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Supplementary Methods

Antibody-antigen complex scoring and native complex relaxation

The "InterfaceAnalyzer" executable in Rosetta' (v.3.12) was employed to calculate interface
energetic scores, using the Rosetta Energy Function 2015 (REF15) scoring function? and default
parameters. Prior to scoring, structural relaxation was performed on native antibody-antigen
complex obtained from PDB using the FastRelax protocol® (“relax” executable) in Rosetta using
the following flags:

-ignore _unrecognized res

-relax:constrain_relax to start coords

-relax:coord constrain_sidechains

-relax:ramp_constraints false

-ex1

-ex2

-use_input_sc

-no_optH false

-flip HNQ

-overwrite

-nstruct 1

Rigid-body docking with ZDOCK and IRAD

To establish a rigid-body docking baseline, ZDOCK version 3.0.2* was used to generate
antibody-antigen docking models using unbound or bound input structures. Unbound antibody

and antigen input structures for the ZDOCK algorithm were generated by AlphaFold, using the



above-mentioned protocol. Bound antibody and antigen input structures were extracted from
experimentally resolved antibody-antigen complex structures downloaded from PDB, with
HETATMs removed. Through dense rotational sampling (“-D” flag in ZDOCK), a total of
54,000 predictions per complex were generated. Subsequently, the docking poses were scored
and reranked using the IRAD scoring function®. Predictions were assessed with the DockQ
program® to determine the CAPRI model accuracy based on comparison with the known

complex structure.

Rigid-body docking with ClusPro

To establish a baseline for a rigid-body docking algorithm specific to antibody-antigen
complexes, the ClusPro web server (https://cluspro.bu.edu/) was utilized in its antibody mode’.
Unbound antibody and antigen input structures (same input for unbound ZDOCK docking) were
generated by AlphaFold as described above. Within the ClusPro interface, the options 'Use
Antibody Mode' and 'Automatically Mask non-CDR regions' were selected, in accordance with
the server's recommendations. Docking poses were ranked using ClusPro's default method, based
on cluster size from large to small. All docking poses were assessed with the DockQ program® to

assess CAPRI model accuracy based on comparison with the known complex structure.

TM-score calculation

To provide an assessment of antigen prediction accuracy, we employed the TM-score
executable® to calculate the TM-score, comparing the structural similarity between the antigen
chain(s) in the experimentally resolved antibody-antigen complex structure, and the antigen
prediction in the antibody-antigen complex predictions. Prior to running TM-score on the antigen
chains, residues that were not experimentally resolved, or absent from the experimentally

resolved structure, were removed from the antigen prediction.



MSA depth calculation

The MSA of the antibody-antigen complex was retrieved from the 'msa' key value in the feature
dictionary (“feature dict” variable). Given that the MSA values of the ‘msa’ key are encoded in
AlphaFold residue IDs, we converted the amino acids back to the one-letter amino acid type
using “ID TO_HHBLITS AA” dictionary, and replaced gaps (denoted by “-*) by “U” for
downstream MSA depth calculation. Number of effective sequences (Netr) was calculated by
CD-Hit’. For consistency with the AlphaFold MSA N calculation scheme'?, we used an
identity cutoff of 80% in CD-HIT to calculate nonredundant sequence clusters. MSA depth was
successfully calculated for 426 out of 427 antibody-antigen complexes, with one failure due to a

technical issue.

Hetero-atoms at the interface

Glycans and ligands at the antibody-antigen interface were identified through inspection of
HETATM records in experimentally resolved structure coordinates. Asymmetric unit structures
(defined by the PDB entry) of the antibody-antigen complexes were inspected, and cases with
hetero-atoms matching the "saccharide" classification identified from PDB ligands summary
pages (from wwPDB's Chemical Component Dictionary), as well as hetatoms in the category of
lipids and nucleotides within 6 A of the antibody and the antigen were identified as positive hits.
Glycan clusters were also accounted for, in order to appropriately group individual
glycan residues into a single N-glycan during analysis. Glycan clusters are identified by checking
the distance between the C and the O atoms of glycan HETATM residues “MAN”, “BMA”,
“NAG”, and “FUC”. Glycans were considered to be covalently linked if their C atom to another
glycan residue’s O atom has a distance < 2.0 A. One cluster of glycans is formed by pooling

together all glycan residues that are covalently attached. One cluster of glycans were considered



in the interface between antibody and antigen, if the cluster has glycan residues < 6 A to non-
hydrogen atoms of antibody chains, and has glycan residues < 6 A to non-hydrogen atoms of
antigen chains.

