Biosynthesis of a 42-kD Polypeptide in the Cytoplasmic Membrane of the Cyanobacterium *Anacystis nidulans* Strain R2 during Adaptation to Low CO₂ Concentration¹

Received for publication July 17, 1985 and in revised form October 24, 1985

TATSUO OMATA AND TERUO OGAWA* Solar Energy Research Group, The Algatron, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan

ABSTRACT

When cells of Anacystis nidulans strain R2 grown under high CO2 conditions (3%) were transferred to low CO₂ conditions (0.05%), their ability to accumulate inorganic carbon (C_i) increased up to 8 times. Cytoplasmic membranes (plasmalemma) isolated at various stages of low CO₂ adaptation were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There was a marked increase of a 42-kilodalton polypeptide in the cytoplasmic membrane during adaptation; a linear relationship existed between the amount of this polypeptide and the C_iaccumulating capability of the cells. No significant changes were observed during this process in the amount of other polypeptides in the cytoplasmic membranes or in the polypeptide profiles of the thylakoid membranes, cell walls, and soluble fractions. Spectinomycin, an inhibitor of protein biosynthesis, inhibited both the increase of the 42-kilodalton polypeptide and the induction of high Ci-accumulating capability. The incorporation of [35S]sulfate into membrane proteins was greatly reduced during low CO2 adaptation. Radioautograms of the ³⁵S-labeled membrane proteins revealed that synthesis of the 42-kilodalton polypeptide in the cytoplasmic membrane was specifically activated during the adaptation, while that of most other proteins was greatly suppressed. These results suggested that the 42-kilodalton polypeptide in the cytoplasmic membrane is involved in the active C_i transport by A. nidulans strain R2 and its synthesis under low CO₂ conditions leads to high C_i-transporting activity.

Cyanobacteria have a mechanism to transport exogenous C_i^2 and concentrate it internally (1, 7, 13, 16, 20, 27). The CO₂concentrating mechanism involves an active C_i transport, which is driven by PSI reaction of photosynthesis (20–22). While the presently available evidence does not allow one to explain the transport with a specific mechanism, three models are most commonly discussed: (a) a primary electrogenic HCO₃⁻ pump (9), (b) H⁺/HCO₃⁻ symport or OH⁻/HCO₃⁻ antiport secondary to an H⁺ extrusion pump (4, 16), and (c) Na⁺/HCO₃⁻ symport secondary to a Na⁺/H⁺ exchange (8, 17). Any of these mechanisms of C_i transport would require the participation of special protein(s) in the cytoplasmic membrane. Investigations of such protein(s) are an important first step in the elucidation of the mechanism of C_i transport.

Exposure of high CO₂-grown cells of cyanobacteria to low CO₂ conditions increases their C_i-accumulating capability and their photosynthetic affinity to C_i (15, 25, 28). Since it is already known that protein synthesis is required for induction of this C_i-accumulating capability (15), a protein(s) involved in the C_i-transporting mechanism appears to be synthesized during low CO₂ adaptation. Two kinds of proteins have been reported to increase during this process. One is CA found in *Coccochloris peniocystis* (6) and three strains of *Anabaena variabilis* (28, 30). The other is a 42-kD polypeptide in the cytoplasmic membrane of *Anacystis nidulans* (Richt.) Drouet and Daily (originally derived from Tx20 of J. Myers and hereafter referred to str. Tx20) (25). The content of the latter protein was much higher in low CO₂-adapted cells than in high CO₂-grown cells.

In this study a 42-kD polypeptide was also found in the cytoplasmic membrane of *A. nidulans* str. R2. We describe the time course for the increase of the 42-kD polypeptide during exposure of high CO₂-grown cells to low CO₂ conditions and compare it with the time course for induction of their C_i-accumulating capability. We further investigated the incorporation of [³⁵S]sulfate into this polypeptide during low CO₂ adaptation. Our results demonstrated a close correlation between the amount of the 42-kD polypeptide and C_i-accumulating capability of the cells, and a specific activation of biosynthesis of this polypeptide during the low CO₂ adaptation.

MATERIALS AND METHODS

Growth of Anacystis and Exposure to Low CO₂ Conditions. Anacystis nidulans str. R2 was kindly provided by Dr. L. A. Sherman (Division of Biological Sciences, University of Missouri, Columbia, MO) and grown at 30°C in BG-11 medium (29) under aeration with 3% CO₂ in air. Continuous illumination was provided by fluorescent lamps at 120 μ mol PAR/m² · s. For low CO₂ adaptation experiments, cells were harvested by centrifugation at 2200g for 10 min, resuspended in fresh BG-11 growth medium supplemented with 20 mM Hepes-NaOH buffer (pH 7.0), and aerated with air containing about 0.05% CO₂ under the same light conditions.

