## - SUPPORTING INFORMATION -

## Hafnium, titanium, and zirconium intercalation in 2D layered nanomaterials

Vicky Huynh,<sup>1,†</sup> Kevin Rodriguez Rivera,<sup>1,†</sup> Tiffany Teoh,<sup>1</sup> Ethan Chen,<sup>1</sup> Jared Ura,<sup>1</sup> and Kristie

J. Koski<sup>1</sup>\*

<sup>1</sup> Department of Chemistry, University of California Davis, Davis California 95616, USA

\*koski@ucdavis.edu

<sup>†</sup> These authors contributed equally



**Figure S1.** Optical images of hydrothermally grown nanoribbon  $MoO_3$  deposited on a fused silica substrate and intercalated with Hf, Ti, and Zr showing color change from white to blue.



Figure S2. Optical images representative of  $Bi_2Se_3$  intercalated with Hf, Ti, and Zr. Hfintercalated  $Bi_2Se_3$  shows a yellow hue. Zr-intercalated  $Bi_2Se_3$  is somewhat more optically reflective.



Figure S3. Optical images of  $Si_2Te_3$  intercalated with Hf, Ti, and Zr. No obvious color change is observed.



**Figure S4.** SEM-EDX map of  $Si_2Te_3$  intercalated with Hf, Ti, Zr. The metals Hf, Ti, and Zr are detected throughout the crystals.  $Si_2Te_3$  is air-sensitive. The mottled surfaces are due to hydrolysis and destruction of the  $Si_2Te_3$  with exposure to air before placement into the SEM for measurement. Scalebars are 10 microns.



**Figure S5.** SEM-EDX map of MoO<sub>3</sub> intercalated with Hf, Ti, Zr. Hf-MoO<sub>3</sub> is on an oxide substrate so oxygen is detected everywhere. Hf, Ti, and Zr are found throughout the crystal. Scalebars are 10  $\mu$ m.



**Figure S6.** Table of SEM-EDX spectra of Bi<sub>2</sub>Se<sub>3</sub>, GeS, hydrothermally grown nanoribbon MoO<sub>3</sub>, laterally large 2D MoO<sub>3</sub>, and Si<sub>2</sub>Te<sub>3</sub> intercalated with Hf, Ti, Zr.

|                                 | Hf max | Hf avg          | Ti max | Ti avg          | Zr max | Zr avg          |
|---------------------------------|--------|-----------------|--------|-----------------|--------|-----------------|
| Bi <sub>2</sub> Se <sub>3</sub> | 0.26   | $0.03 \pm 0.07$ | 0.65   | $0.25 \pm 0.21$ | 6.4    | 1.40 ± 1.88     |
| MoO <sub>3</sub>                | 0.4    | $0.14 \pm 0.14$ | 8.5    | $2.97 \pm 2.74$ | 1.7    | $0.49 \pm 0.56$ |
| nano-MoO <sub>3</sub>           | 0.72   | $0.29 \pm 0.27$ | 6.71   | $2.00 \pm 2.69$ | 2.7    | $1.78 \pm 0.65$ |
| GeS                             | 3.6    | $0.76 \pm 1.09$ | 12.86  | $1.48 \pm 4.28$ | 2.8    | $1.24 \pm 1.37$ |
| Si <sub>2</sub> Te <sub>3</sub> | 1.2    | $1.03 \pm 0.13$ | 2.59   | $2.15 \pm 0.24$ | 0.41   | $0.18 \pm 0.21$ |

**Table S1**: Maximum and average atm % concentration of hafnium, titanium, or zirconium by SEM-EDX. Averages are made across 3-6 nanocrystals. There is large sample-to-sample variation which yields deviation in errors. Errors are calculated as the deviation across amounts detected in different crystals. nano- is hydrothermally grown MoO<sub>3</sub>.