Since not all antigen glycosylation is experimentally resolved, we predict the possible
presence of antigen glycosylation near antibody binding site based on the source species of the
antigen and the presence of surface-accessible glycosylation motifs. We first determined the
source species of each antigen in our dataset to determine if the antigen can be glycosylated. This
assessment was based on whether proteins from these species are known to undergo
glycosylation either intrinsically or through the hijacking of host machinery, as observed in
enveloped viruses that infect eukaryotic hosts. In our set, such species include eukaryotic species
(excluding Plasmodia, Butyriboletus subregius, Atractiella rhizophila, Aequorea victoria, Betula
pendula due to uncertain, less predictable, or lack of N-glycosylation for those organisms) and
enveloped viruses. For antigens identified as possible to be N-glycosylated based on source
organism, we next examined their sequences for antibody-proximal glycosylation motifs.
Specifically, we focused on N-glycosylation sequons, defined as the sequence motif N-X-S/T
(where X is any amino acid except proline). We then employed Naccess v2.1.1!! to evaluate the
surface accessibility of the asparagine residue in each sequon. We consider those with a relative
accessibility of the side chain above 15% as surface-exposed asparagine residues. Finally, we
measured the proximity of these candidate asparagine residues to the antibody in the antibody-
antigen complex structure, classifying those within 12 A as potential sites of antigen

glycosylation near the antibody binding site.



AFsample antibody-antigen modeling

AFsample was downloaded from GitHub (https://github.com/bjornwallner/alphafoldv2.2.0). The

modeling protocol described in Wallner, 20232 was followed. A total of 6,000 predictions were
generated per case, including 2,000 predictions generated using AlphaFold v.2.1 and v.2.2
models with templates and full dropout, 2,000 predictions generated using v.2.1 and v.2.2
models without templates and with dropout in Evoformer but not structure module, 1,000
predictions generated with v.2.1 models without templates, with maximum number of 21
recycles, with dropout in the Evoformer but not the structure module, and 1,000 predictions
generated with v.2.2 models without templates, with maximum number of 9 recycles, with
dropout in the Evoformer but not the structure module. When templates were used, a template
date cutoff of September 30, 2021 was applied. The top 5 predictions per case were relaxed.

Modeling runs were performed using NVIDIA Titan RTX, Quadro 6000 and RTX A100 GPUs.

Identification of experimentally resolved antigens bound to other antibodies

Antigen chains bound to distinct antibodies were identified through a systematic approach. Each
antigen sequence from the complexes was queried against the PDB SEQRES database using
BLAST" to find PDB chains with at least 95% sequence identity, covering a minimum of 90%
of the query antigen sequence and structural resolution <= 3.0 A. Subsequently, the SAbDab'*
database was utilized to determine if the identified PDB chains were complexed with antibodies.
The hits were further examined for antibody distinctness from the test case. Antibodies
complexed with the antigen hit were considered distinct if the heavy chain V domain sequence
identity with the query antibody heavy chain was < 90%, or the full antibody V domain sequence
identity was < 90%. We additionally removed antigen hits where the experimentally resolved

sequence covered < 70% of the query antigen sequence. Finally, all qualifying hits were ranked



by their resolution, from lowest to highest, and the top hit was selected as the template for

modeling.