Gas Exchange Measurements. Cells were harvested by centrifugation at 3000g for 5 min, resuspended in 30 ml of 40 mM Hepes-NaOH buffer (pH 7.0) at a Chl concentration of 4 to 6 μ g/ml and then placed in a reaction vessel (23). The gas exchange of the cells in the reaction vessel was measured using an open gas analysis system under N₂ containing 200 μ l CO₂/L (22, 23). The amount of C_i accumulated within the cells was calculated from the total amount of CO₂ evolved as the burst in the dark after 5 min of illumination with orange light (\geq 560 nm, 1.3 mE/

¹Supported by a grant for Solar Energy Conversion by Means of Photosynthesis from the Science and Technology Agency of Japan.

² Abbreviations: C_i , inorganic carbon; CA, carbonic anhydrase; C_0 , intracellular concentration of inorganic carbon; SIS, sorbitol impermeable space; CBB, Coomassie Brilliant Blue R-250.

 $m^2 \cdot s$; the postillumination CO₂ burst was measured in the presence of 3 mM iodoacetamide which inhibits photosynthetic CO₂ fixation completely (3, 21). It has been shown that the amount of intracellular C_i calculated by the CO₂ burst method agrees with that measured using the silicone oil-centrifugation method (23). The intracellular C_i concentration (C₀) was calculated using the SIS value (5) as the intracellular water space (7, 16, 27).

Preparation of Cytoplasmic Membranes, Thylakoid Membranes, Cell Walls, and Soluble Fractions. Cytoplasmic and thylakoid membranes were prepared by a modification of the method described by Omata and Murata (24). The cells amounting to about 0.5 ml packed cell volume were suspended in 20 ml of 5 mм Tes-NaOH buffer (pH 7.0) containing 0.6 м sucrose and 2 mM EDTA and incubated with 6 mg lysozyme at 30°C for 2 h. The lysozyme-treated cells were collected by centrifugation at 8000g for 5 min, washed with 20 mM Tes-NaOH buffer (pH 7.0) containing 0.6 м sucrose, suspended in 10 ml of the same buffer, and then disrupted by passing through a French pressure cell at 80 MPa. After addition of 0.0001% DNase I (Sigma, DN-EP) and 1 mm each of phenylmethylsulfonyl fluoride, ϵ -aminocaproic acid, and benzamidine, the homogenate was centrifuged at 8,000g for 10 min to remove unbroken cells. The supernatant was made up to a sucrose concentration of 50% (w/v) by adding 0.74 volume of 90% sucrose solution. A 17-ml aliquot was placed at the bottom of a 35-ml centrifuge tube, overlaid with 8 ml of 39%, 3 ml of 30%, and 7 ml of 10% sucrose solutions (w/v), and centrifuged at 130,000g for 16 h at 4°C in a swinging bucket rotor (Hitachi RPS 27-2). All the sucrose solutions contained 10 тм Tes-NaOH buffer (pH 7.0), 10 mм NaCl, and 5 mм EDTA. Cytoplasmic membranes formed a band in the 30% sucrose layer and thylakoid membranes at the interface between the 39 and 50% sucrose layers. Cell walls were pelleted at the bottom. The cytoplasmic membranes and thylakoid membranes were withdrawn from the gradient and collected by centrifugation at 300,000g for 1 h after 3-fold dilution with 10 mm Tes-NaOH buffer (pH 7.0) containing 10 mM NaCl. Cell walls were purified from the sediment; the sediment was resuspended in 5 mm Tes-NaOH buffer (pH 7.0), and centrifuged on a continuous sucrose density gradient according to Murata et al. (19). Soluble fractions of ³⁵S-labeled cells were prepared from the 50% sucrose layer. The layer was withdrawn from the gradient, diluted 3-fold with the Tes-NaOH buffer containing NaCl, and centrifuged at 300,000g for 1 h to remove residual thylakoid membranes. The supernatant from this centrifugation was used as soluble fraction. For the preparation of soluble fractions from unlabeled cells, intact cells (0.5 ml packed volume) were suspended in 10 ml of 10 mм Tes-NaOH buffer (pH 7.0) containing 1 mм each of the protease inhibitors and 0.0001% DNase I and disrupted by passing through a French pressure cell at 150 MPa. The supernatant obtained after centrifugation at 300,000g for 2 h of the homogenate was used as soluble fraction.

