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Appendix A

Models training

We trained GloVe and GPT-2 on syntactic or semantic features by adapting both

vocabulary size and the associated tokenizer. Table A1 recapitulates information about the

training of the models used. Table A2 provides examples of the features extracted from a

short passage. After feature extraction, a vocabulary listing all possible feature instances is

created for each feature type. A unique id is then associated to each element of the

vocabulary. The tokenizer converts each feature to its unique id. Finally, the model is fed

sequences of ids and learns to perform its task.

Table A1

Models hyperparameters

Models Number Number of Context Vector Number Number

Models of tokens unique words window size of epochs of layers

GloVe Syntax 980 M 1190 15 768 20 NaN

GPT-2 Syntax 980 M 1190 512 768 5 4

GloVe Semantics 370 M 91880 15 768 20 NaN

GPT-2 Semantics 370 M 91880 512 768 5 4

GloVe Integral 980 M 92945 15 768 20 NaN

GPT-2 Integral 980 M 92945 512 768 5 4
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Table A2

Examples of input sequences given to the neural language models when trained on the

different feature spaces.

Input sequence

Integral
The sixth planet was ten times larger

Features

Syntactic
Part-of-Speech DET ADJ NOUN VERB NOUN NOUN ADJ

Morphology
Definite=Def| Degree Number Ind|Sing|Past| Number Number Degree

Features

PronType=Art =Pos =Sing Person=3|Fin =Card =Plur =Cmp

Number of
1 1 2 1 1 2 2

Closing Nodes

Semantic Content
– sixth planet – ten times larger

Features words

The Morphology field contains a list of morphological features, with vertical bar (|)

as list separator and with underscore to represent the empty list. All features represent

attribute-value pairs, with an equals sign (=) separating the attribute from the value. In

addition, features are selected from the universal feature inventory

(https://universaldependencies.org/u/feat/index.html) and are sorted alphabetically by

attribute names. It is possible that a feature has two or more values for a given word:

Case=Acc,Dat. In this case, the values are sorted alphabetically.

Note: for display purposes, the morphology attribute values were removed for ‘was’,

it was originally equal to ‘Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin’.

https://universaldependencies.org/u/feat/index.html
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Appendix B

Context-limited models

Using the same original collection of English novels from Project Gutenberg, we trained

three GPT-2 models to probe context integration. More precisely, we restricted the

preceding context (size k = 5, 15 or 45 tokens) given to the GPT-2 models during training

on the "Integral dataset".

When training GPT-2 with a limited amount of contextual information, each input

sequence contained k + 5 tokens: a special token at the beginning, k context tokens, the

current token for which we retrieve the activations in order to fit fMRI brain data, the

token that is predicted by the current token and the 2 special tokens at the end (the last

special end-of-sentence token is always preceded by a token encoding a blank space, we

omitted it in the following table).

Table B1

Examples of context-limited input sequences given to GPT-2 for the analyses on

context-integration. Here the context size k is equal to 5.

Special Context Current Predicted Special
token (size = 5 tokens) token token token

|<endoftext>| Once , when I was six years |<endoftext>|

|<endoftext>| , when I was six years old |<endoftext>|

|<endoftext>| when I was six years old , |<endoftext>|

|<endoftext>| I was six years old , I |<endoftext>|
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Appendix C

Removing absolute position information in GPT-2 trained on semantic features

For the GTP-2 model trained on the semantic features, small modifications had to be made

to the model architecture in order to remove all residual syntax. By default, GPT-2 encodes

the absolute positions of tokens in sentences. As word ordering might contain syntactic

information, we had to make sure that it could not be leveraged by GPT-2 by means of its

positional embeddings, yet keeping information about word proximity as it influences

semantics. We achieved it by slightly modifying the architecture of GPT-2: we first

removed the default positional embeddings, and added to the attention scores embeddings

encoding relative positions between input tokens. Indeed, just removing positional

embeddings would have led to a bag-of-words model. By adding these embeddings

encoding relative position to the attention scores a token will weight the attention granted

to another token depending on their distance. By doing so, information about absolute and

relative positions is removed from tokens’ embeddings as it is not directly added to the

tokens’ hidden states. The following explains how this operation was performed. Let cW =

(cw1 , . . . , cwm) be a sequence of m tokenized content words. cW is then fed to a nlayers

transformer with nheads of dimension dheads that first build an embedding representation

Ei, i = 1..m (of size d = dheads ∗ nheads) to which it appends (by default) a position

embedding pi, i = 1..m (of size d) for each token. To remove all syntactic content, the first

step is to discard the previously mentioned positional embeddings pi, i = 1..m. However

stopping here would only lead to a bag-of-word model where a given token might be

influenced similarly by an adjacent token or one far away. As a consequence, we had to

weight the attention score granted to a token depending on its relative distance.