Supplementary Results
Comparing AlphaFold with rigid-body docking algorithms

To compare antibody-antigen modeling performance with a previously developed
docking approach, we utilized the global rigid-body docking algorithm, ZDOCK (version 3.0.2)%,
with the IRAD (Integration of Residue- and Atom-based Potentials for Docking) reranking
function which was developed to improve the ranking of near-native ZDOCK models°. Since
many of the antibody-antigen complexes in our benchmark set do not have experimentally
determined unbound antibody and/or antigen structures, AlphaFold was employed to generate
unbound antibody and unbound antigen inputs for ZDOCK, using templates released on or
before April 30, 2018. We selected the top-ranked prediction from AlphaFold as the input for
ZDOCK, and only performed ZDOCK docking with unbound structures having a minimum
average pLDDT score over 80, in order to exclude cases with likely low quality input modeled
structures. In total, 389 complexes met the criteria for minimum average pLDDT score cutoff.
Using ZDOCK with IRAD reranking, the majority of test cases did not yield highly accurate
predictions (1% medium or higher accuracy, Fig. S2a) as the top-ranked prediction. In contrast,
AlphaFold-generated antibody-antigen complex models have a higher percentage of cases (19%)
with medium or higher accuracy top-ranked predictions within this set (Fig. S2b). The success
rate increases when we consider top 25 predictions generated by ZDOCK (7% of complexes
have medium or higher accuracy predictions, Fig. S2a), yet the success is still lower than
AlphaFold, which produced medium or higher accuracy predictions for 23% of cases when all 25
predictions were considered. This ZDOCK success is similar to the unbound antibody-antigen

docking success in Guest et al.'3, although the difference in test cases, inputs (unbound versus



modeled structures), and ZDOCK sampling and model scoring do not support a direct
comparison of success rates.

To compare AlphaFold with a rigid-body docking algorithm that is specialized in
antibody-antigen docking, we additionally generated antibody-antigen docking predictions using
ClusPro in antibody mode’ on a subset of 100 cases randomly subsampled from the 389 ZDOCK
test set cases. As with ZDOCK, the input for ClusPro consisted of the unbound antibody and
antigen models produced by AlphaFold, which met the quality criteria as previously described.
The default ranking method of the ClusPro server, which is based on the cluster size, was
employed for evaluating the docking poses. ClusPro generated comparable results as ZDOCK.
On this set, AlphaFold generated medium or higher accuracy top-ranked predictions for 19% of
the test cases (Fig. S3a), whereas ZDOCK achieved this in 1% of cases (Fig. S3b), and ClusPro
did not produce any such top-ranked predictions (Fig. S3¢). When top 20 predictions were
considered, the success rates rose to 24% for AlphaFold (Fig. S3a), 6% for ZDOCK (Fig. S3b)
and 9% for ClusPro (Fig. S3¢).

Challenges for the rigid-body docking algorithms likely responsible for the relatively low
observed success rates include possible local inaccuracies in the unbound models, binding
conformational changes (e.g. in CDR loops) even in the case of ideal unbound models, as well as
modeled flexible protein terminal regions that are not resolved in some of the structures, which

can lead to false positive binding sites for ZDOCK and ClusPro models.

Additional antibody-antigen modeling success determinants

While all complexes were modeled with antigen chains comprising the full epitope, a
subset of cases did not include additional chains from the full antigen multimeric assembly

(based on PDB “bioassembly”) in the modeling, due to computational limitations and for
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modeling efficiency. We examined whether these “partial antigen assembly” cases (N=49) were
not as successfully modeled as the non-multimer or full assembly cases (N=378, Fig. S6a), due
for instance to non-native surface regions that are normally buried in the full antigen assembly
being engaged by antibodies in the models. Indeed, the partial antigen assembly cases exhibited
lower modeling success versus the remainder of the cases. Additionally, consistent with our
previous benchmarking study'®, success analysis on the current set of antibody-antigen
complexes shows that larger complexes are generally more difficult to predict (Fig. S6b).

We also examined the accuracy of six complementarity determining region (CDR) loops
in the modeled complexes, computing CDR loop RMSDs in the models with respect to the
corresponding CDR loop from the experimentally determined complex structure (Fig. S7).
Interestingly, the CDRH3 loop exhibited differences in accuracy across sets of models with
different CAPRI accuracy levels, with median CDRH3 RMSD of 0.6 A for high accuracy
models, 1.2 A for medium accuracy models, 2.2 A for acceptable accuracy models, and 2.4 A for
incorrect models, indicating that accurate prediction of CDRH3 loops is associated with near-
native modeling accuracy in antibody-antigen complex prediction in AlphaFold. However, it
should be noted that CDR loop accuracy (among other features of the modeled interfaces) can
play a role in the CAPRI antibody-antigen complex accuracy assessments themselves, with high
CAPRI accuracy models likely requiring relatively low CDRH3 RMSDs to closely reflect the
native interface.