The Chl contents of the cytoplasmic membrane preparations ranged from 10 to $17 \mu g/mg$ protein, while those of the thylakoid membrane preparations were about 130 $\mu g/mg$ protein. Assuming that Chl is exclusively localized in the thylakoid membranes, we estimated the level of contamination of the cytoplasmic membrane preparations by the thylakoid membranes to be less than 13% on protein basis.

SDS-PAGE. This was performed in the buffer system of Laemmli (11). The samples were solubilized in 62.5 mM Tris-HCl buffer (pH 6.8) containing 2% SDS, 10% glycerol, 10% mercaptoethanol, and 0.001% bromophenol blue. Cell walls were solubilized at 100°C for 5 min, whereas the other samples were solubilized at room temperature for 30 min. The stacking gel contained 5% polyacrylamide, and the separating gel contained a linear gradient of polyacrylamide concentration from 8 to 15%.

Each sample was applied to a well of 0.7 cm width on a gel of 0.1 cm thickness. Electrophoresis was carried out at room temperature. After the electrophoresis, gels were stained with CBB and densitometry was carried out by measuring A at 560 nm with 750 nm as a reference beam using a dual-wavelength densitometer (Shimadzu, CS-900) with a chromatographic data processing computer (Shimadzu, C-R3A). The content of 42-kD polypeptide in cytoplasmic membranes was shown by the area under the 42-kD polypeptide peak relative to the total area under all the peaks.

Labeling with ³⁵S. Protein biosynthesis by *A. nidulans* str. R2 was investigated by *in vivo* labeling of the cells with ³⁵S. For this experiment, high CO₂-grown cells were harvested by centrifugation at 2,200g for 10 min and resuspended in fresh growth medium containing one-tenth the normal concentration of sulfate (0.03 mM) and 20 mM Hepes-NaOH buffer (pH 7.0) at a Chl concentration of about 5 μ g/ml. The cell suspension was divided into two portions, one of which was aerated with air (0.05% CO₂) and the other with 3% CO₂ in air. After 3.5 h of incubation in the light, Na₂³⁵SO₄ (Amersham) was added to these cultures to a concentration of 5 μ Ci/ml (final sulfate concentration = 0.1 mM). The cells were harvested after 2.5 h of labeling in the light and subjected for analysis.

Radioautograms of ³⁵S-Labeled Polypeptides. After SDS-PAGE of ³⁵S-labeled samples, gels were stained, photographed using Polaroid 665 film, incubated in EN³HANCE (New England Nuclear) and then dried on a filter paper. Radioautograms were obtained by exposing the dried gels to Kodak X-Omat AR-5 film at - 70°C for 3 to 7 d.

Protein and Chl Analyses. Amount of protein was determined according to Lowry *et al.* (12), and that of Chl according to Mackinney (14).

RESULTS

Accumulation of C_i following Exposure of High CO₂-Grown Cells to Low CO₂ Conditions. The C_i-accumulating capability of high CO2-grown cells of A. nidulans str. R2 is affected by the length of exposure to low CO_2 conditions. The intracellular C_i concentration at steady state in the light (C_0) of high CO₂-grown cells was 10 mm and was increased to 83 mm after 8 h of low CO₂ incubation (Fig. 1B). The Chl content of the culture remained almost constant during this period, whereas SIS of the cells increased by 60% from 80 μ l/mg Chl to 139 μ l/mg Chl (Fig. 1A). The C₀ value of high CO₂-grown cells and the maximal C_0 value after low CO_2 adaptation were almost constant in induction experiments with different cultures, but the time courses of adaptation were variable. The time required for maximal adaptation varied between 6 and 10 h. Time courses for induction of Ci-transporting activity have been reported on Anabaena variabilis, strains M3 (15) and ATCC 29413 (28) and A. nidulans str. Tx20 (25). In the case of the two strains of A. variabilis, the adaptation observed as increases in apparent photosynthetic affinity of the cells to C_i was almost complete after 4 h of exposure to low CO₂ conditions.

Changes in Polypeptide Compositions during Low CO₂ Adaptation. Cytoplasmic membranes, thylakoid membranes, cell walls and soluble fractions were prepared from *Anacystis* cells at various stages of low CO₂ adaptation and their polypeptide compositions were analyzed by SDS-PAGE. The cells used for these preparations were obtained from the same culture used in the measurements for Figure 1, A and B. The polypeptide compositions of the cytoplasmic (Fig. 2, lane a) and thylakoid (Fig. 3, lane a) membranes of high CO₂-grown cells were essentially the same as those, respectively, reported previously for *A. nidulans* str. Tx20 (25). The polypeptide profiles of cytoplasmic membranes obtained at various stages of low CO₂ adaptation indicate that only a 42-kD polypeptide increased during this