|                                    | a [Å]             | c [Å]            |
|------------------------------------|-------------------|------------------|
| Bi <sub>2</sub> Se <sub>3</sub>    | $4.145 \pm 0.001$ | 28.66 ± 0.01     |
| Hf-Bi <sub>2</sub> Se <sub>3</sub> | $4.147 \pm 0.001$ | $28.65 \pm 0.01$ |
| Ti-Bi <sub>2</sub> Se <sub>3</sub> | $4.144 \pm 0.001$ | $28.66 \pm 0.01$ |
| Zr-Bi <sub>2</sub> Se <sub>3</sub> | $4.144 \pm 0.001$ | $28.66 \pm 0.01$ |

**Table S2.** Lattice constants for intercalated Bi<sub>2</sub>Se<sub>3</sub> nanoribbons determined through Le Bail fit of XRD patterns using GSAS-II.<sup>1</sup>

|                     | b [Å]              | b(2) [Å]           |
|---------------------|--------------------|--------------------|
| MoO <sub>3</sub>    | $13.847 \pm 0.007$ | _                  |
| Hf-MoO <sub>3</sub> | $13.854 \pm 0.001$ | $13.844 \pm 0.001$ |
| Ti-MoO <sub>3</sub> | $13.854 \pm 0.001$ | $14.069 \pm 0.069$ |
| Zr-MoO <sub>3</sub> | $13.844 \pm 0.001$ | $13.873 \pm 0.001$ |

**Table S3.** MoO<sub>3</sub> only shows one reflection (0k0). Lattice constants for intercalated MoO<sub>3</sub> ribbons determined through analysis of the peaks position and Rietveld refinement of XRD patterns using Maud.<sup>2</sup> The (0k0) peak splits in the Hf and Ti XRD pattern, so there are two different environments of MoO<sub>3</sub>. Both sets of lattice parameters are presented.

|                       | b [Å]              |
|-----------------------|--------------------|
| nano-MoO <sub>3</sub> | $13.830 \pm 0.001$ |
| Hf-MoO <sub>3</sub>   | $14.010 \pm 0.005$ |
| Ti-MoO <sub>3</sub>   | $14.01 \pm 0.06$   |
| Zr-MoO <sub>3</sub>   | 13.998 ± 0.001     |

**Table S4.** MoO<sub>3</sub> only shows one reflection (0k0). Lattice constants for hydrothermally grown MoO<sub>3</sub> nanoribbons determined through analysis of the peaks position and Rietveld refinement of XRD patterns using Maud.<sup>2</sup>

|        | a [Ă]             | b [Ă]              | c [Å]             |
|--------|-------------------|--------------------|-------------------|
| GeS    | 4.301± 0.001      | $10.480 \pm 0.001$ | $3.644 \pm 0.003$ |
| Hf-GeS | $4.301 \pm 0.001$ | $10.480 \pm 0.001$ | $3.643 \pm 0.003$ |
| Ti-GeS | $4.302 \pm 0.001$ | $10.481 \pm 0.001$ | $3.644 \pm 0.003$ |
| Zr-GeS | $4.300 \pm 0.001$ | $10.477 \pm 0.001$ | $3.643 \pm 0.003$ |

 Table S5. Lattice constants for all intercalated GeS platelets determined through Le Bail fit of

 XRD patterns using GSAS-II.<sup>1</sup>

|                                    | a [Å]             | c [Å]              |
|------------------------------------|-------------------|--------------------|
| Si <sub>2</sub> Te <sub>3</sub>    | $7.429 \pm 0.001$ | $13.478 \pm 0.001$ |
| Hf-Si <sub>2</sub> Te <sub>3</sub> | $7.429 \pm 0.001$ | $13.487 \pm 0.001$ |
| Ti-Si <sub>2</sub> Te <sub>3</sub> | $7.427 \pm 0.001$ | $13.482 \pm 0.001$ |
| Zr-Si <sub>2</sub> Te <sub>3</sub> | $7.422 \pm 0.001$ | $13.470 \pm 0.001$ |

**Table S6.** Lattice constants for all intercalated  $Si_2Te_3$  nanoribbons determined through Le Bail fitof XRD patterns using GSAS-II.1



Figure S7. Rietveld Refinement of MoO<sub>3</sub> using Maud.<sup>2</sup> Only one reflection is measured.



