#### **1** Supplementary Information

- 2 Zang et al.
- 3 FTO-mediated m<sup>6</sup>A demethylation regulates GnRH expression in the hypothalamus
- 4 via the PLC $\beta$ 3/Ca<sup>2+</sup>/CAMK signalling pathway
- 5



#### 6 Supplementary Fig. 1





9 constructed. **a**, **b** VO percentage at 3 weeks (**a**) and 5 weeks (**b**) in NC and CPP

10 female rats. **c** Body weights of female rats in the NC and CPP groups at 2 weeks and 3

11 weeks (n=18). **d**, **e** LH and FSH abundance in serum from 3-week-old female rats as

- 12 determined by ELISA (NC, CPP; n = 10). **f** Ovary size and follicle morphology in
- 13 female rats in the NC (n=3) and CPP (n=5) groups at 3 weeks with H&E staining.
- 14 Bars, 2 mm. g Numbers of mature follicles in the ovaries of NC and CPP female rats

15 at 3 weeks. The bars represent the means  $\pm$  SEMs. \*P < 0.05, \*\*P < 0.01, and \*\*\*P <

- 16 0.001 versus the NC group by Student's t test.
- 17





a, b Proportion of m<sup>6</sup>A peak distribution in the exon, intergenic, intron, 3'UTR or
5'UTR across the entire set of mRNA transcripts between the NC (a) and CPP (b)
female rats.

24



Supplementary Fig. 3 A PLC $\beta$ 3 silencing plasmid was successfully constructed. a mRNA expression of *PLC\beta3* in control and PLC $\beta$ 3-knockdown cells as determined by

| 28 | qPCR (n=3). <b>D</b> PLCp3 protein concentration as determined by western blotting (n=3). |
|----|-------------------------------------------------------------------------------------------|
| 29 | The bars represent the means $\pm$ SEMs. ** $P < 0.01$ and *** $P < 0.001$ versus the sh- |
| 30 | control group by Student's t test.                                                        |
| 31 |                                                                                           |
| 32 | Supplementary Fig. 4                                                                      |
| 33 |                                                                                           |



| 35 | Supplementary Fig. 4 Effects of intra-ARC AAV-FTO and AAV-control                                     |
|----|-------------------------------------------------------------------------------------------------------|
| 36 | administration on female rats at 4 weeks and 5 weeks. Three-week-old female rats                      |
| 37 | were microinjected with AAV-FTO or AAV-control in the ARC. a Body weights of                          |
| 38 | female rats receiving AAV transfection beginning at postnatal day 25 (PND25) (n=6).                   |
| 39 | <b>b</b> Pathological assessment of fat by H&E staining in the ARC-infected group at 4 weeks          |
| 40 | and 5 weeks (n=6). Scale bars, 100 $\mu$ m. <b>c</b> Abundance of PLC $\beta$ 3 (red colour) and DAPI |
| 41 | (blue colour) in the ARC as determined by IF (NC, CPP; $n = 3$ ). Scale bars, 200 $\mu$ m. <b>d</b>   |
| 42 | Mean fluorescence intensity of PLC $\beta$ 3 as calculated by ImageJ software. e, f Kiss1             |
| 43 | mRNA levels detected by qPCR in the ARC in 4-week (e) or 5-week (f) female rats                       |
| 44 | receiving AAV-control (n = 3) or AAV-FTO (n = 3). AAV-FTO for the FTO-                                |
| 45 | overexpression group, AAV-control for the AAV negative control group. The bars                        |
| 46 | represent the means $\pm$ SEMs. * <i>P</i> < 0.05 and ** <i>P</i> < 0.01 versus the AAV-control group |
| 47 | by Student's t test.                                                                                  |

# Supplementary Table 1. Sequences of qPCR primers.

| Gene           | Species | Forward primer (5'-3')  | Reverse primer (5'-3') |  |
|----------------|---------|-------------------------|------------------------|--|
| qPCR           |         |                         |                        |  |
| primers        |         |                         |                        |  |
| $\beta$ -actin | mouse   | AAGATCAAGATCATTGCTCCTCC | GACTCATCGTACTCCTGCTTGC |  |
| FTO            | mouse   | GAGCAGCCTACAACGTGACT    | GAAGCTGGACTCGTCCTCAC   |  |
| GnRH           | mouse   | TGATCCTCAAACTGATGGCCG   | CGCAACCCATAGGACCAGTG   |  |
| CAM            | mouse   | GGCTGACCAACTGACTGA      | TTACCATCCGCATCTACT     |  |