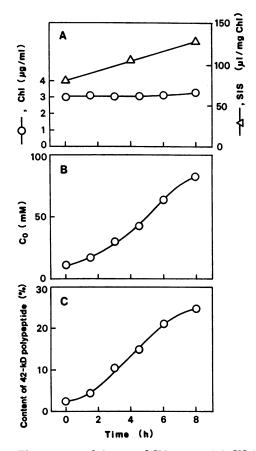


FIG. 1. Time courses of changes of Chl content (A), SIS (A), C_0 (B) and the content of the 42-kD polypeptide in the cytoplasmic membrane (C) after high CO₂-grown cells were transferred to low CO₂ conditions at time zero.

process (Fig. 2, lanes a–f). Calculation on the densitometric traces of the stained gel showed that the content of this polypeptide was 3% of the total proteins in the cytoplasmic membrane from high CO₂-grown cells, and increased progressively during the adaptation to reach 25% after 8 h (Fig. 1C). There existed a linear relationship between the content of the 42-kD polypeptide and the C_i-accumulating capability of the cells (Fig. 4).

In contrast to the drastic changes occurring in the cytoplasmic membranes, only small changes were observed in polypeptide compositions of the thylakoid membranes during low CO₂ adaptation (Fig. 3, lanes a and b). These include an increase of 27-, 42-, and 72-kD polypeptides. Since the increase of the 27and 72-kD polypeptides was almost negligible in the thylakoid membrane from A. nidulans str. Tx20 during low CO2 adaptation (25), these polypeptides do not seem to be essential in low CO_2 adaptation. The polypeptide profiles of the thylakoid membranes from high CO_2 -grown (Fig. 3, lane a) and low CO_2 -adapted (lane b) cells showed a band at 37-kD, the molecular mass identical with that of the major polypeptide in the cytoplasmic membranes. The ratios in content of the 42-kD polypeptide to that of the 37-kD polypeptide in the thylakoid membranes from low CO₂-adapted cells was approximately the same as that in the cytoplasmic membrane. Thus, the 42-kD and 37-kD polypeptides observed in the thylakoid membranes seem to be due to contamination by cytoplasmic membranes. Assuming that the 37-kD polypeptide is solely associated with the cytoplasmic membrane, we estimated the level of contamination of the thylakoid membrane preparation by the cytoplasmic membranes to be less than 10% on protein basis.

The cell walls contained major polypeptides with apparent

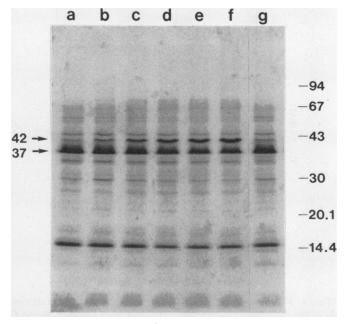


FIG. 2. Electrophoretic profiles showing CBB-staining patterns of polypeptides in the cytoplasmic membranes from high CO₂-grown cells before (a) and after 1.5 h (b), 3 h (c), 4.5 h (d), 6 h (e), and 8 h (f) of exposure to low CO₂ conditions. Lane g shows a polypeptide pattern of the cytoplasmic membrane from the cells exposed to low CO₂ conditions for 6 h in the presence of spectinomycin (10 μ g/ml). The photograph of a dried gel is shown. Each sample applied to the gel contained 10 μ g protein. The numbers to the right represent the position of marker proteins, *i.e.* α -lactalbumin (14.4 kD), a trypsin inhibitor (20.1 kD), carbonic anhydrase (30 kD), ovalbumin (43 kD), albumin (67 kD), and phosphorylase b (94 kD).

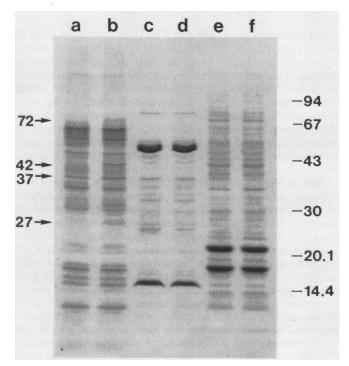


FIG. 3. Electrophoretic profiles showing CBB-staining pattern of polypeptides in the thylakoid membranes (a and b), cell walls (c and d), and soluble fractions (e and f) from high CO₂-grown cells before (a, c and e) and after 8 h (b, d and f) of adaptation to low CO₂ conditions. Other conditions as in Figure 2.

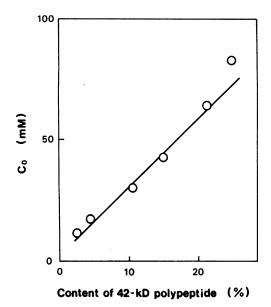


FIG. 4. Relationship between C_0 value and 42-kD polypeptide content in the cytoplasmic membranes. The data from Figure 1, B and C, were replotted.

