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1. Supplementary Methods: existing calibration strategies

In both LASSO-regularised regression and graphical modelling, the calibration of the
hyper-parameter A is critical as it regulates the size of the set of selected features. State-
of-the-art approaches for the choice of A are based on M-fold cross-validation minimising
some error metric (e.g. Mean Squared Error in Prediction). For graphical models,
information theory metrics are commonly used, including the Akaike, Bayesian, and Ex-
tended Bayesian Information Criterion (Akaike, 1998; Schwarz, 1978; Foygel and Drton,
2010; Chiquet et al., 2009):

AIC, = —20(Qy) + 2|E)|
BIC), = —2/(2)) + log(n)|Ey|

EBIC) = —2£(Q)) + log(n) (| Ex| + 4vlog(p))

where £()) = 5 log det (Qy) —tr (Q2,5) is the penalised likelihood, |E)| is the degrees
of freedom (i.e. number of edges in the graph), and 7 is a hyper-parameter specific to
the EBIC.
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2. Supplementary Figures and Tables
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Supplementary Figure S1: Simulation of data with a block correlation struc-
ture. The heatmaps show Pearson’s correlation (A) and partial correlation (B) matrices
estimated on real data from 50 randomly chosen DNA methylation and gene expression
markers. The bottom panel shows Pearson’s correlation (C) and partial correlation (D)
matrices estimated on simulated data with n = 200 observations and a block structure
(50 variables in each group). The simulated conditional independence structure between
the p = 100 variables is that of a random graph (v = 0.04, v, = 0.2). All partial