Figure S8. Le Bail fits of Si<sub>2</sub>Te<sub>3</sub> (top), GeS (middle), Bi<sub>2</sub>Se<sub>3</sub> (bottom) using GSAS-II.<sup>1</sup>



**Figure S9.** XPS spectra of Si<sub>2</sub>Te<sub>3</sub> intercalated with Hf, Ti, and Zr. Adventitious carbon (284.5 eV) is used to calibrate charge across different samples. Si<sub>2</sub>Te<sub>3</sub> is sensitive to oxygen exposure which affects XPS characterization. Si<sub>2</sub>Te<sub>3</sub> shows a tellurium 3d doublet in all samples showing two distinct tellurium environments in Si<sub>2</sub>Te<sub>3</sub>. The Te doublet shifts to lower binding energies indicating an increase in electron density and charge transfer from the intercalant to the host. Hf-Si<sub>2</sub>Te<sub>3</sub> shows a change in intensity in the tellurium doublets. The Si 2p does not shift much with intercalation. Si sits in Si-Si dumbbells in Si<sub>2</sub>Te<sub>3</sub> and shows little electronic interaction with the intercalant. An Fe 3s peak is from the stainless steel substrate used to hold the Si<sub>2</sub>Te<sub>3</sub> for characterization in the XPS.



**Figure S10.** XPS of nanoribbon-MoO<sub>3</sub> grown through hydrothermal synthesis intercalated with Hf, Ti, and Zr. This MoO<sub>3</sub>, by virtue of its growth, has additional liquid organic sources of carbon which obfuscates calibration with the adventitious carbon. The strongest peak is assumed to be the adventitious carbon, to calibrate charge across samples (284.5 eV). The O 1s binding energy increases in all samples. Hf-MoO<sub>3</sub> shows two 1s peaks which would indicate two different oxidation environments, which are reflected in the XRD diffraction patterns (Article; Figure 2) that show two different environments for Hf-intercalated  $MoO_3$ . The Mo 3d peak shows a decrease in the binding energy for all samples. These two competing effects are interesting. They suggest that the electrons on the oxygen are donated to the intercalant guest, except in the alternate Hf environment, while the Mo peaks show electrons are donated to the Mo and an increase in the screening of core electrons. Mo 3d behaves very differently in the hydrothermally and vapor phase grown MoO<sub>3</sub>. The differences in Figure 9 and Figure S10 in these two differently grown MoO<sub>3</sub> samples with hydrothermally grown MoO<sub>3</sub> showing an increase in the screening of the Mo and vapor grown samples showing a decrease, may be attributed to the water remaining in the van der Waals gap from hydrothermal growth.

|                                    | Peak   | <b>B.E.</b> (eV) | FWHM |
|------------------------------------|--------|------------------|------|
| Bi Bi <sub>2</sub> Se <sub>3</sub> | 4f 7/2 | 158.14           | 0.85 |
|                                    | 4f 5/2 | 163.43           | 0.89 |
| Hf                                 | 4f 7/2 | 158.22           | 0.82 |
|                                    | 4f 5/2 | 163.53           | 0.75 |
|                                    | 4f 7/2 | 159.68           | 1.09 |
|                                    | 4f 5/2 | 164.89           | 1.09 |
| Ti                                 | 4f 7/2 | 157.54           | 0.79 |
|                                    | 4f 5/2 | 162.85           | 0.79 |
| Zr                                 | 4f 7/2 | 157.32           | 0.94 |
|                                    | 4f 5/2 | 162.63           | 0.94 |

Table S7. Peak fits for Bi 4f in Hf, Ti, Zr-intercalated Bi<sub>2</sub>Se<sub>3</sub> using ESCApe.

|                                    | Peak   | <b>B.E.</b> (eV) | FWHM |
|------------------------------------|--------|------------------|------|
| Se Bi <sub>2</sub> Se <sub>3</sub> | 3d 5/2 | 53.59            | 0.77 |
|                                    | 3d 3/2 | 54.45            | 0.86 |
| Hf                                 | 3d 5/2 | 53.61            | 0.82 |
|                                    | 3d 3/2 | 54.47            | 0.76 |
| Ti                                 | 3d 5/2 | 52.96            | 0.80 |
|                                    | 3d 3/2 | 53.82            | 0.75 |
| Zr                                 | 3d 5/2 | 52.87            | 0.97 |
|                                    | 3d 3/2 | 53.73            | 0.88 |