Table I. Effect of Spectinomycin on Induction of C_r Accumulating Capability of Anacystis Cells by Low CO₂ Concentration

Incubation Conditions	O ₂ Evolution		C ₀
	800 µl CO ₂ /L 200 µl CO ₂ /L		
	µmol/mg Chl∙h		тм
High CO ₂	153	89	9
Low CO ₂ , 6 h	158	158	51
Low CO ₂ + spectinomycin ^a , 6 h	140	104	11

^a Concentration of spectinomycin was $10 \,\mu g/ml$.

molecular masses of 50 kD and 52 kD, in agreement with the result reported by Resch and Gibson (26). There was another major band at 15 kD, which is likely due to contaminating lysozyme. This was confirmed by the experiment described later; the 15-kD polypeptide was not labeled by 35 S. The soluble fractions showed more than 40 polypeptide bands among which the 21- and 17-kD bands representing the subunits of phycobiliproteins predominated. There was no detectable change in the polypeptide composition in the cell walls (Fig. 3, lanes c and d) and the soluble fractions (lanes e and f) during low CO₂ adaptation.

Effect of Spectinomycin. Table I summarizes the rates of O₂ evolution and C₀ values of high CO₂-grown cells before and after 6 h of exposure to low CO₂ conditions in the presence and absence of spectinomycin, an inhibitor of protein biosynthesis (10 μ g/ml). Induction of C_i-accumulating activity was inhibited by spectinomycin. The C_0 value of the cells exposed to low CO_2 conditions in the presence of spectinomycin was 11 mm, which was close to the value for high CO2-grown cells and much lower than the value obtained for low CO₂-adapted cells in the absence of spectinomycin. The rate of O_2 evolution of high CO_2 -grown cells measured at a CO₂ concentration of 200 μ l/L in the gaseous phase was much lower than the rate at 800 μ l CO₂/L, the concentration where CO_2 -dependent O_2 evolution saturates. After adaptation to low CO₂ conditions, the O₂ evolution rate at 200 μ l CO₂/L had risen to a value equal to that at 800 μ l CO₂/ L, indicating that their efficiency of C_i assimilation was increased. This can be attributed to the higher Ci-accumulating capability. Inhibition of induction of Ci-accumulating capability by spectinomycin was reflected by a lower rate of O_2 evolution at 200 μ l CO_2/L as compared with that at 800 μ l CO_2/L even after exposure of the cells to low CO_2 conditions. Since spectinomycin inhibited the O_2 -evolution activity at 800 μ l CO_2/L only by 10%, the lower C_0 value of the spectinomycin-treated cells as compared with that of the untreated cells was not due to inhibition of photosynthesis but due to inhibition of protein synthesis. Hence, our results indicated that *de novo* protein synthesis is necessary for adaptation of high CO_2 -grown cells to low CO_2 conditions, being consistent with the results reported with *A. variabilis* M3 (15).

As expected, the polypeptide profile of the cytoplasmic membrane prepared from spectinomycin-treated cells (Fig. 2, lane g) showed no increase of the 42-kD polypeptide even after 6 h of exposure to low CO_2 conditions.

Biosynthetic Incorporation of ³⁵S **into Polypeptides.** To directly monitor the *de novo* synthesis of proteins, high CO₂-grown cells were exposed to high and low CO₂ conditions, respectively, for 3.5 h in the light and then incubated with Na₂³⁵SO₄ for 2.5 h under the same conditions. The C₀ value of the cells exposed to low CO₂ conditions for 3.5 h was 19 mM and was increased to 36 mM after 2.5 h of labeling period. Table II summarizes the total amount of ³⁵S incorporated into the membranes, cell walls, and soluble fractions during the labeling period under high and low CO₂ conditions, or shows that the incorporation of ³⁵S into these preparations is much less under low CO₂ conditions.

The electrophoretic profile of the ³⁵S-labeling pattern of polypeptides in the cytoplasmic membrane from the cells labeled under high CO₂ conditions (Fig. 5, lane Ac) was very similar to the corresponding CBB-staining pattern (Aa). Both patterns showed a major band at 37 kD. In contrast, the cytoplasmic membrane from the cells labeled under low CO₂ conditions incorporated most of the label into the 42-kD polypeptide (Ad). This polypeptide became much more strongly labeled than in the cells growing under high CO_2 conditions (Ac), although the total amount of ³⁵S incorporated into cytoplasmic membrane was about 12-fold smaller under the low CO₂ conditions (Table II). Apparently, the biosynthesis of the 42-kD polypeptide was specifically activated during low CO₂ adaptation, while that of all other polypeptides in the cytoplasmic membrane was suppressed. Our data revealed that the increase of the 42-kD polypeptide during low CO₂ adaptation was not due to degradation or conversion of other proteins but due to de novo synthesis.