| ΡLCβ3          | mouse | CGAGACTCAACGAAGTGCTG    | ACCTCCTCCCCATTGCTTAG    |
|----------------|-------|-------------------------|-------------------------|
| $\beta$ -actin | rat   | TGCCGCATCCTCTTCCTC      | GGTCTTTACGGATGTCAACG    |
| GnRH           | rat   | CCGCTGTTGTTCTGTTGACTGTG | GGGGTTCTGCCATTTGATCCTC  |
| Kiss1          | rat   | AGCTGCTGCTTCTCCTCTGT    | AGGCTTGCTCTCTGCATACC    |
| FTO            | rat   | GACACTTGGCTTCCTTACCTG   | CTCACCACGTCCCGAAACAA    |
| CAM            | rat   | CGACTTCCCTGAATTCCTGA    | TCTGCTGCACTGATGTAGCC    |
| CAMKII         | rat   | AAGATGTGCGACCCTGGAATG   | TGTAGGCGATGCAGGCTGAC    |
| ALKBH5         | rat   | CGCGGTCATCAACGACTACC    | ATGGGCTTGAACTGGAACTTG   |
| METTL3         | rat   | CTGGGCACTTGGATTTAAGGAA  | TGAGAGGTGGTGTAGCAACTT   |
| METTL14        | rat   | GAGCTGAGAGTGCGGATAGC    | GCAGATGTATCATAGGAAGCCC  |
| FMR1           | rat   | CAATGGCGCTTTCTACAAGGC   | TCTGGTTGCCAGTTGTTTTCA   |
| METTL16        | rat   | GACAAACCACCTGACTTCGCA   | TCTGACTGCTTCGGGGGTCTT   |
| RBM15          | rat   | CGAGTCCGCTGTGTGAAAC     | TCCCCACGAGAACTGGAGTC    |
| RBMX           | rat   | AGAGACGAATGAGAAAGCCCT   | AGTGACAAAAGCGAATCCTCTTG |
| VIRMA          | rat   | GGTTCGTTTTCCGTGTGTGG    | GCCACTATGGGCTCGTACTC    |
| WTAP           | rat   | GAACCTCTTCCTAAAAAGGTCCG | TTAACTCATCCCGTGCCATAAC  |
| YTHDC1         | rat   | GTCCACATTGCCTGTAAATGAGA | GGAAGCACCCAGTGTATAGGA   |
| YTHDC2         | rat   | GAAGATCGCCGTCAACATCG    | GCTCTTTCCGTACTGGTCAAA   |
| YTHDF1         | rat   | ACAGTTACCCCTCGATGAGTG   | GGTAGTGAGATACGGGATGGGA  |
| YTHDF2         | rat   | GAGCAGAGACCAAAAGGTCAAG  | CTGTGGGGCTCAAGTAAGGTTC  |
| YTHDF3         | rat   | GATCAGCCTATGCCATATCTGAC | CCCCTGGTTGACTAAAAACACC  |

## MeRIP-qPCR primers

#### peak

#### 50

## 51 Supplementary Table 2 The information of antibodies used in this study.

| Antibodies             | Source      | Identifier | Host   | Application |
|------------------------|-------------|------------|--------|-------------|
| GAPDH                  | CST         | #2118      | Rabbit | WB          |
| FTO                    | ABclonal    | A1438      | Rabbit | WB          |
| FTO                    | Abcam       | Ab92821    | mouse  | IF          |
| ΡLCβ3                  | Santa Cruz  | sc-133231  | mouse  | IF          |
| m6A                    | SYSY        | 202003     | Rabbit | IF          |
| ΡLCβ3                  | CST         | #14247     | Rabbit | WB          |
| CAM                    | ABclonal    | A4885      | Rabbit | WB          |
| CAMKII                 | CST         | #4436      | Rabbit | WB          |
| p-CAMKII               | CST         | #12716     | Rabbit | WB          |
| HRP Goat Anti-Rabbit   | ABclonal    | AS014      | Goat   | WB          |
| IgG (H+L)              |             |            |        |             |
| FITC-conjugated donkey | Proteintech | SA00003-9  | Donkey | IF          |
| anti-mouse IgG (H+L)   |             |            |        |             |
| CoraLite594-conjugated | Proteintech | SA00013-8  | Donkey | IF          |
| donkey anti-Rabbit IgG |             |            |        |             |
| (H+L)                  |             |            |        |             |

Alexa Fluor 594- CST #8890 Goat IF conjugated goat antimouse IgG(H+L)

### 52

### 53 Supplementary Fig. 5





58 Supplementary Fig. 5 Unedited and uncropped Western blots of all the