We also examined possible failures of antigen structure modeling as factors in antibody-
antigen modeling success (Fig. S8). The analysis of the antigen accuracy in top-ranked complex
predictions revealed that while only 12 complexes out of 427 complexes have antigen

predictions with TM-score® values below 0.7 with respect to the experimentally determined
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antigen, indicating a relatively lower level of structural similarity'’, the majority of complex
predictions included relatively accurate modeling of the antigen subunit. This suggests that most
of the failed predictions can be primarily attributed to incorrect docking poses or local structural

perturbations rather than inaccurate antigen subunit predictions.

Accurate subunit modeling and antibody-antigen prediction success

For comparison of predictive success with bound component inputs, we employed
ZDOCK* with IRAD’ scoring to perform global rigid-body docking and ranking with the bound
antibody and antigen structures (with randomized initial orientations). This approach led to a
relatively high proportion (62%) of cases having top-ranked predictions with medium or higher
accuracy (Fig. S14a), indicating that both traditional docking as well as AlphaFold can
successfully assemble over half, antibody-antigen complex structures wis bound components,
while still unable to assemble a sizable fraction of them.

Compared to using all experimentally determined chains as templates, utilizing only
certain bound chains as templates resulted in decreased model accuracy. Specifically, with
default antigen templates, and experimentally determined antibody heavy and light chains
provided as templates, 36% of top-ranked predictions were of medium or higher accuracy (Fig.
5¢). A similar near-native success rate (35%) was observed when using only bound antibody
heavy chains as templates (Fig. S14b), while light chain and antigen bound chain templates led
to 28% of cases with near-native top-ranked predictions (Fig. S14¢). Overall, the resulting
success rates of these bound chain template scenarios are higher than those obtained using the
default templates, in which case 18% of the complexes have medium or higher accuracy top-
ranked predictions. While not reflective of actual predictive modeling scenarios due to the use of

bound structure information, these results indicate the potential impact of accurate and bound-
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like subunit modeling, as well as its theoretical maximal effect, for AlphaFold antibody-antigen
modeling success.

Inspired by the findings, we tested using modeled subunit structures as templates in
antibody-antigen modeling, as we hypothesized that if these models are more accurate than the
default pipeline’s selected template structures, they could potentially improve AlphaFold’s
performance over the default pipeline and templates. However, this yielded lower success than
observed when using default templates (12%, versus 18% for near-native modeling success)
(Fig. S14d), showing that inaccuracies or deviations from the bound components for the

unbound models led to far different behavior than when using actual bound components.

Utilizing antigen structures bound to other antibodies as templates

Given the practical limitations in obtaining antigens bound to the target antibodies as modeling
templates, we evaluated the impact of using antigens that are bound to distinct antibodies as
templates. The criteria for selecting such antigens are outlined in the Supplementary Methods. In
the subset of 100 antibody-antigen complexes, we conducted such experiment on 73 antibody-
antigen complexes with qualifying antigen templates identified. Results indicated that use of
alternative antigen templates, compared to the original antigen template, decreased modeling
success. Percentage of cases with top-ranked medium or higher accuracy predictions were 49%
using bound antibody and bound original antigen (Fig. S15a), 41% using bound antibody and
alternative bound antigen (Fig. S15a), 18% using default AlphaFold antibody templates and
bound original antigen (Fig. S15b), 14% with default antibody and alternative bound antigen
(Fig. S15b). When models were generated with bound antibody templates, the use of alternative
bound antigens resulted in higher modeling success (41% cases with medium or higher top

ranked predictions, Fig. S15a) compared to the default AlphaFold antigen templates (35%, Fig.
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S15a). Conversely, when default AlphaFold antibody templates were employed, the success rate
with alternative bound antigens (14%, Fig. S15b) was comparable to that achieved with default
AlphaFold antigen templates (15%, Fig. S15b). This suggest that while alternative bound
antigens can enhance model accuracy when paired with their corresponding bound antibodies,
their advantage diminishes when used with generic antibody templates. Taken together, these
results highlight the importance of the antibody template choice in modeling outcomes, and more

broadly, deviations in modeling template from bound form led to decrease in modeling success.