correlations are estimated without penalisation.
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Supplementary Figure S2: Choice of the value of parameter u for simulation
of the precision matrix. The contrast of the simulated correlation matrix for a
scale-free graphical model with p = 50 nodes and n = 100 observations is represented
as a function of the parameter u on the log-scale. The chosen value for u is the one
maximising the contrast (indicated by a red dashed line). The heatmaps of correlation
matrices with extreme and calibrated values of the parameter u are showed.
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Supplementary Figure S3: Visualisation of the PFER constraint in calibra-
tion of stability selection models. The calibration heatmap shows the stability
score (colour-coded) as a function of A (or the corresponding average number of selected
variables ¢) and 7 (A). The white area (left) represents models for which the PFER
computed using the Meinshausen and Biithlmann approach would exceed the threshold
(PFER )/ > 5). The highest stability score obtained for a given penalty parameter A is
represented for the unconstrained (blue) and constrained (red dotted line) approaches
(B). Ordered selection proportions obtained from constrained calibration are reported
(C). Stability selection is applied on simulated data with n = 100 observations for
p = 50 variables, of which 10 contribute to the definition of the outcome with effect sizes
in {[-1,—0.5] U[0.5,1]} and an expected proportion of explained variance of 70%.
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Supplementary Figure S4: Selection performances of state-of-the-art ap-
proaches and proposed calibrated stability selection graphical LASSO mod-
els applied on simulated data with scale-free underlying graph structure. We
show the median, quartiles, minimum and maximum Fj-score of graphical LASSO mod-
els calibrated using the BIC, EBIC, StARS, and stability selection graphical LASSO
models calibrated via error control (MB in blue, SS in green) or using the proposed
stability score (red). Models are applied on 1,000 simulated datasets with p = 100
variables following a multivariate Normal distribution corresponding to a random graph
structure (v = 0.02). Performances are estimated in low (n = 2p = 200), intermediate
(n = p=100), and high (n = p/2 = 50) dimensions.
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Supplementary Figure S5: Selection performances of state-of-the-art ap-
proaches and proposed calibrated stability selection graphical LASSO models
with different thresholds in PFER. We show the median, quartiles, minimum and
maximum Fj-score of graphical LASSO models calibrated using the BIC, EBIC, StARS,
and stability selection graphical LASSO models calibrated via error control (MB in blue,
SS in green) or using the proposed stability score (red). The threshold in PFER for sta-
bility selection models was set to 10 (A), 30 (B) or 50 (C). Models are applied on 1,000
simulated datasets with p = 100 variables following a multivariate Normal distribution
corresponding to a random graph structure (v = 0.02). Performances are estimated in
low (n = 2p = 200), intermediate (n = p = 100), and high (n = p/2 = 50) dimensions.
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Supplementary Figure S6: Selection performances of state-of-the-art ap-
proaches and proposed calibrated stability selection LASSO models applied
on simulated data. Models are applied on 1,000 simulated datasets with n = 500 ob-
servations and p = 1, 000 predictor variables, of which an expected proportion vy = 0.02
contributes to the definition of the outcome with effect sizes in {—1, 1} and an expected
proportion of explained variance of 40%. We simulate independent predictors, condi-
tionally on the outcome (A) or blocks of correlated predictors where the conditional
independence structure within blocks is that of a random network of density v = 0.02
(B). For both settings, we represent a heatmap of Pearson’s correlations between pre-
dictors in a typical simulation. We show the median, quartiles, minimum and maximum
Fi-score, precision and recall of LASSO models calibrated by 10-fold cross validation
minimising the Mean Squared Error of Prediction (An,) or one standard error away
from the minimum (As), and stability selection LASSO models calibrated via error
control (MB in blue, SS in green) or using the proposed stability score (red).
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Supplementary Figure S7: Effect of the number of subsampling iterations
K on the selection performance and computation time. The median, 5 and
95t quantile of the Fj-score and computation time are reported for graphical LASSO
stability selection models calibrated using the unconstrained approach and with different
numbers of iterations K (10, 20, 50, 100, 500, 1,000, 2,000, and 5,000). The models are
applied on simulated data (p = 100) with underlying random graph structure (v = 0.02).
The computation time in seconds is reported on the log-scale (X-axis). Performances are
evaluated in low (n = 2p = 200), intermediate (n = p = 100), and high (n = p/2 = 50)
dimensions.
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Supplementary Figure S8: Effect of the choice of resampling technique on
the selection performance. The median, 5" and 95" quantile of the Fj-score are
reported for stability selection models calibrated using the unconstrained approach with
different resampling approaches: subsampling with different subsample sizes 7 between
0.1 and 0.9 (red), simultaneous selection in complementary pairs (CPSS, in dark blue)
and bootstraping (resampling with replacement, dark green). Performances are evalu-
ated in low (n = 2p = 200), intermediate (n = p = 100), and high (n = p/2 = 50)
dimensions
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Supplementary Figure S9: Single-block graphical model of DNA methylation