Table S8. Peak fits for Se 3d in Hf, Ti, Zr-intercalated Bi<sub>2</sub>Se<sub>3</sub>.

|        | Peak   | <b>B.E.</b> (eV) | FWHM |
|--------|--------|------------------|------|
| Ge GeS | 3d     | 30.20            | 1.28 |
|        | 3d     | 30.90            | 1.28 |
| Hf     | 3d 5/2 | 29.80            | 0.63 |
|        | 3d 3/2 | 30.37            | 0.69 |
|        | 3d     | 31.78            | 1.40 |
|        | 3d     | 32.85            | 1.40 |
| Ti     | 3d     | 32.84            | 0.71 |
|        | 3d     | 33.45            | 0.71 |
| Zr     | 3d 5/2 | 32.19            | 1.26 |
|        | 3d 5/2 | 30.24            | 1.21 |
|        | 3d 3/2 | 31.22            | 1.21 |
|        | 3d 3/2 | 33.02            | 1.26 |

Table S9. Peak fits for Ge 3d in Hf, Ti, Zr-intercalated GeS.

|       | Peak  | <b>B.E.</b> (eV) | FWHM |
|-------|-------|------------------|------|
| S GeS | 2p    | 164.39           | 0.96 |
|       | 2p    | 165.53           | 0.84 |
| Hf    | 2p3/2 | 161.29           | 0.87 |
|       | 2p1/2 | 162.43           | 0.82 |
| Ti    | 2p    | 164.23           | 0.79 |
|       | 2p    | 165.44           | 0.78 |
| Zr    | 2p3/2 | 161.60           | 1.31 |
|       | 2p1/2 | 162.82           | 1.22 |

 Table S10. Peak fits for S 2p in Hf, Ti, Zr-intercalated GeS.

|                     | Peak   | <b>B.E.</b> (eV) | FWHM |
|---------------------|--------|------------------|------|
| Mo MoO <sub>3</sub> | 3d 5/2 | 232.52           | 0.84 |
|                     | 3d 3/2 | 235.66           | 0.88 |
| Hf                  | 3d 5/2 | 232.98           | 1.22 |
|                     | 3d 3/2 | 236.11           | 1.25 |
|                     | 3d 5/2 | 231.44           | 1.18 |
|                     | 3d 3/2 | 234.57           | 1.05 |
| Ti                  | 3d 5/2 | 233.59           | 1.22 |
|                     | 3d 3/2 | 236.72           | 1.29 |
|                     | 3d 5/2 | 232.37           | 1.78 |
|                     | 3d 3/2 | 235.50           | 1.71 |
| Zr                  | 3d     | 232.63           | 0.91 |
|                     | 3d     | 235.76           | 0.96 |

Table S11. Peak fits for Mo 4f in Hf, Ti, Zr-intercalated MoO<sub>3</sub>.

|                    | Peak | <b>B.E.</b> (eV) | FWHM |
|--------------------|------|------------------|------|
| O MoO <sub>3</sub> | 1s   | 530.30           | 1.10 |
|                    | 1s   | 531.89           | 1.10 |
| Hf                 | 1s   | 531.17           | 1.63 |
|                    | 1s   | 532.55           | 1.63 |
| Ti                 | 1s   | 530.48           | 1.59 |
|                    | 1s   | 531.81           | 1.59 |
| Zr                 | 1s   | 530.46           | 1.20 |
|                    | 1s   | 531.86           | 1.20 |

Table S12. Peak fits for O 4f in Hf, Ti, Zr-intercalated MoO<sub>3</sub>.

