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Short Communication

A Simple Procedure to Overcome Polyethelene Glycol Toxicity
on Whole Plants
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ABSTRACT

A procedure is described that can be used to m toxic effects of
polyethylene glycol (PEG) to plants. The procedure is based on recycling
nutrient solutions conaining PEG-6000 through two plant cultures.
Tomato plants grown in -03 megapascals PEG solutions used after two
growth cycles exhibited minimal toxic effects. Long-term responses like
dry matter production and chlorophyll content as well as short-term
responses like CO2 fixation rates and leaf conductance were severely
inhibited by fresh PEG-6000 and only slightly reduced by recycled PEG-
6000. Complete osmotic adjustment was obtained with tomatoes grown
in recycled but not in fresh PEG solutions.

Polyethylene glycols are neutral polymers available in a wide
range of mol wt and highly soluble in water. They have been
used by numerous investigators as an osmotic agent either for
whole plants or for plant tissues, cells, and organelles. Mc-
Clendon and Blinks (15), showed as early as 1952 that PEG
could be used as an osmoticum to replace sugar or salts for the
preparation of red algal plastids. The use of PEG became a
popular technique to reduce water potentials (4,6) of nutrient
solutions to a predetermined constant water stress without its
being taken up by plants. It was used satisfactorily by several
investigators for various species (7, 9, 10, 18, 23), in which the
response to PEG was attributed to a decrease in osmotic potential
with no decisive toxic effects.
A very common problem using PEG was, however, its toxicity

to plants. Such toxicity was sometimes ascribed to the presence
of metallic ions like aluminum (11) or an ionic organic com-
pound (3). Although such contaminants can be removed by ion
exchange resins, gel filtration, or dialysis, toxicity was not always
prevented (3, 12, 18, 21). Plant roots are probably not completely
impermeable to PEG, and its toxicity might be due to uptake (2,
17, 21) and translocation throughout the plant (9, 11, 12). Some
investigators (11, 12, 17) claim that it is transported without
being broken down and that molecular size will determine the
rate of its transport and location (8, 9, 12). It was suggested by
Lawlor (12) that PEG blocks water pathway and thus induces
desiccation. Toxic effects of PEG were attributed to inhibited
phosphorus transport across the root to the xylem (2). Others
(21, 24), however, claimed that PEG may be contaminated with
phosphorus, so that high phosphorus concentrations in nutrient
solution lead to high rates of uptake. Mexal et al. (17) suggested
that the main damage to plants caused by PEG resulted from
low 02 solubility even in dilute PEG concentrations and slow 02

transport to roots. Other investigators (6, 13, 14, 18) reported
injury to plants much beyond the osmotic effect but suggested
no cause.

In contrast to whole plants, excised pine xylem tissue (25),
detached soybean ovules (20), and tomato cell lines (4) responded
to the 0, induced by PEG with no symptoms of toxicity.
A procedure was developed to minimize toxic effects of PEG

on whole plants. This is based on recycling nutrient solutions
containing PEG through two tomato plant cultures. Recycled
PEG had minimal toxic effects on new tomato plants.

MATERIAIS AND METHODS

Tomato (Lycopersicon esculentum Mill cv Hosen Eilon) seeds
were germinated in vermiculite that was presoaked with deion-
ized H20 and drained. Seedlings were transferred to 36 x 30 x
10 cm deep containers 10 to 12 d after emergence (2 leaf stage).
Each container held 10 L of continuously aerated, half-strength
Hoagland solution. Deionized H20 was added every 2 to 3 d to
replace water lost by transpiration. The nutrient solution was
changed every 10 to 14 d.
The transferred seedlings, were placed in a growth chamber

maintained at 25°C with a 550 ME m2 s-' (400-700 nm) for 13
h/d. After establishment, seedlings were thinned to 10 plants per
container.
The first study was initiated at the 5 to 6'leaf stage, with three

completely randomized treatments. The treatments consisted of
nutrient solution only (control) and nutrient solutions containing
either NaCl or freshly prepared PEG-6000 (purchased from
Sigma). The NaCl and PEG cultures were adjusted to an osmotic
potential (y) of 0.4 -MPa as determined by a freezing point
osmometer. The osmometer was precalibrated with standard
NaCl solutions. Our calibration was found to be in close agree-
ment with those of Michel and Kaufman (19).

Plants were harvested before and 5 d after the differential
treatments were started. Dry weight ofplant tops was determined
at each harvest on five groups of two plants each. At the second
harvest leaf water potential, CO2 fixation rate, leaf conductance,
and Chl content were determined on the youngest, fully ex-
panded leaves. Leaf 0w was determined immediately after leaf
detachment as previously described (16). A microchamber, de-
signed to measure '4C)2 uptake (5), was used to measure CO2
fixation of intact leaf discs. Leaf conductance of water vapor
through the lower leaf surface was determined with a steady state
porometer. Chl content was analyzed spectrophotometrically
using 80% acetone leaf extracts (1).
For the second study, seedlings were grown in freshly prepared

PEG-6000 nutrient solution for 10 to 12 d and then discarded.
The PEG solution was then filtered to remove extraneous root
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Table I. Effect ofPEG-6000 and NaCl Added to Nutrient Solutions on Dry Weight Production, Chlorophyll
Content, Leaf 4,/ and Conductance, Photosynthetic CO2 Fixation and Clt Accumulation

Plants were grown for 4 d in half-strength Hoagland solution containing fresh PEG-6000 or Naa at a final
concentration equivalent to 0.4 MPa. Values are means of five replicates + SE of the means.