The ³⁵S-labeling pattern of polypeptides in the thylakoid membrane from the cells labeled under high CO₂ conditions (Fig. 5, lane Bc) was similar to the corresponding staining pattern (Ba) except that a polypeptide band with apparent molecular mass of 32 kD was particularly strongly labeled. This band may represent the herbicide binding protein of PSII which is rapidly turned over (10). The 32-kD band was the most prominent one in the ³⁵S-labeling pattern of polypeptides in the thylakoid membranes from the cells labeled under low CO₂ conditions (Bd). The incorporation of ³⁵S into this band, however, was much less under low CO₂ conditions than that under high CO₂ conditions (Bc and Bd). The ³⁵S-labeling pattern of polypeptides in the cell walls and soluble fractions from the cells labeled under high CO₂ conditions (Cc and Dc) were similar to the corresponding staining

 Table II. Incorporation of [35S]Sulfate into Cytoplasmic and Thylakoid

 Membranes, Cell Walls, and Soluble Fractions of Anacystis Cells under

 High and Low CO2 Conditions

Labeling Conditions	Incorporation of ³⁵ S			
	Cytoplasmic membrane	Thylakoid membrane	Cell wall	Soluble fraction
		cpm/µg protein		
High CO ₂ , 2.5 h	3400	1200	290	540
Low CO ₂ , 2.5 h	270	150	70	100

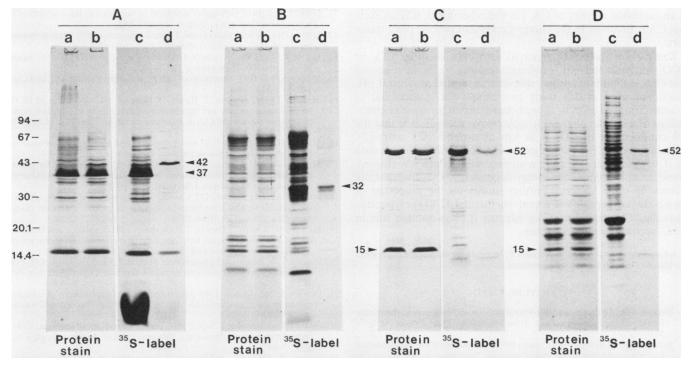


FIG. 5. Electrophoretic profiles showing ³⁵S-labeling pattern (c and d) and CBB-staining pattern (a and b) of polypeptides in the cytoplasmic membranes (A), thylakoid membranes (B), cell walls (C), and soluble fractions (D) from *Anacystis* cells labeled under high (a and c) and low CO₂ conditions (b and d). Each sample applied to the gel contained 25 μ g protein for A, B, and D, and 15 μ g protein for C. The radioautograms were obtained by exposing the dried gel to x-ray film for 3 d (A and B) or 7 d (C and D). The numbers to the left of lane Aa represent the position of the marker proteins.

patterns (Ca and Da, respectively), except that no label was found in the band at 15 kD which is one of the major bands in the staining patterns. As suggested already above, this 15-kD polypeptide probably represents the contamination by lysozyme used for digestion of peptidoglycan. There was no polypeptide actively synthesized in cell walls during low CO_2 adaptation (Cd). In low CO_2 -adapting cells, synthesis of most of the polypeptides in the soluble fractions was suppressed, whereas synthesis of the 52-kD polypeptide was sustained (Dd).

The electrophoretic analysis of the ³⁵S-labeled membranes revealed that a large amount of label was incorporated into lipid fraction of the cytoplasmic membrane from the cells labeled under high CO_2 conditions (Fig. 5, lane Ac). This probably represents the incorporation of ³⁵S into sulfoquinovosyl diacylglycerol, one of the major lipid classes in cyanobacteria. Incorporation of ³⁵S into lipid was strongly suppressed during low CO₂ adaptation (Ad). Thylakoid membranes incorporated only a small amount of ³⁵S into lipid even under the high CO₂ conditions (Bc). The content of sulfoquinovosyl diacylglycerol in the cytoplasmic and thylakoid membranes from high CO₂-grown cells of A. nidulans str. Tx20 was 100 μ g/mg protein and 30 μ g/ mg protein, respectively (24). The differences in the content of this lipid may explain the higher incorporation of label into lipid fraction of the cytoplasmic membrane. There is a possibility, however, that the biosynthetic activity of sulfoquinovosyl diacylglycerol is much higher in the cytoplasmic membrane.

