Machine learning for prediction of all-cause mortality after transcatheter aortic valve implantation

Jacek Kwiecinski^{1,2} MD, PhD, Maciej Dabrowski¹ MD, PhD, Luis Nombela-Franco³ MD, PhD, Kajetan Grodecki⁴ MD, PhD, Konrad Pieszko^{2,5} MD, PhD, Zbigniew Chmielak¹ MD, PhD, Anna Pylko¹ MD, Breda Hennessey³ MD, PhD, Lukasz Kalinczuk¹ MD, PhD, Gabriela Tirado-Conte³ MD, PhD, Bartosz Rymuza⁴ MD, PhD, Janusz Kochman⁴ MD, PhD, Maksymilian P. Opolski¹ MD, PhD, Zenon Huczek⁴ MD, PhD, Marc R Dweck⁶ MD, PhD, Damini Dey² PhD, Pilar Jimenez-Quevedo³ MD, PhD, Piotr Slomka² PhD*, Adam Witkowski¹ MD, PhD*

1. Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland

2. Departments of Medicine (Division of Artificial Intelligence in Medicine) and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA

3. Cardiovascular Institute. Hospital Clinico San Carlos, IdISSC, Madrid, Spain

4. 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland

5. Department of Interventional Cardiology and Cardiac Surgery, University of Zielona Gora, Poland

6. Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom

*Equal contribution as senior author

On-line Supplement

Content:

1.	Supplementary Methods. The hyperparameters used for the XGboost model2
2.	Supplementary Methods. Missing values
3.	Supplementary Results. Prediction of all cause mortality based on preprocedural data3
4.	Supplementary Table 1. Variables used in machine learning4
5.	Supplementary Figure 1. Prediction of 1-year all-cause mortality on external testing8
6.	Supplementary Figure 2. Further examples of individual prediction of all-cause mortality
	with explainable artificial intelligence9
7.	Supplementary Figure 3. Feature importance for the machine learning model based on
	pre-procedural data10

Supplementary Methods

Standard parameters were Gamma (minimum loss reduction) = 1, standard L2 regularization (lambda)=1. The final hyperparameters found in the grid search for the XGBoost model in the training population were as follows:

Learning rate = 0.001 Maximum depth of a tree = 1 Subsample ratio of the parameters = 0.5 Subsample ratio of the training instances = 0.5 Minimum sum of instance weight (hessian) needed in a child = 1 number of iterations = 5000

Missing values

XGBoost internally provides the missing value default imputation by unique codes for the missing variables to introduce a sparsity pattern and perform sparsity-aware split findings thus it is not necessary to provide explicitly replace missing data. As shown previously this internal XGBoost mechanism is performing comparably to dedicated missing variables replacement methods (1).

 Rios R, Miller RJH, Manral N, et al. Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: Insights from REFINE SPECT registry. Comput Biol Med. 2022 Jun;145:105449. doi: 10.1016/j.compbiomed.2022.105449. Epub 2022 Mar 25.

Supplementary Results

A machine-learning model based on 30 pre-procedural variables had an AUC of 0.64 (0.59-0.69). We present a graphical representation of the top predictors of our pre-procedural data model in Supplementary Figure 3.

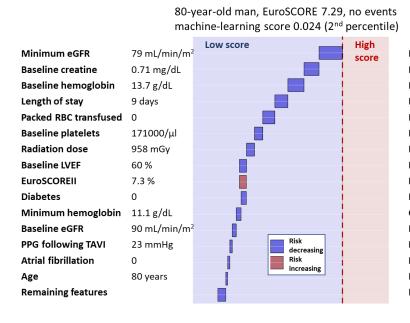
Supplementary Table 1. Variables used in machine learning.

No.	Variable name	Percent of missing values, %
1	age (years)	0
2	Gender (0, 1)	0
3	height (m)	0
4	weight (kg)	1
5	body mass index (kg/m ²)	1
6	diabetes mellitus (0, 1)	0
7	past myocardial infarction (0, 1)	0
8	chronic obstructive pulmonary disease (0, 1)	6
9	pulmonary hypertension (0, 1)	0
10	past cerebrovascular accident (0, 1)	0
11	past percutaneous coronary intervention (0, 1)	1
	1 2 3 4 5 6 7 8 9 10	1age (years)2Gender (0, 1)3height (m)4weight (kg)5body mass index (kg/m²)6diabetes mellitus (0, 1)7past myocardial infarction (0, 1)8chronic obstructive pulmonary disease (0, 1)9pulmonary hypertension (0, 1)10past cerebrovascular accident (0, 1)