|                          | Peak   | <b>B.E.</b> (eV) | FWHM |
|--------------------------|--------|------------------|------|
| Mo nano-MoO <sub>3</sub> | 3d 5/2 | 230.14           | 2.45 |
|                          | 3d 3/2 | 233.27           | 2.45 |
|                          |        |                  |      |
| Hf                       | 3d 5/2 | 229.58           | 2.96 |
|                          | 3d 3/2 | 232.71           | 2.96 |
| Ti                       | 3d 5/2 | 229.66           | 2.15 |
|                          | 3d 3/2 | 232.79           | 2.15 |
| Zr                       | 3d     | 230.14           | 2.45 |
|                          | 3d     | 233.27           | 2.45 |

**Table S13.** Peak fits for Mo 4f in Hf, Ti, Zr-intercalated hydrothermally grown nanoribbon MoO<sub>3</sub>.

|                         | Peak | <b>B.E.</b> (eV) | FWHM |
|-------------------------|------|------------------|------|
| O nano-MoO <sub>3</sub> | 1s   | 528.87           | 2.28 |
|                         | 1s   | 532.14           | 2.28 |
| Hf                      | 1s   | 527.87           | 2.63 |
|                         | 1s   | 531.71           | 2.39 |
| Ti                      | 1s   | 528.23           | 2.40 |
|                         | 1s   | 531.44           | 2.40 |
| Zr                      | 1s   | 528.87           | 2.28 |
|                         | 1s   | 532.14           | 2.28 |

Table S14. Peak fits for O 4f in Hf, Ti, Zr-intercalated hydrothermally grown nanoribbon MoO<sub>3</sub>.

|                                    | Peak | <b>B.E.</b> (eV) | FWHM |
|------------------------------------|------|------------------|------|
| Si Si <sub>2</sub> Te <sub>3</sub> | 2p   | 101.92           | 1.71 |
|                                    | 2p   | 99.95            | 1.71 |
| Hf                                 | 2p   | 99.83            | 1.82 |
|                                    | 2p   | 101.95           | 1.82 |
| Ti                                 | 2p   | 100.24           | 1.66 |
|                                    | 2p   | 101.89           | 1.66 |
| Zr                                 | 2p   | 99.78            | 1.88 |
|                                    | 2p   | 101.76           | 1.88 |

Table S15. Peak fits for Si 4f in Hf, Ti, Zr-intercalated  $Si_2Te_3$ .

|                                    | Peak   | <b>B.E.</b> (eV) | FWHM |
|------------------------------------|--------|------------------|------|
| Te Si <sub>2</sub> Te <sub>3</sub> | 3d 5/2 | 572.88           | 0.91 |
|                                    | 3d 3/2 | 583.27           | 0.84 |
|                                    | 3d 5/2 | 569.53           | 1.27 |
|                                    | 3d 3/2 | 579.88           | 1.35 |
| Hf                                 | 3d 5/2 | 569.27           | 1.11 |
|                                    | 3d 3/2 | 579.69           | 1.26 |
|                                    | 3d 5/2 | 572.66           | 1.03 |
|                                    | 3d 3/2 | 583.04           | 1.03 |
| Ti                                 | 3d 5/2 | 572.79           | 0.98 |
|                                    | 3d 3/2 | 583.19           | 0.98 |
|                                    | 3d 5/2 | 570.06           | 1.75 |
|                                    | 3d 3/2 | 580.36           | 1.75 |
|                                    | 3d 3/2 | 582.08           | 1.28 |
|                                    | 3d 5/2 | 571.73           | 1.28 |
| Zr                                 | 3d 5/2 | 572.54           | 1.11 |
|                                    | 3d 3/2 | 582.93           | 1.09 |
|                                    | 3d 5/2 | 569.50           | 1.77 |
|                                    | 3d 3/2 | 579.89           | 1.91 |
|                                    | 3d 5/2 | 571.23           | 1.29 |
|                                    | 3d 3/2 | 581.76           | 1.44 |

Table S16. Peak fits for Te 4f in Hf, Ti, Zr-intercalated Si<sub>2</sub>Te<sub>3</sub>.