Dry Wt Chloride Leaf Leaf Rate ofCO2
Production Content " Conductance Fixation

mg-d'-plant' mg.g fresh wt MPa mm-s' gmol.m-2s'
Control 43.0 ± 3.7 1.20 ± 0.10 0.40 - 0.03 8.59 ± 0.70 0.337 ± 0.023
PEG 7.0 ± 1.0 0.95 ± 0.10 0.62 - 0.05 2.68 ± 0.38 0.015 ± 0.003
NaCl 36.2 ± 3.3 1.32 ± 0.11 0.63 - 0.05 6.00 ± 0.68 0.288 ± 0.042
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FIG. 1. Effect of recycled and fresh PEG-6000 (-0.3 MPa) in nutrient
solution on growth of tomato shoots. The points are means of five
replicates (each of two plants) ± SE of the means.
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FIG. 2. Leaf 4,.W and A,s of tomato plants grown in Hoagland solution,
recycled and fresh Hoagland solution containing PEG-6000 at a concen-
tration equivalent to -0.3 MPa. The points are means of five replicates
± SE of the means.

Table II. Rate ofCO2 Fixation, LeafConductance and Chlorophyll
Content ofTomato Seedlings Subjected to Fresh and Recycled PEG

Solutions
Plants were transferred to a nutrient solution containing PEG-6000

which was either fresh or previously used for two crops of the same
species. Values are means of five replicates ± SE of the means.
Time of Osmoticum CO2 Fixation Leaf
Exposure Rate Conductance ChiContent

d 1l~~mol.m~2s~' mm-s~' mg-g'
fresh wt

5 None 0.504±0.033 7.4 ± 0.5 1.35 ± 0.08
Recycled PEG 0.537 ± 0.028 8.2 ± 0.7 1.34 ± 0.11
Fresh PEG 0.058 ± 0.019 2.6 ± 0.2 0.78 ± 0.10

20 None 0.520 ± 0.027 9.3 ± 0.9 1.24 ± 0.07
Recycled PEG 0.550 ± 0.033 10.5 ± 0.9 1.43 ± 0.10

material and additional nutrients, equivalent to 0.25-strength
Hoagland solution, were added to each container to replace those
used by the previous plants. Another set of plants was then
placed in the same containers and also grown for 10 to 12 d and
then discarded. The PEG solution was filtered again and 0.25-
strength Hoagland solution added.
At the time the third set of plants were transferred to the

recycled PEG solution, two additional treatments were set up: a
control (nutrient solution only) are one containing freshly pre-
pared PEG-6000. Both the freshly prepared and the recycled
PEG solutions were adjusted to the same As of -0.3M. Plants
were at the 5 to 6 leaf stage when treatments were initiated.

After treatment initiation, five groups of plants were sampled
about every 4 d to determine leaf Ass 4,, and dry matter produc-
tion (on two plants per group). The As of leaf sap expressed after
freezing and thawing was determined with an osmometer. CO2
fixation rate, leaf conductance, and Chl content were measured
on the 5th and 20th d of treatment.

RESULTS AND DISCUSSION
The exposure of tomato plants to 0.4 MPa PEG decreased

their growth rate by about 6-fold during a 4-d period and caused
a breakdown of Chl (Table I). Salinity had no effect on total Chl
content while on a weight basis it was slightly increased as growth
was somewht retarded. A partial osmotic adjustment was ob-
tained in both osmotica, although the decrease in leaf was less
than the decreased external As- Leaf conductance, however, was
much more drastically reduced by PEG than by salt. The rate of
CO2 fixation decreased over 20-fold and was much more severely
affected than any other parameter measured.
A logarithmic growth pattern was obtained for tomato plants

grown on recycled PEG solution (-0.3 MPa) similar to that
obtained for control plants, although the rate was somewhat
lower (Fig. 1). Plants which were transferred to fresh PEG of an
identical y6 grew at a very low rate and died about 12 d after
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transfer. The plants in the recycled PEG solution adjusted com-
pletely to the decrease in external AsP since leaf As decreased by
0.3 MPa within 8 d and (As - 4's) was similar to that of the
control (Fig. 2). In the fresh PEG solution the rate that y65
decreased was much less and osmotic adjustment was not com-
plete. However, the toxic effect ofPEG is apparently not related
to plant water status because a positive (A -As) was maintained
throughout.
CO2 fixation rate and leaf conductance were unchanged when

plants were grown in the recycled PEG for either 5 or 20 d after
transfer (Table II).

Recycling of PEG solutions through two preliminary growth
cycles ofa species may serve as an efficient procedure to detoxify
PEG solutions. The solution could then be used as an osmotic
medium for plant growth at least down to 0.3 MPa. Neither
long-term responses like growth, nor short-term ones like CO2
fixation rates were drastically reduced in the recycled PEG solu-
tion (Fig. 1; Table II). The fact that recycled PEG solution could
be used indicates that the main toxicity is probably caused by
contaminants or PEG molecules of relatively low mol wt that
can be removed by plants. Artificial means for purification which
would separate molecules, mainly on a size basis, were shown to
be not successful in eliminating toxicity (3, 12, 21). This implies
that removal of the toxic molecules is probably based not only
on size but also on structural parameters. Growing different
species other than tomatoes in PEG recycled with tomato plants
was less successful than when tomatoes were used as experimen-
tal plants, suggesting that even a compatibility between species
and PEG may be required. A possibility that the two initial cycles
of plants excreted a substance which was taken up by the later
plants inducing a protective response can, however, not be
excluded.
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