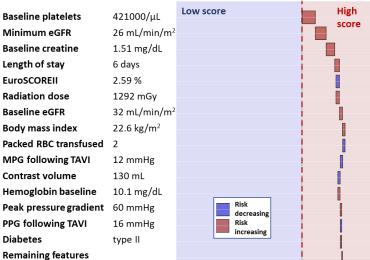
	12	past coronary artery bypass surgery (0, 1)	0
	13	previous valvular surgery (0, 1)	0
	14	atrial fibrillation (0, 1)	0
	15	past pacemaker implantation (0,1)	0
	16	EuroSCORE II	0
Biomarker	17	Baseline creatine (mg/dL)	0
	18	Baseline Estimated glomerular filtration rate (ml/m2)	0
	19	Baseline hemoglobin (g/dL)	0
	20	Baseline platelets (n/dL)	0
	21	Baseline NT-proBNP	18
Echocardiography	22	Baseline left ventricular ejection fraction (%)	1
	23	Baseline effective orifice area (cm2)	1
	24	Peak transvalvular pressure gradient (mmHg)	1
	25	Mean transvalvular pressure gradient (mmHg)	1
	26	Aortic regurgitation (0,1)	2
	27	Mitral regurgitation (0, 1)	3
	28	Tricuspid regurgitation (0, 1)	8

	29	Pulmonary artery systolic pressure (mmHg)	23
	30	Bicuspid aortic valve (0, 1)	7
Procedure	31	General anesthesia (0, 1)	0
	32	Non femoral TAVI access (0, 1)	0
	33	Contrast volume (mL)	6
	34	Fluoroscopy time (min)	3
	35	Radiation dose (mGy)	16
	36	Minimum hemoglobin following TAVI (g/dL)	0
	37	Minimum platelets following TAVI (n/dL)	0
	38	Minimum eGFR following TAVI (ml/m2)	0
	39	Major vascular complication (0, 1)	1
	40	Minor vascular complication (0, 1)	2
	41	Life threatening bleeding (0, 1)	0
	42	Major bleeding (0, 1)	0
	43	Minor bleeding (0, 1)	0
	44	Packed red blood cells transfused (units)	0
	45	Periprocedural myocardial infarction (0, 1)	0
	46	Periprocedural stroke (0, 1)	0

47	Coronary occlusion (0, 1)	0
48	Annulus rupture (0, 1)	0
49	Pacemaker implantation following TAVI (0, 1)	1
50	Hospitalization length (days)	0
51	LV ejection fraction following TAVI (%)	8
52	Peak transprosthetic pressure gradient (mmHg)	4
53	Mean transprosthetic pressure gradient (mmHg)	4
54	Aortic regurgitation following TAVI (0, 1)	9

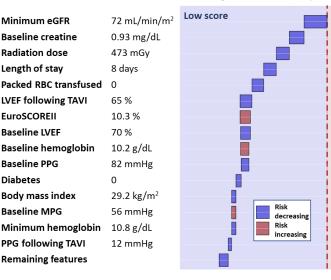

Supplementary Figure 1. Prediction of 1-year all-cause mortality on external testing.

Receiver-operating characteristic curves for prediction of 1-year all-cause mortality following hospital discharge after successful transcatheter aortic valve implantation. The machine learning XGBoost model had a significantly higher area-under-the-curve for all-cause mortality prediction than an established risk scores.


Machine-learning Prediction of 1-year All Cause Mortality (n = 95/823)

Supplementary Figure 2. Further examples of individual prediction of all-cause mortality with explainable artificial intelligence

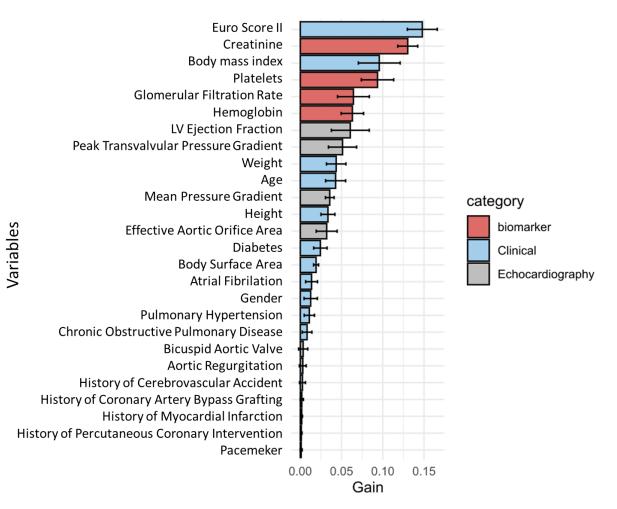
Personalized explanation of the machine-learning score


80-year-old man, EuroSCORE 2.59, died 22 days after TAVI machine-learning score 0.34 (93rd percentile)

76-year-old man, EuroSCORE 10.29, no events machine-learning score 0.033 (6th percentile)

High

score



84-year-old man, EuroSCORE 2.19, died 335 days after TAVI machine-learning score 0.35 (94th percentile)

High

Packed RBC transfused	3 units	Low score	score
Minimum eGFR	28 mL/min/m	2	
Length of stay	33 days		
Baseline platelets	326000/µL		
Baseline creatine	1.38 mg/dL		
Body mass index	29.4 kg/m²		
Baseline LVEF	60 %		
Baseline EOA	0.8 cm ²		
Baseline PPG	74 mmHg		
Radiation dose	1717 mGy		
Hemoglobin baseline	12.7 g/dL		
PPG following TAVI	14 mmHg		
Height	1.63 m	Risk decreasing	
Diabetes	1	Risk increasing	
MPG following TAVI	8 mmHg		
Remaining features			

Supplementary Figure 3. Feature importance for the machine learning model based on pre-procedural data.