| Hf                                 | Peak   | <b>B.E.</b> (eV) | FWHM |
|------------------------------------|--------|------------------|------|
| Hf Bi <sub>2</sub> Se <sub>3</sub> | 4f 7/2 | 16.80            | 1.85 |
|                                    | 4f5/2  | 18.89            | 2.52 |
| Hf GeS                             | 4f 7/2 | 17.57            | 1.30 |
|                                    | 4f5/2  | 19.24            | 1.26 |
| Hf MoO <sub>3</sub>                | 4f     | 17.25            | 1.40 |
|                                    | 4f     | 18.96            | 1.49 |
| Hf nano- MoO <sub>3</sub>          | 4f 7/2 | 14.39            | 1.73 |
|                                    | 4f5/2  | 15.99            | 1.73 |
|                                    | 4f 7/2 | 15.28            | 1.56 |
|                                    | 4f5/2  | 16.88            | 1.56 |
| Si <sub>2</sub> Te <sub>3</sub>    | 4f 7/2 | 15.66            | 2.23 |
|                                    | 4f5/2  | 17.06            | 1.19 |

**Table S17.** Peak fits for Hf 4f in Hf-intercalated Bi<sub>2</sub>Se<sub>3</sub>, GeS, MoO<sub>3</sub>, hydrothermally grown

 $MoO_3$ , and  $Si_2Te_3$ .

| Ti                                 | Peak  | <b>B.E.</b> (eV) | FWHM |
|------------------------------------|-------|------------------|------|
| Ti Bi <sub>2</sub> Se <sub>3</sub> | 2p    | 458.47           | 3.58 |
|                                    | 2p    | 464.01           | 3.58 |
| Ti GeS                             | 2p    | 461.88           | 1.74 |
|                                    | 2p    | 467.42           | 3.52 |
| Ti MoO <sub>3</sub>                | 2p1/2 | 459.52           | 2.62 |
|                                    | 2p3/2 | 465.06           | 2.20 |
| Ti nano- MoO <sub>3</sub>          | 2p1/2 | 494.11           | 3.56 |
|                                    | 2p3/2 | 485.47           | 4.16 |
| Si <sub>2</sub> Te <sub>3</sub>    | 2p1/2 | 486.80           | 1.52 |
|                                    | 2p3/2 | 495.30           | 1.52 |
|                                    | 2p1/2 | 485.34           | 1.40 |
|                                    | 2p3/2 | 493.87           | 1.40 |

**Table S18.** Peak fits for Ti 2p in Ti-intercalated  $Bi_2Se_3$ , GeS, MoO<sub>3</sub>, hydrothermally grown MoO<sub>3</sub>,

and Si<sub>2</sub>Te<sub>3</sub>.

| Zr                                 | Peak  | <b>B.E.</b> (eV) | FWHM |
|------------------------------------|-------|------------------|------|
| Zr Bi <sub>2</sub> Se <sub>3</sub> | 3d    | 182.30           | 1.48 |
|                                    | 3d    | 184.67           | 1.97 |
| Zr GeS                             | 3d5/2 | 182.66           | 1.60 |
|                                    | 3d3/2 | 185.00           | 1.47 |
| Zr MoO <sub>3</sub>                | 3d    | 182.60           | 1.23 |
|                                    | 3d    | 185.00           | 1.22 |
| Zr nano-MoO <sub>3</sub>           | 3d5/2 | 184.42           | 6.57 |
|                                    | 3d3/2 | 186.85           | 6.57 |
| Si <sub>2</sub> Te <sub>3</sub>    | 3d3/2 | 168.65           | 3.40 |
|                                    | 3d5/2 | 166.22           | 5.80 |

**Table S19.** Peak fits for Zr 3d in Zr-intercalated  $Bi_2Se_3$ , GeS, MoO<sub>3</sub>, hydrothermally grown MoO<sub>3</sub>, and  $Si_2Te_3$ .

## REFERENCES

- (1) Toby, B.H. and Von Dreele, R.B., GSAS-II: the genesis of a modern open-source all purpose crystallography software package. *J. Appl. Crystallogr*, **2013**, *46*, 544-549.
- (2) Lutterotti, L.; Matthies, S.; and Wenk, H. MAUD: a friendly Java program for material analysis using diffraction. IUCr: *Newsletter of the CPD* **1999**, 21.