markers of exposure to tobacco smoking. Calibration is done by maximising the
stability score while ensuring that PFER ;5 < 70 (A). CpG sites with at least one edge
are represented in the graph (B).
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Supplementary Figure S10: Heatmap of Pearson’s correlations estimated
from measured levels of the 159 DNA methylation markers and 208 gene
expression markers.
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Supplementary Figure S11: Graphical LASSO model of smoking-related
methylation (blue square) and gene expression (red circle) markers calibrated
using the Bayesian Information Criterion (BIC). The BIC is represented as a
function of the penalty parameter A (A). The graphical model generating the smallest
BIC is showed (B).
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Supplementary Figure S12: Multi-OMICs graphical model integrating DNA
methylation (square) and gene expression (circle) markers of tobacco smok-
ing with nodes coloured by chromosome.
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T TP FP FN Precision Recall F-score Time (s)
AIC 99 [13 1959 [448] 0[0 0.049 [0.016 1.000 [0.000 0.093 [0.030 1 10]
BIC 99 [13 564 [205 00 0.150 [0.061 1.000 [0.000 0.260 [0.091 1[0
EBIC 98 [13 264 [148 010 0.271 [0.125 1.000 [0.000 0.426 [0.152 110
StARS 98 [12 162 [84] 101 0.373 [0.143 0.991 [0.012 0.543 [0.148 78 [39
0.6 89 [12 44 119 10 [7] 0.668 [0.124 0.897 [0.072 0.768 [0.093 83 40
0.65 92 [12 58 [25 6 [5 0.616 [0.123 0.936 [0.055 0.743 [0.096 84 [38
0.7 94 [11 66 (30 5[5 0.590 [0.136 0.953 [0.048 0.729 [0.105 86 [38
MB 0.75 95 [11 68 [36 4 |4 0.582 [0.150 0.962 [0.041 0.725 [0.116 87 [38
0.8 95 [12 66 (39 3[4 0.590 [0.161 0.968 [0.038 0.731 [0.124 87 [38
0.85 95 [10 62 [40 3 1[5 0.605 [0.171 0.969 [0.044 0.746 [0.127 88 [38
L 0.9 95 [10 56 [41 3 (5 0.633 [0.187 0.968 [0.044 0.763 [0.131 88 [37
0.6 94 112 74 128 415 0.562 10.123 0.958 10.045 0.708 10.102 87 136
0.65 96 [12 88 [39 23 0.522 [0.134 0.978 [0.031 0.680 [0.114 86 [35
0.7 97 [11 90 [47 2 (3 0.519 [0.150 0.981 [0.032 0.678 [0.129 86 [34
SS 0.75 97 [12 87 [50 2 (3 0.531 [0.160 0.983 [0.029 0.688 [0.135 85 [34
0.8 97 [12 80 [50 113 0.551 [0.166 0.989 [0.029 0.706 [0.136 84 [32
0.85 97 [12 70 [46 1|2 0.582 [0.170 0.990 [0.024 0.733 [0.136 84 [32
0.9 97 [12 58 [38 12 0.631 [0.173 0.990 [0.021 0.770 [0.124 83 [32
Subsampling 0.9 94 10 54 46 415 0.640 [0.203 0.957 10.052 0.764 10.137 81 [32
CPSS 0.9 96 [11 48 [40 34 0.669 [0.199 0.973 [0.039 0.793 [0.138 83 [33
MB 0.9 93 [10 52 [39 5[5 0.645 [0.185 0.949 [0.055 0.769 [0.126 81 [32
SS 0.9 96 (11 48 [40 34 0.669 [0.199 0.973 [0.039 0.793 [0.138 82 (31
AIC 98 [13 1760 [813] 010 0.053 [0.028 1.000 [0.000 0.101 [0.050 110
BIC 98 [12 460 [223)] 01 0.176 [0.084 1.000 [0.010 0.299 [0.119 1|0
EBIC 94 [10 129 [107] 3 1[5 0.426 [0.213 0.972 [0.050 0.589 [0.198 1 (0]
StARS 94 [10 115 [75] 3 1[5 0.451 [0.171 0.966 [0.053 0.614 [0.151 82 [42
0.6 83 [8 39 20 16 [10] 0.679 10.128 0.837 10.087 0.748 10.083 88 41
0.65 86 |9 47 (26 12 [9] 0.648 [0.140 0.876 [0.079 0.743 [0.088 91 [39
0.7 87 |8 50 (30 11 [9] 0.636 [0.150 0.893 [0.080 0.741 [0.092 95 [40
MB 0.75 88 [9 50 [33 10 [9] 0.640 [0.163 0.898 [0.084 0.743 [0.096 96 (39
0.8 88 [9 47 (34 10 [9] 0.655 [0.170 0.901 [0.086 0.752 [0.097 95 [38
0.85 87 |8 43 [34 10 [10] 0.672 [0.176 0.897 [0.090 0.761 [0.094 95 [37
I 0.9 86 [8 37 [32 11 [11] 0.702 [0.176 0.887 [0.102 0.773 [0.086 95 [38
0.6 89 [1I0 60 [31 9 (7 0.600 [0.139 0.909 [0.072 0.721 [0.095 95 [37
0.65 91 [10 66 (39 77 0.580 [0.151 0.931 [0.065 0.711 [0.106 95 [35
0.7 92 [10 67 [42 6 |7 0.583 [0.161 0.939 [0.063 0.716 [0.113 94 [37
SS 0.75 92 [10 63 [43 6 [7 0.595 [0.167 0.941 [0.062 0.725 [0.114 94 [38
0.8 92 [10 58 [42 6 (7 0.615 [0.174 0.942 [0.065 0.738 [0.112 94 [37
0.85 92 [9 52 [40 6 (7 0.642 [0.180 0.941 [0.069 0.757 [0.111 94 [39
0.9 91 [9 44 [35 6 |7 0.681 [0.176 0.941 [0.071 0.782 [0.098 94 [37
Subsampling 0.9 88 110 40 133 919 0.687 10.182 0.905 [0.086 0.765 10.108 90 [39
CPSS 0.9 89 [10 34 [29 8 [10] 0.725 [0.171 0.912 [0.088 0.800 [0.088 91 [38
MB 0.89 84 [10 36 [30 13 [12] 0.704 [0.166 0.864 [0.107 0.763 [0.086 89 [36
SS 0.9 89 [10 34 (29 8 [10] 0.725 [0.171 0.912 [0.088 0.800 [0.088 89 [35
AIC 97 [12 3115 [125] 1 [2] 0.030 [0.004 0.989 [0.022 0.059 [0.007 2 1]
BIC 93 9 242 [240] 4 (8] 0.279 [0.173 0.961 [0.075 0.431 [0.203 21
EBIC 5 [10 0 [1] 92 [12 0.854 [1.000 0.054 [0.097 0.101 [0.175 21
StARS 80 [9 60 [52 17 (17 0.574 [0.185 0.830 [0.154 0.664 [0.092 217 [101
0.6 69 [8] 31 [22 29 17 0.694 [0.143 0.708 [0.140 0.689 [0.075 214 1100
0.65 72 9 34 [25 26 [17 0.681 [0.149 0.733 [0.150 0.691 [0.072 211 [105
0.7 72 19 34 [26 25 [18 0.683 [0.150 0.742 [0.156 0.695 [0.072 215 [102
MB 0.75 72 [10] 32 [27 26 (19 0.689 [0.157 0.737 10.164 0.696 [0.075 214 [103
0.8 71 [10] 30 (26 27 [20 0.705 [0.161 0.728 [0.176 0.697 [0.075 215 [98]
0.85 69 [11] 26 [25 29 [21 0.726 [0.166 0.704 [0.187 0.696 [0.080 213 [102
H 0.9 66 [13] 22 [22 32 [23 0.753 [0.158 0.670 [0.196 0.692 [0.085 210 [102
0.6 76 [8] 437128 21 |16 0.639 10.144 0.780 10.137 0.692 [0.072 206 [I00
0.65 78 [8] 47 (33 19 [15 0.629 [0.153 0.803 [0.137 0.692 [0.071 200 [99]
0.7 78 [8] 45 [33 19 [17 0.636 [0.158 0.808 [0.145 0.696 [0.070 196 [101]
SS 0.75 78 9] 43 [33 19 (16 0.648 [0.163 0.802 [0.150 0.699 [0.069 194 [99
0.8 77 (10 39 [31 20 [18 0.667 [0.157 0.792 [0.160 0.706 [0.072 190 |97
0.85 76 (10 34 [29 21 [19 0.688 [0.156 0.782 [0.171 0.713 [0.071 190 [99
0.9 75 [11] 29 [28 23 [20 0.721 [0.156 0.771 [0.178 0.720 [0.077 189 [98
Subsampling 0.9 80 [10] 35 (23 17 13 0.699 [0.141 0.822 [0.119 0.740 [0.079 189 [95
CPSS 0.86 76 [9] 29 [18 22 [15 0.726 [0.112 0.779 [0.135 0.737 [0.067 185 |89
MB 0.82 66 [11] 24 [21 32 [21 0.733 [0.147 0.674 [0.175 0.689 [0.078 185 |85
SS 0.86 76 9] 29 [18 22 [15 0.726 [0.112 0.779 [0.135 0.737 [0.067 182 [80

