproducibility of high-content screen. The high-content screen was assessed using Z' and % CV of two biological replicates.

Table S2: Proteins exclusive to *Biotin*-RH1115 in the pulldown assay.

Thirteen proteins were exclusively pulled down by *Biotin*-RH1115, of which three were selected as putative targets. Putative targets were narrowed down based on several criteria: presence of various isoforms in solution, lack of disease relevance in the literature, and expression levels in the brain (CALML5) [1].

Antibody	Dilution	Experiment	Company
			(Catalog No.)
β-Actin (i ³ Neurons)	1:30,000	Western Blot	ABClonal (AC026)
β-Actin (HeLa)	1:2000	Western Blot	Cell Signaling (8457L)
hLamp1 (i ³ Neurons)	1:3000 1:500	Western Blot IF	Cell Signaling (9091)
Tau (i ³ Neurons)	1:400	IF	Cell Signaling (4019S)
LC3 (i ³ Neurons)	1: 1000	Western Blot	Cell Signaling (4108)
LC3 (HeLa)	1:1000	Western Blot	Cell Signaling (2775S)
Phospho-S6 (i ³ Neurons)	1:7500	Western Blot	Cell Signaling (4858)
p70S6K (HeLa)	1:1000	Western Blot	Cell Signaling (9205S)
S6 (i ³ Neurons)	1:1000	Western Blot	Cell Signaling (2217)
70S6K (HeLa)	1:1000	Western Blot	Cell Signaling (2708S)
LAMP1 (HeLa)	1:1000	Western Blot	Cell Signaling (3243S)
Lamin A/C (HeLa)	1:1000	Western Blot	Cell Signaling (2032S)
UBA52 (HeLa)	1:1000	Western Blot	ABCam (ab109227)

Antibodies and specific experiments, dilutions, and companies are listed.

Figure S1: Additional synthetic efforts.

(A) Synthetic method to generate substituted guanidine and amidine reagents. (B) Synthetic method to generate the propyl substituted aldehyde reagent. (C) Synthetic route to access *Biotin*-RH1115.

(A) Kinetic aqueous solubility was performed on select compounds (100 μ M) as a solution in 1x PBS. Optical density calculations were performed at 620 nm. Data are presented as the mean ± SEM of five independent experiments. (B) eGFP-LC3 dose response was performed on *Biotin*-RH1115 to ensure activity was retained. Data are presented as mean ± SEM from three independent experiments, each with duplicate biological replicates.

Figure S3: Expression levels of putative targets and validation.

Expression levels of Lamin A/C (**A**) and UBA-52 (**B**) were quantified using immunoblotting. Data are presented from three biological replicates. (**C**) Three independent Cellular Thermal Shift Assays were performed with A549 cells treated with **RH1115** (100 μ M) or DMSO for 24 h and heated at each temperature in 3 minutes. Data are presented from two biological replicates at each temperature. (**D**) Ratio of the quantification of Lamin A/C protein levels in the eluent over the supernatant for the pulldown assay. Lysates were treated with *Biotin*-**RH1115** (50 μ M), biotin acid (50 μ M), and *Biotin*-**RH1115** (50 μ M) in addition to **RH1115** in excess (100 μ M). Data are presented as the mean ± SEM of three independent experiments. (**E**) Ratio of the quantification of LAMP1 protein levels in the eluent over the supernatant for the pulldown assay. Lysates were treated with *Biotin*-**RH1115** (50 μ M), and *Biotin*-**RH1115** (50 μ M). Data are presented as the mean ± SEM of three independent experiments. (**E**) Ratio of the quantification of LAMP1 protein levels in the eluent over the supernatant for the pulldown assay. Lysates were treated with *Biotin*-**RH1115** (50 μ M), biotin acid (50 μ M), and *Biotin*-**RH1115** in excess (100 μ M). Data are presented as the mean ± SEM of three independent experiments. (**F**) Quantification of three independent cellular thermal shift assays in duplicate for Lamin A ($\Delta T_m = 2.64 \,^{\circ}$ C). Data are presented as mean ± SEM of three independent cellular thermal shift assays in duplicate for Lamin C ($\Delta T_m = 0.8 \,^{\circ}$ C). Data are presented as mean ± SEM of three independent cellular thermal shift assays in duplicate.

Figure S4: Exclusion of UBA52 as a putative target.

(A) Immunoblot analysis of UBA52 capture by streptavidin pulldown protocol in the presence of *Biotin*-**RH1115** (50 μ M) (+/-), biotin acid (-/-), *Biotin*-**RH1115** (50 μ M) with excess **RH1115** (100 μ M) following lysate addition to the beads (+/+). β -actin was used as a loading control. Data are presented from three independent experiments. (**B**) Ratio of the quantification of UBA52 protein levels in the eluent over the supernatant for the pulldown assay shown in (A). Data are presented as the mean \pm SEM of three independent experiments.

Figure S5: RH1115 increases LAMP1 vesicle size and activates autophagy in neurons.

(A) ADIV10 i3Neurons were immunostained for LAMP1. Mean LAMP1 vesicle size in each i3Neuron analyzed across all experiments for DMSO or RH1115 (15 μ M). (B) DIV10 i³Neurons stably expressing LC3-RFP-GFP were live imaged and the properties of each cell's autophagosomes and autolysosomes were quantified. Neurons were treated with DMSO, BafA1 (100 nM), or **RH1115** (15 μ M). Data are presented from three independent experiments, 60-70 neurons per condition. The number of autophagosomes for each individual i³Neuron were analyzed. (C) Percent autophagosomes for each individual i³Neuron. (D) Number of autolysosomes for each individual i³Neuron. (F) Mean autolysosome size in each individual i³Neuron. (G) Autolysosomal intensity in each individual i³Neuron.

Uncropped Western Blots

References

(1) Brain tissue expression of CALML5 Summary, The Human Protein Atlas. https://www.proteinatlas.org/ENSG00000178372-CALML5/brain (accessed 2023-04-11).

S19

S59