Sustained v2.3 modeling success despite fewer recycles

Compared to v.2.2, v.2.3 predictions were produced with a higher number of recycles,
with 95% of v.2.3 predictions generated using more than three recycles. To investigate the
impact of recycles, we reduced the maximum number of recycles in v.2.3 from 20 to 5 (Fig.
S17a) or 3 (Fig. S17b). Compared to the default setting with a maximum number of recycles of
20, the antibody-antigen complex prediction success remained identical for generating near-

native (medium or higher accuracy) top-ranked predictions, regardless of the recycle limit.
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Supplementary Figures
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Figure S1. Antibody-antigen modeling success by ColabFold and AlphaFold. Antibody-
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antigen modeling success comparison of a ColabFold and b AlphaFold on 426 antibody-antigen
complexes for which both algorithms successfully generated predictions. Structures released on

or before April 30, 2018, were allowed as templates during modeling. For each complex, 25
predictions were generated, and were ranked by AlphaFold model confidence score. Antibody-
antigen predictions were evaluated for complex modeling accuracy using CAPRI criteria for

high, medium, and acceptable accuracy. The success rate was calculated based on the percentage

of cases that had at least one model among their top N predictions that met a specified level of

CAPRI accuracy. Bars are colored by CAPRI accuracy criteria.
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Figure S2. Antibody-antigen modeling success by ZDOCK and AlphaFold. Antibody-
antigen modeling success comparison of a ZDOCK (version 3.0.2)* b AlphaFold on 389
antibody-antigen complexes. AlphaFold was used to generate unbound antibody and antigen
structure inputs for ZDOCK. Templates released on or before April 30, 2018, were allowed
during modeling. Only the top-ranked prediction, based on AlphaFold’s model confidence score,
was used as input. ZDOCK docking was performed only on inputs with a minimum antibody or
antigen pLDDT score above 80 to ensure input model quality. ZDOCK dense sampling was
employed, generating in 54,000 predictions per complex, which were subsequently ranked using
IRAD? scores. Antibody-antigen predictions were evaluated for complex modeling accuracy
using CAPRI criteria for high, medium, and acceptable accuracy. For each complex, 25
predictions were generated, and were ranked by AlphaFold model confidence score. The success
rate was calculated based on the percentage of cases that had at least one model among their top
N predictions that met a specified level of CAPRI accuracy. Bars are colored by CAPRI
accuracy criteria.
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Figure S3. Antibody-antigen modeling success by AlphaFold, ZDOCK and ClusPro.
Antibody-antigen modeling success comparison of a AlphaFold b ZDOCK (version 3.0.2)* and ¢
ClusPro (antibody mode)’ on 100 antibody-antigen complexes. For each complex, 25 predictions
were generated by AlphaFold, and were ranked by AlphaFold model confidence score.
AlphaFold was also used to generate unbound antibody and antigen structure inputs for ZDOCK
and ClusPro. Templates released on or before April 30, 2018, were allowed during modeling.
Only the top-ranked prediction, based on AlphaFold’s model confidence score, was used as
input. To ensure input quality, only antibody or antigen predictions with minimum pLDDT score
above 80 were used. ZDOCK dense sampling was employed, generating in 54,000 predictions
per complex, which were subsequently ranked using IRAD? scores. ClusPro antibody mode and
automatic masking of non-CDR regions were enabled. Modeling success up to top 20 predictions
were shown in the figure, as ClusPro generated 20-30 predictions for most cases, except for case
7aqy, where ClusPro produced only 14 predictions. Antibody-antigen predictions were evaluated
for complex modeling accuracy using CAPRI criteria for high, medium, and acceptable
accuracy. The success rate was calculated based on the percentage of cases that had at least one
model among their top N predictions that met a specified level of CAPRI accuracy. Bars are
colored by CAPRI accuracy criteria.