DISCUSSION

Exposure of high CO₂-grown cells of cyanobacteria to low CO₂ conditions increases their C_i-transporting activity and apparent photosynthetic affinity to C_i (7, 15, 25, 28). Being sensitive to spectinomycin, the adaptation process appears to involve protein synthesis (Table I, also see ref. 15). A previous study with *A. nidulans* str. Tx20 has shown that the cytoplasmic membrane

from low CO₂-adapted cells contains a much higher amount of a 42-kD polypeptide than that from high CO₂-grown cells (25). Using *A. nidulans* str. R2, the present study clearly demonstrated that it is specifically the biosynthesis of the 42-kD polypeptide in the cytoplasmic membrane which is stimulated during low CO₂ adaptation (Fig. 5, lanes Ac and Ad). Accordingly, the inhibitory effect of spectinomycin on the adaptation process could be traced directly to a prevention of the synthesis of this one polypeptide. Our results strongly suggest, therefore, that the 42-kD polypeptide in the cytoplasmic membranes is involved in the C_i-transporting mechanism and that the stimulation of its synthesis under low CO₂ conditions induces high C_i-accumulating capability of the cells.

Investigations on another cyanobacterium, A. variabilis, have identified CA as a protein that appears to be synthesized during adaptation to low CO_2 conditions (28, 30). Activity of this enzyme could be demonstrated only after disruption of the cells, indicating that it is not present in the cell wall or in the cytoplasmic membrane. Similarly, no CA activity was found with intact cells of A. nidulans str. Tx20 (18). Assuming the same situation to prevail in our strain of A. nidulans, the 42-kD polypeptide cannot be CA. There was, however, a slight increase of 27- and 72-kD polypeptides in the thylakoid membranes during low CO₂-adaptation (Fig. 3, lanes a and b). One of these polypeptides possibly could be CA.

In A. variabilis ATCC 29413, the CA activity increased during low CO₂ adaptation in parallel with a decrease of the K_m (Na-HCO₃) of photosynthetic O₂ evolution of the cells (28). A mass spectrometric measurement of C¹⁶O₂ evolved in the light from low CO₂-grown cells of *Synechococcus* sp. in the presence of NaHC¹⁸O₃ in the external medium indicated that CA functioned in supplying CO₂ from HCO₃⁻ within the cells (2). Consequently, one could at least partly ascribe the decrease of K_m (NaHCO₃) value of photosynthetic O₂ evolution during low CO₂ adaptation to an increased activity of CA. On the other hand, it is unlikely that CA is involved in the energy-dependent process of C_i transport.

The carbon species transported into cells is either CO_2 or HCO_3^- or both. Recently published results (27, 28) have shown that CO_2 is the main carbon species transported at neutral pH, which was used in this study to estimate the intracellular C_i concentrations. Theoretical predictions and experimental observations of CO_2 exchange in *Synechococcus* sp. indicated that the cell conductance to CO_2 is as low as around 10^{-5} cm/s (2). Calculation of cell conductance to CO_2 from gas-exchange data on *A. nidulans* str. R2 gave a similar value (data not shown). These results predict an energy-dependent "CO₂-transporting system" in cyanobacteria. Further studies on the properties of the 42-kD polypeptide will reveal whether the 42-kD polypeptide plays the "CO₂ transporter" or whether it plays another role in the C_i-accumulating mechanism.

Acknowledgments—We thank Professor P. Homann for reading the manuscript and Miss R. Ogikubo for technical assistance.

LITERATURE CITED

- BADGER MR, TJ ANDREWS 1982 Photosynthesis and inorganic carbon usage by the marine cyanobacterium, Synechococcus sp. Plant Physiol 70: 517– 523
- BADGER MR, M BASSETT, HN COMINS 1985 A model for HCO₃⁻ accumulation and photosynthesis in the cyanobacterium *Synechococcus* sp.: theoretical predictions and experimental observations. Plant Physiol 77: 465–471
- CALO N, M GIBBS 1960 The site of inhibition of iodoacetamide in photosynthesis studied with chloroplasts and cell free preparations of spinach. Z Naturforsch 15B: 287-291
- FINDENEGG GR 1979 Inorganic carbon transport in microalgae. I. Location of carbonic anhydrase and HCO₃⁻/OH⁻ exchange. Plant Sci Lett 17: 101–108
- HELDT HW, F SAUER 1971 The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta 234: 83– 91
- INGLE RK, B COLMAN 1976 The relationship between carbonic anhydrase activity and glycolate excretion in the blue-green alga Coccochloris peniocystis. Planta 128: 217-223
- KAPLAN A, MR BADGER, JA BERRY 1980 Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: response to external CO₂ concentration. Planta 149: 219-226
- KAPLAN A, M VOLOKITA, D ZENVIRTH, L REINHOLD 1984 An essential role for sodium in the bicarbonate transporting system of the cyanobacterium Anabaena variabilis. FEBS Lett 176: 166-168
- KAPLAN A, D ZENVIRTH, L REINHOLD, JA BERRY 1982 Involvement of a primary electrogenic pump in the mechanism for HCO₃⁻ uptake by the cyanobacterium Anabaena variabilis. Plant Physiol 69: 978-982
- KYLE DJ 1985 The 32000 dalton Q_B protein of photosystem II. Photochem Photobiol 41: 107-116

