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Evolution of the Average Synaptic Update Rule
 
In this appendix, we evaluate the derivative of Eq. 9 in the main text, i.e., we
need to calculate 
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Before we start, let us recall some notation. The average of an arbitrary
function wf  with arguments x  and y  is by definition 
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where ( )wp x y,  denotes the joint probability of the pair ( )x y,  to occur and the
sum runs over all configurations of x  and y . The subscript w  indicates that
both the probability distribution wp  and the function wf  may depend on a
parameter w . 
By definition, we have ( ) ( ) ( )w wp x y p y x p x, = |  where ( )p x  is a given input
distribution and ( )wp y x|  the (parameter-dependent) conditional probability
of generating an output y  given x . Hence, Eq. 2 can be transformed into 
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If we now take the derivative with respect to the parameter w , the product
rule yields two terms 
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The first term contains the derivative of the function wf , whereas the second
term contains the derivative of the conditional probability wp . We note that
Eq. 4 can also be written in the form 
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i.e., as an average over the joint distribution of x  and y . This formulation
will be useful for the problem at hand. 
The gradient in Eq. 1 contains several terms and for the moment we pick only
one of these. The others will then be treated analogously. Let us focus on the
term 1log ( ) k k

k k kP y Y X−

,
| ,

Y X
 and apply steps completely analogous to those



leading from Eqs. 2-5. 
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We now evaluate the averages using the identity
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. We find that the first term on the right-hand side

of Eq. 6 vanishes, since 
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because of the normalization of probabilities. The same argument can be
repeated to show that 
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distribution 1( )k kP y Y −|%  is by definition independent of jw . 
Hence, the only term that gives a nontrivial contribution on the right-hand side
of Eq. 6 is the second term. With an analogous argument for the other factors
in Eq. 1, we have 
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An identification of the factors C F, , and G  in the main text is
straightforward. From Eq. 4 in the main text we have 
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Hence, we can evaluate the factors 
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Furthermore, we can calculate the derivative needed in Eq. 8 using the chain
rule from Eq. 6 of the main text, i.e., 
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We note that in Eq. 8 the factor log ( )
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where ak t∆  is the width of the autocorrelation. As a consequence 

1 0 for
1 k k

l l
k k

al l
Y X

y y F G k l kγ
ρ ρ

 
 
 

,

 −
− − = − > − 

[14]

Hence, for ak l k− > , we can truncate the sum over l  in Eq. 12, i.e.,
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→∑ ∑  which yields exactly the coincidence measure jC  introduced

in the main text; cf. Eq. 11 in the main text, and which we repeat here for
convenience 
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From Averages to an Online Rule 

The coincidence measure k
jC  counts coincidences in a rectangular time

window. If we replace the rectangular time window by an exponential one
with time constant Cτ  and go to continuous time, the summation 
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cf. Eq. 15 in the main text. Based on the considerations in the previous
paragraph, the time constant Cτ  should best be chosen in the range



10a C ak t k tτ∆ ≤ ≤ ∆ . 
Similarly, the average firing rate ( ) ( ) ( )t g t R tρ =  can be estimated using a
running average 
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with time constant gτ . 
In Fig. 6, we compare the performance of three different update schemes in
numerical simulations. In particular, we show that (i) the exact value of the
truncation of the sum in Eq. 15 is not relevant, as long as ak t∆  is larger than
the width of the autocorrelation; and (ii) that the online rule is a good
approximation to the exact solution. 
To do so, we take the scenario from Fig. 3 of the main text. For each segment
of 1 s, we simulate 100 pairs of input and output spike trains. We evaluate
numerically Eq. 8 by averaging over the 100 samples. After each segment of 1
second (=1,000 time steps) we update the weights using a rule without
truncation in the sum of Eq. 15. We call this the full batch update; compare
Fig. 6 (Top). 
Second, we use the definition of k

jC  with the truncated sum and repeat the
above steps; Fig. 6 (Middle). The truncation is set to 200ak t∆ = ms which is
well above the expected width of the autocorrelation function of the
postsynaptic neuron. We call this the truncated batch rule. 
Third, we use the online rule discussed in the main body of the paper with

1Cτ = s; Fig. 6 (Bottom). 
Comparison of top and center graphs of Fig. 6 shows that there is no
difference in the evolution of mean synaptic efficacies, i.e., the truncation of
the sum is allowed, as expected from the theoretical arguments. A further
comparison with Fig. 6 Bottom shows that updates based on the online rule
add some fluctuations to the results, but its trend captures nicely the evolution
of the batch rules.  

Supplement to the Pattern Detection Paradigm 

In Fig. 3, we presented a pattern detection paradigm where patterns defined by
input rates were chosen randomly and applied for one second. After learning,
the spike count over one second is sensitive to the index of the pattern. Fig. 7A
shows the histogram of spike counts for each pattern. Optimal classification is
achieved by choosing for each spike count the pattern which is most likely.
With this criterion 81 percent of the patterns will be classified correctly. 
The update of synaptic efficacies depends on the choice of the parameter γ  in
the learning rule. According the the optimality criterion in Eq. 8 of the main
text, a high level of γ  implies a strong homeostatic control of the firing rate of
the postsynaptic neuron whereas a low level of γ  induces only a weak
homeostatic control. In order to study the role of γ , we repeated the
numerical experiments for the above pattern detection paradigm with a value
of 100γ =  instead of our standard value of 1γ = . Fig. 7B shows that the
output firing rate is still modulated by the pattern index, the modulation at



100γ =  is, however, weaker than that at 1γ = . As a result, pattern detection is
less reliably with 45 percent correct classification only. We note that this is
still significantly higher than the chance level of 25 percent. 