Supplementary Table S1: Median

and inter-quartile range of the selection
performance metrics and computation times obtained with different graph-
ical models. Models are applied on 1,000 simulated datasets with p = 100 variables
following a multivariate Normal distribution corresponding to a random graph structure
(v = 0.02) in low (L, n = 2p = 200), intermediate (I, n = p = 100), and high (H,
n = p/2 = 50) dimensions.



16 B Bodinier et al.

LASSO Graphical LASSO
p p Cold start Warm start
1,000 18 [5] 100 69 [33] 51 [22]
2,500 35 [9] 250 313 [104] 247 [73]
5,000 59 [20] 500 2,759 [1,163] 1,796 [658]
[

7,500 86 [35] 750 14,513 [5,983] 7,402 [3,472]
10,000 124 [63] 1,000 99,108 [29,563] 40,240 [10,787]

Supplementary Table S2: Median and inter-quartile range of the computa-
tion times (in seconds) of stability selection obtained with different numbers
of variables p. Models are applied on 1,000 simulated datasets with n = 500 obser-
vations. For stability selection LASSO models, we use p = 1,000, 2,500, 5,000, 7,500
or 10,000 independent predictors, conditionally on the outcome. For stability selection
graphical LASSO models, we use p = 100, 250, 500, 750 or 1,000 variables following a
multivariate Normal distribution corresponding to a random graph structure (v = 0.02).
For graphical models, we report computation times with or without warm start, where
models are iteratively fitted over a path from larger to smaller penalty values and the
estimate from the previous iteration is a starting point for the gradient descent algorithm
(argument ”start” in the R package sharp). For LASSO models, we always use warm
start as implemented in the R package glmnet.
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TP FP FN Precision Recall F1-score Time (s)
Single  Owverall 84 [9] 79 [47] 13 [12] 0.521 [0.143] 0.863 [0.104]  0.643 [0.089] 96 [37]
Within 1 24[6] 24[15] 0[0]  0.500[0.146]  1.000 [0.000]  0.663 [0.130]
Between 36 [11] 30 [28] 13 [11]  0.545 [0.191]  0.735 [0.204]  0.604 [0.105]
L Within 2 24 [6] 24 [15] 0[0]  0.500 [0.149]  1.000 [0.000]  0.667 [0.127]
Multi  Overall 93 [10] 73 [34] _ 6[6]  0.561 [0.125]  0.941 [0.056] _ 0.703 [0.087] _ 269 [94]
Within 1 24 [6] 16 [10]  0[0]  0.585 [0.132]  1.000 [0.000]  0.737 [0.102]
Between 44 [8] 38 [25]  5[5]  0.543 [0.169]  0.893 [0.107]  0.667 [0.110]
|
|
|
]
|
|