The attention operation can be described as mapping a query (Q) and a set of

key-value (K, V) pairs to an output, where the query, keys, values, and output are all

vectors (generally packed into matrices). The output is computed as a weighted sum of the

values, where the weight assigned to each value is computed by a compatibility function of



LANGUAGE MODELS SHOW BRAIN SENSITIVITY TO SEMANTICS, SYNTAX AND
CONTEXT 57

the query with the corresponding key. We thus modify the classical attention operation:

Attention(Q, K, V) = Softmax((QKT )/
√

dk)V

by adding the previously described relative positional embedding W in the attention

mechanisms:

Attention(Q, K, V) = Softmax((QKT + W)/
√

dk)V

To build W, we first defined the matrix D = (n − 1 + j − i)i,j=1..m ∈ Rm×m

(encoding the number of tokens separating two tokens in the input sequence shifted by

n − 1) for each input sequence cW , where n is the maximal input size. D is then embedded

using a lookup table that stores an embedding of size (dhead) for each possible value of D,

giving U (∈ Rm×m×dhead).

Finally, the weights assigned to the value vectors are adjusted using the embedded

relative distances between tokens W (∈ Rnheads×m×m), defined as:

Wi,j,k =
dhead∑
d=1

Ki,j,dUj,k,d

By doing so, we were able to weight words interactions depending on their relative

distance in the input sequence, while removing all absolute positional information from

tokens hidden-states.
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Appendix D

Convergence of the language models during training

Figure D1
GPT-2 convergence during training. The models represented in panels A to D were
trained on the integral features. Models in panels E and F were respectively trained on the
semantic and syntactic features. Models were trained until no further improvement could be
observed on the validation set.
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Figure D2
GloVe convergence during training. The models represented were trained on the
integral features (blue), semantic features (green) or syntactic features (red). Models were
trained until no further improvement could be observed on the validation set.
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Appendix E

Decoding individual syntactic features

Appendix 1-Fig.E1 shows the decoding accuracies of GloVe and GPT-2 models when

trained on one of the three datasets. The syntactic labels varies from encompassing all

categories (Morph+POS+NCN), to only one of them.

It is important to highlight that the decoding performance of the semantic models

on the syntactic decoding task primarily relies on Morph. In contrast, the decoding of the

Part-of-speech or the Number of Closing Nodes (NCN) are at chance level. This suggests

that information related to the gender or plurals might be encoded by both syntactic and

semantic embeddings. In addition, there are indeed more semantic labels compared to the

syntactic ones. Consequently, the space occupied by syntactic embeddings is relatively

smaller than that of semantic embeddings. As a result, it is relatively easier to project the

larger semantic space onto the syntactic embedding space.
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Figure E1
Decoding syntactic information from words embeddings. For each dataset and
model type (Glove and GPT-2), logistic classifiers were set up to decode either the syntactic
or the semantic categories of the words from the text of The Little Prince. Chance-level was
assessed using dummy classifiers and is indicated by black vertical lines. From top to
bottom: The syntactic label is i) the triplet (POS, Morph, NCN), ii) the POS, iii) the
NCN, iv) the Morph.
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Appendix F

Mapping NLM activations to brain data

Given two non-linear transformations φ1 (the neural language model that takes as input

the sentence and from which we extract latent representations) and φ2 (the brain that

takes as input the sentence and from which we extract voxels’ activations) and an input

sequence w = (w1, . . . , wM), we define Ys = φ2(w) ∈ RN×V and X = φ1(w) ∈ RM×d,

and we aimed at finding a linear transformation from X to Ys, where d is the dimension of

the model, V is the number of brain voxels, and N the number of fMRI scans acquired.

One issue is that X and Ys don’t have the same sampling frequency: X being defined at

word-level while Ys has been re-sampled at the fMRI acquisition frequency, every 2

seconds. To map X to Ys we first need to temporally align them, taking the dynamic of

the fMRI BOLD signal into account, and then determine a linear spatial mapping between

the convolved and re-sampled X and Ys. Using the standard model-based encoding

approach to modelling fMRI signals (Huth et al., 2016; Naselaris et al., 2011; Pasquiou

et al., 2022), we first convolve each column of X with the SPM haemodynamic kernel (K),

which corresponds to the profile of the fMRI BOLD response following a Dirac stimulation,

and then sub-sampled the signal to match the sampling frequency of Ys, giving

X̃ = Sub(K ◦ X), with Sub the sub-sampling operator. Finally, we learn the linear spatial

mapping between X̃ and Ys using a nested cross-validated L2-regularized (aka Ridge)

univariate linear encoding model. More precisely, for each voxel yv
s , we learn a linear

projection β̂v
s from X̃ to yv

s using a nested cross-validated L2-regularized univariate linear

encoding model whose general solution is given by:

β̂v
s = arg min

βs

∥yv
s − βT

s X∥2 + λ∥βs∥2
2 i.e. β̂s = Ridge(X, Ys)

The latter stage resulted for each model and each run into a design matrix X of size N × d.