- 11. LAEMMLI UK 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T₄. Nature 227: 680-685
- LOWRY OH, NJ ROSEBROUGH, AL FARR, RJ RANDALL 1951 Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275
- LUCAS WJ 1983 Photosynthetic assimilation of exogenous HCO₃⁻ by aquatic plans. Annu Rev Plant Physiol 34: 71-104
- MACKINNEY G 1941 Absorption of light by chlorophyll solutions. J Biol Chem 140: 315–322
- MARCUS Y, D ZENVIRTH, E HAREL, A KAPLAN 1982 Induction of HCO₃⁻ transporting capability and high photosynthetic affinity to inorganic carbon by low concentration of CO₂ in *Anabaena variabilis*. Plant Physiol 69: 1008– 1012
- 16. MILLER AG, B COLMAN 1980 Active transport and accumulation of bicarbonate by a unicellular cyanobacterium. J Bacteriol 143: 1253-1259
- MILLER AG, DH TURPIN, DT CANVIN 1984 Na⁺ Requirement for growth, photosynthesis, and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis. J Bacteriol 159: 100-106
- MILLER AG, DH TURPIN, DT CANVIN 1984 Growth and photosynthesis of the cyanobacterium Synechococcus leopoliensis in HCO₃⁻-limited chemostats. Plant Physiol 75: 1064–1070
- MURATA N, N SATO, T OMATA, T KUWABARA 1981 Separation and characterization of thylakoid and cell envelope of the blue-green alga (cyanobacterium) Anacystis nidulans. Plant Cell Physiol 22: 855–866
- OGAWA T, Y INOUE 1983 Photosystem I-initiated postillumination CO₂ burst in a cyanobacterium, Anabaena variabilis. Biochim Biophys Acta 724: 490– 493
- OGAWA T, WL OGREN 1985 Action spectra for accumulation of inorganic carbon in the cyanobacterium, Anabaena variabilis. Photochem Photobiol 41: 583-587
- OGAWA T, A MIYANO, Y INOUE 1985 Photosystem-I-driven inorganic carbon transport in the cyanobacterium, *Anacystis nidulans*. Biochim Biophys Acta 808: 77-84
- 23. OGAWA T, T OMATA, A MIYANO, Y INOUE 1985 Photosynthetic reactions involved in the CO₂ concentrating mechanism in the cyanobacterium, *Anacystis nidulans. In WJ Lucas, JA Berry, eds, Inorganic Carbon Uptake* by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists, Rockville, MD, pp 287-304
- OMATA T, N MURATA 1983 Isolation and characterization of the cytoplasmic membranes from the blue-green alga (cyanobacterium) Anacystis nidulans. Plant Cell Physiol 24: 1101-1112
- OMATA T, T OGAWA 1985 Changes in the polypeptide composition in the cytoplasmic membrane of the cyanobacterium *Anacystis nidulans* during adaptation to low CO₂ conditions. Plant Cell Physiol 26: 1075-1081
- RESCH CM, J GIBSON 1983 Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria. J Bacteriol 155: 345-350
- SHELP BJ, DT CANVIN 1984 Evidence for bicarbonate accumulation by Anacystis nidulans. Can J Bot 62: 1398–1403
- SHIRAIWA Y, S MIYACHI 1985 Role of carbonic anhydrase in photosynthesis of blue-green alga (cyanobacterium) Anabaena variabilis ATCC 29413. Plant Cell Physiol 26: 109-116
- STANIER RY, R KUNISAWA, M MANDEL, G COHEN-BAZIRE 1971 Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35: 171-205
- YAGAWA Y, Y SHIRAIWA, S MIYACHI 1984 Carbonic anhydrase from the bluegreen alga (cyanobacterium) Anabaena variabilis. Plant Cell Physiol 25: 775-783