Within 2 24 [6] 16 [10 0[0]  0.587[0.137] 1.000 [0.000]  0.737 [0.106]

Single Overall 77 [10] 62 [40] 22 [15] 0.557 [0.149] 0.782 [0.127]  0.643 [0.066] 107 [45]
Within 1 24 [6] 19 [13 0[0]  0.550 [0.170]  1.000 [0.000]  0.704 [0.136]
Between 29 [11] 22 [22] 21 [14] 0.566 [0.184]  0.582 [0.244]  0.553 [0.107]

I Within 2 24 [6] 19 [13 0[0]  0.554[0.168]  1.000 [0.000]  0.708 [0.135]
Multi Overall 86 [8] 62 [40] 12 [10] 0.583 [0.152] 0.873 [0.080]  0.697 [0.092] 310 [113]

Within 1 24 [7] 11 [9] 0[1]  0.674 [0.166]  1.000 [0.040]  0.800 [0.113]

Between 38 [8]  35[31] 11[8]  0.526 [0.202]  0.769 [0.146]  0.614 [0.141]

Within 2 24 [7] 11 [9] 0[1]  0.676 [0.164]  1.000 [0.037]  0.800 [0.115]

Single Overall 71 [8] 47 [29] 28 [13] 0.597 [0.146] 0.716 [0.109]  0.641 [0.072] 242 [119]
Within 1 24 [7] 14 [11]  0[1]  0.606 [0.180]  1.000 [0.040]  0.746 [0.131]
Between 23 [9] 18 [14] 26 [12] 0.559 [0.154]  0.465 [0.198]  0.496 [0.110]
|
]

H Within 2 23 [7] 14 [11 0[1]  0.617 [0.176]  1.000 [0.038]  0.750 [0.128]
Multi Overall 77 [9] 71 [75] 21 [11] 0.519 [0.214]  0.787 [0.093]  0.627 [0.145] 534 [212]

Within 1 23 [6] 9 [7] 12 0.719 [0.152]  0.966 [0.082]  0.812 [0.097]

Between 31 [8] 48 [77] 18 [8]  0.396 [0.306]  0.625 [0.146]  0.480 [0.225]

Within 2 23 [6] 9 [7] 1[2]  0.710 [0.150]  0.967 [0.077]  0.812 [0.093]