Given a neural language model, we gave the associated nine design-matrices to a nested

cross-validated L2-regularized univariate linear encoding model to fit the fMRI brain data

(of size N × V ). To evaluate model performance and the optimal regularization parameter
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λ∗, we used a nested cross-validation procedure: we split each participant’s dataset into

training, validation and test sets, such that the training set included 7 out of the 9

experiment runs, and the validation and test sets contained one of the two remaining

sessions. We evaluated model performance using Pearson correlation coefficient R, which is

a measure of the linear correlation between encoding models’ predicted time-courses and

the actual time-courses. For each subject and each voxel, we first determined λ∗ by

comparing Rvalid for 10 different values of λ, linearly spaced in log-scale between 10−3 and

104. We then calculated Rtest for λ∗. Finally, we repeated this procedure 9 times, using

cross-validation. This resulted in 9 Rtest values that we then averaged to produce a single

Rtest map for the participant. We evaluated the quality of the mapping for subject s in

voxel v using Pearson correlation:

R(X)v
s = Corr(Yv

s , β̂v
s X)
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Appendix G

The Basic Features baseline model

To assess the specific impact of NLMs’ embeddings, the maps shown in Fig.3 report

increases in R values relative to a baseline model which comprised three variables of

non-interest:

• acoustic energy (root mean squared of the audio signal sampled every 10ms)

• word offsets (one event at each word offset)

• log of the lexical frequency of each word (modulator of the words events).

More generally, as we looked at increases in R scores between models, the baseline

model was appended to all other models studied in order to cancel out the effects of the 3

features of non-interest. Appendix 1-Fig.G1 below displays the cross-validated correlations

obtained from this baseline model.

Figure G1
Brain regions showing significant activations for the Basic Features baseline
model. Using the Basic Features (BF) baseline model to fit fMRI brain data, we displayed
voxels where there was a significant correlation (voxel-wise thresholded group analyses;
N=51 subjects; corrected for multiple comparisons with a FDR approach p < 0.005; zF DR is
the FDR threshold on the z-scores). The effects from the Basic Features baseline model
were discarded from all the analyses in the paper.
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Appendix H

Brain fit of GloVe and GPT-2 when trained on the Integral Features

Appendix 1-Fig.H1 shows the increase in R, relative to the baseline model, provided by the

GloVe and GPT-2 models trained on the Integral Features, that is, the intact text.

Figure H1
Brain regions showing significant R score increases compared to the Baseline
Model for GloVe and GPT-2 when trained on the Integral Features. Increases
in R scores relative to the baseline model for GloVe (a non contextual model) and GPT-2
(a contextual model), trained on the Integral features (voxel-wise thresholded group
analyses; N=51 subjects; corrected for multiple comparisons with a FDR approach
p < 0.005; zF DR is the FDR threshold on the z-scores).
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Appendix I

R Scores Distribution for GloVe and GPT-2 Trained on Semantic or Syntactic Features

Appendix 1-Fig.I1 below shows the averaged (across participants) voxels distribution, of

the increase in R scores obtained from GloVe and GPT-2 models on semantic or syntactic

features, relative to the baseline model.

Figure I1
Distribution of R scores derived from GloVe and GPT-2 semantic and
syntactic embeddings. The 90th-percentile of the R scores distribution is highlighted
with a vertical black line and used to select voxels for the peak regions analyses.
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Appendix J

Models trained on Semantic features vs models trained on Syntactic features

Appendix 1-Fig.J1 shows the differences in R scores between the semantic and syntactic

models, for Glove and GPT-2. Correcting for multiple comparisons (N=51; p < 0.005 after

FDR correction), we observed significant differences in favor of the syntactic embeddings in

the STG, and significant differences in favor of the semantic embeddings in the pMTG, the

AG and the IFS and SFS.