Supplementary Table S3: Median and inter-quartile range of the selection
performance metrics and computation times obtained with single and multi-
block stability selection applied on simulated data with a block structure.
For each block, 50 different penalty parameter values are explored. Models are applied
on 1,000 simulated datasets with p = 100 variables following a multivariate Normal
distribution corresponding to a random graph (v = 0.02) and with known block structure
(50 variables per group, using v, = 0.2). Performances are evaluated in low (L, n = 2p =
200), intermediate (I, n = p = 100), and high (H, n = p/2 = 50) dimensions.
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Ao TP FP FN Precision Recall F-score Time (s)
S-B Overall 85 [9] 78 [44] 14 [12]  0.523 [0.134]  0.859 [0.107]  0.646 [0.081] 70 [30]
Within 1 25 [7] 24 [15] 0 [0] 0.500 [0.152]  1.000 [0.000]  0.667 [0.132]
Between 36 [11] 29 [27] 14 [11]  0.547 [0.187]  0.725 [0.209]  0.603 [0.099]
Within 2 24 [7] 23 [14] 0 [0] 0.504 [0.139]  1.000 [0.000]  0.667 [0.123]
M-P Overall 92 [11] 134 [55] 6 [6] 0.408 [0.109]  0.935 [0.060]  0.566 [0.098] 2059 [870]
Within 1 24 [6] 11 [11] 0 [1] 0.679 [0.212]  1.000 [0.050]  0.800 [0.138]
Between 45 [8] 110 [51] 5 [4] 0.291 [0.094]  0.902 [0.092]  0.438 [0.099]
Within 2 23 [7] 11 [10] 0 [1] 0.677 [0.188]  1.000 [0.048]  0.794 [0.128]
M-B 0 Overall 82 [8] 28 [48] 17 [10]  0.750 [0.266]  0.827 [0.094]  0.775 [0.136] 8493 [15464]
Within 1 23 [6] 6 [5] 1 [3] 0.780 [0.148]  0.944 [0.115]  0.844 [0.089]
Between 36 [7] 14 [43] 13 [9] 0.720 [0.428]  0.737 [0.152]  0.697 [0.220]
Within 2 23 [7] 6 [5] 1 [3] 0.778 [0.152]  0.944 [0.115]  0.844 [0.091]
0.001 Overall 83 [8] 33 [65] 15 [11]  0.715 [0.323]  0.845 [0.093]  0.766 [0.184] 2966 [1577]
Within 1 23 [6] 8 [8] 1[2] 0.750 [0.178]  0.958 [0.094]  0.833 [0.104]
Between 37 [7] 16 [55] 12 [9] 0.705 [0.473]  0.755 [0.152]  0.689 [0.266]
Within 2 23 [6] 8 [7] 1 [2] 0.742 [0.169]  0.955 [0.096]  0.828 [0.101]
0.01 Overall 88 [9] 43 [49] 11 [9] 0.672 [0.230]  0.889 [0.075]  0.760 [0.135] 833 [288]
Within 1 24 [6] 10 [8] 0 [1] 0.699 [0.175]  1.000 [0.045]  0.812 [0.120]
Between 40 [8] 20 [32] 10 [8] 0.671 [0.315]  0.807 [0.139]  0.714 [0.177]
Within 2 23 [7] 10 [8] 0 [1] 0.700 [0.165]  1.000 [0.048]  0.811 [0.113]
0.1 Overall 93 [11] 71 [33] 6 [7] 0.566 [0.123]  0.938 [0.058]  0.705 [0.081] 152 [51]
Within 1 25 [6] 17 [10] 0 [0] 0.591 [0.143]  1.000 [0.000]  0.741 [0.109]
Between 44 [8] 37 [22] 6 [6] 0.550 [0.158]  0.884 [0.105]  0.671 [0.104]
Within 2 24 [7] 16 [10] 0 [0] 0.591 [0.133]  1.000 [0.000]  0.742 [0.101]
0.5 Overall 95 [11] 195 [90] 4 15] 0.325 [0.107]  0.955 [0.048]  0.486 [0.115] 84 [30]
Within 1 25 [7] 30 [22] 0 [0] 0.451 [0.197]  1.000 [0.000]  0.620 [0.185]
Between 45 [9] 137 [59] 4 [5] 0.247 [0.082]  0.914 [0.091]  0.389 [0.096]
Within 2 24 [6] 29 [21] 0 [0] 0.456 [0.188]  1.000 [0.000]  0.624 [0.177]
1 Overall 95 [11] 225 [99] 4 [5] 0.297 [0.102]  0.954 [0.047]  0.453 [0.114] 75 [25]
Within 1 25 [7] 30 [22] 0 [0] 0.447 [0.191]  1.000 [0.000]  0.618 [0.181]
Between 45 [9] 165 [69] 4 [5] 0.218 [0.074]  0.914 [0.087]  0.350 [0.094]
Within 2 24 [6] 29 [22] 0 [0] 0.453 [0.187]  1.000 [0.000]  0.622 [0.176]

Supplementary Table S4: Median and inter-quartile range of the selection
performance metrics and computation times obtained with different stability
selection models on simulated data with a known block structure. We compare
stability selection not accounting for the block structure (Equation (1), denoted by S-
B), using block-specific parameters (Equation (4), M-P) and combining block-specific
models calibrated while using different penalties g for the other blocks (Equation (5),
M-B). For each block, 30 different penalty parameter values are explored. Models are
applied on 1,000 simulated datasets with p = 100 variables following a multivariate
Normal distribution corresponding to a random graph (v = 0.02) and with known block
structure (50 variables per group, using v, = 0.2). Performances are evaluated in low
dimension (n = 2p = 200).