Figure J1
Comparison of the models trained on Semantic features with the models
trained on Syntactic features. Significant R score differences between the models
trained on Semantic features and the models trained on Syntactic features. The brain
regions that are better fitted by the former model appear in green, while the regions better
fitted by the latter model appear in red. (All these maps represent voxel-wise thresholded
group analyses; N=51 subjects; corrected for multiple comparisons with a FDR approach
p < 0.005).
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Appendix K

Semantic and syntactic peak regions at the subject-level

Appendix 1-Fig.K1 shows the peak regions analysis for GloVe and GPT-2 for the first 10

subjects. The figure shows syntactic peak regions around temporal regions and the dmPFC

and semantic peak regions around the pMTG, AG, IFS and Precuneus. Appendix 1-Fig.K4

shows the distribution of Jaccard scores across subjects, separating the left hemisphere (in

red) from the right (in blue).
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Figure K1
Peak regions of syntax and semantics across subjects. Bilateral spatial
organisation of syntax and semantics highest R scores for the first 10 English subjects of
The Little Prince fMRI corpus. Voxels whose R score belong in the 10% highest R scores
(in green for models trained on the semantic features, and in red for models trained on the
syntactic features) are projected onto brain surface maps for GloVe and GPT-2 (overlap in
yellow and other voxels in grey). Jaccard score for each hemisphere are computed, i.e. the
ratio between the size of the intersection and the size of the union of semantics and syntax
peak regions.

Appendix 1-Fig.K2 and Appendix 1-Fig.K3 show that the subject-level and

group-level analyses are coherent with syntactic peak regions around the Temporal regions,

the IFG and dmPFC, and semantic peak regions around the TPJ and the
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Precuneous/posterior Cingulate gyri.

Figure K2
Overlap between Harvard-Oxford ROIs and syntactic/semantic peak regions,
averaged across subjects (for GloVe). Percentage of voxels of the Harvard-Oxford
ROIs that belong to the syntactic peak regions (left) and semantic peak regions (right),
averaged across the 51 English subjects. The error bars display the standard error to the
mean. Regions in red were identified as syntactic peak regions in the group-level analysis,
while regions in green were identified as semantic peak regions. Regions in blue belong to
both.
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Figure K3
Idem but for GPT-2

Figure K4
Jaccard scores distribution across subjects. Distribution of the Jaccard scores across
the 51 English participants, in red for the left hemisphere and blue for the right.
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Appendix L

Layer-wise analysis

Figure L1
Layer-wise analysis of the models trained on integral/semantic/syntactic
features. Impact of layer depth on the predictive power of GPT-2 when trained on the
integral features (blue), the syntactic features (red) and the semantic features (green).

We further demonstrate the relevance of using the late middle layers in the

transformer models’ architecture. We display the impact of layer depth on the, per-region,

predictive power of BERT models1 having different total number of layers.

1 made available by GOOGLE at https://github.com/google-research/bert
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Figure L2
Impact of layer depth on the, per-region, predictive power of BERT models
having different total number of layers. Impact of layer depth on the, per-region,
predictive power of BERT models. A) 2-layer BERT, B) 4-layer BERT, C) 6-layer BERT,
D) 8-layer BERT, E) 10-layer BERT, F) 12-layer BERT. Brain scores (median R values)
were computed across voxels inside brain regions defined by the Harvard-Oxford atlas; each
line corresponds to a region.
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Appendix M

Meta-Analysis based on Neurosynth

We used the Neurosynth database (https://github.com/neurosynth/neurosynth) to perform

a meta-analysis of brain regions that appeared in fMRI articles containing the words

’syntactic’ or ’semantic’ in their abstract. Using a frequency threshold of 0.05, the keyword

semantic yielded 626 articles, while syntactic yielded 128 articles.

The meta.MetaAnalysis function from the neurosynth package was then used to

create association test maps for syntax and semantics. These maps display voxels that are

reported more often in articles that mention the keyword than articles that do not. Such

association test maps indicate whether or not there’s a non-zero association between

activation of the voxel in question and the use of a particular term in a study. We fused

the maps associated to syntactic and semantic, thresholded with a False Discovery Rate set

to 0.01, to produce Fig.M1.

In Fig.M1, we present the outcome of a meta analysis of the literature based on the

search for the keywords ’syntactic’ and ’semantic’ in the Neurosynth database. This

analysis, albeit somewhat simplistic, reveals the brain regions most often associated with

syntax and semantics.

https://github.com/neurosynth/neurosynth
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Figure M1
Association maps for the terms “semantic” and “syntactic” in a
meta-analysis using Neurosynth (http://neurosynth.org) The association test map for
syntactic (resp. semantic) displays voxels that are reported more often in articles that
include the term syntactic (resp. semantic) in their abstracts than articles that do not
(FDR correction of 0.01).

http://neurosynth.org
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Appendix N

*

Brain Regions abbreviations

• STG: superior Temporal Gyrus

• STS: superior Temporal Sulcus

• TP: Temporal Pole

• IFG: inferior Frontal Gyrus

• IFS: inferior Frontal Sulcus

• DMPC: Dorso-Medial Prefrontal Cortex

• pMTG: posterior Middel Temporal Gyrus

• TPJ: temporo-parietal junction

• pCC: posterior Cingulate Cortex

• AG: Angular Gyrus

• SMA: Supplementary Motor Area