17



60% 1

) o/

© 40% Accuracy

% Acceptable
Q

3] Medium

@ 20% O

B High

T1 T25

Figure S4. Presence of experimentally resolved and predicted interface glycans on
modeling success. Complexes were classified as either “Resolved” (glycans or ligands found in
antibody-antigen chain interface in experimentally resolved structures, N=49), “Predicted”
(glycans not found in antibody-antigen interface of experimentally resolved structures but the
antibody-antigen complex was predicted to have antibody-proximal antigen glycosylation,
N=91), and “None” (none of the above, N=287). Bars were colored by CAPRI criteria.
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Figure S5. Distribution of MSA depth (Neff) grouped by antibody type. Based on the
antibody type, complexes are categorized into heavy-light chain antibody-antigen complexes
(Ab, N=294), or nanobody/VHH-antibody complexes (Nano, N=132). Statistical significance
values (Wilcoxon rank-sum test) were calculated between MSA depth for antibody targets versus
nanobody targets, as noted at top (NS.: not significant, p > 0.05).
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Figure S6. Antibody-antigen modeling success determinants. A Partial versus full antigen

assembly input. Complexes were classified as either “Yes” (N=49) or “No” (N=378) to indicate
whether a partial antigen assembly was modeled, meaning that the antigen was modeled without

additional chains that are present in the full PDB bioassembly. T1 and T25 denote AlphaFold
modeling accuracy in top 1 (ranked by AlphaFold model confidence score) and in all 25
predictions of the complex. Bars are colored by CAPRI criteria. b Total number of residues in
the complex grouped by AlphaFold modeling success. The modeling success is defined as the
highest CAPRI criteria prediction in the complex, considering all 25 predictions. Statistical
significance values (Wilcoxon rank-sum test) were calculated between total residue counts for
sets of cases with incorrect versus medium and incorrect versus high CAPRI accuracy
predictions, as noted at top (*p <0.05, ***p <0.001).
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Figure S7. Distribution of CDR modeling accuracy, grouped by CDR type and by
AlphaFold modeling accuracy. AlphaFold modeling accuracy is defined as the accuracy of
highest CAPRI criteria prediction in the complex, considering all 25 predictions. For CDRH]1,
CDRH2 and CDRH3, the numbers of data points in each category are 261, 60, 62, 25 for
incorrect, acceptable, medium and high success groups. For CDRL1, CDRL2 and CDRL3, the
numbers of data points in each category are 192, 45, 39, 10 for incorrect, acceptable, medium,
and high success groups. Bars are colored by CAPRI model accuracy.
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accuracy. Top-ranked predictions of 427 complexes generated by AlphaFold are represented as
data points. The antigen accuracy is measured by TM-score of the top-ranked prediction, and the

complex model accuracy measured by DockQ score. If the antigen has multiple chains, the
minimum TM-score of all antigen chains is selected as the antigen TM-score. Data points are

colored by CAPRI model accuracy.
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Figure S9. Relationship between model confidence scores and model accuracy. Scatter plots
depicting the association between the a pTM, b ipTM scores and DockQ scores. In the scatter
plots, all 25 models representing 427 complexes are depicted as data points, with their colors
indicating the model quality according to CAPRI criteria. The orange line represents the linear
regression, and the lower right corner of the scatter plots displays the Pearson's correlation
coefficients and correlation p-values.
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Figure S10. Relationship between model scores and model accuracy. Scatter plots depicting
the association between the a model confidence, b interface pLDDT scores and the DockQ
scores. A total of 10,236 data points were present in each scatter plot, which include all 25
models representing 427 complexes, excluding models without side-chain contacts within 4 A
across the antibody-antigen interface. Data points are colors indicating the model quality
according to CAPRI criteria. The orange line represents the linear regression, and the lower right
corner of the scatter plots displays the Pearson's correlation coefficients and correlation p-values.
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Figure S11. Analysis of antibody-antigen predictions accuracy across recycling iterations.

The modeling success of complexes at each recycle focusing on a subset of predictions that

reached medium or higher accuracy after 3 recycling iterations (N=106). Recycle=0 denotes the

state of the prediction before recycling iterations begin.
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Figure S12. The distribution of CDRH3 modeling accuracy in top-ranked unbound
antibody model grouped by top-ranked complex modeling success. The modeling success is
CAPRI criteria of top-ranked complex prediction generated by AlphaFold. The CDRH3 RMSD
measures the RMSD of the top-ranked unbound antibody prediction generated by AlphaFold.
Numbers of data points in incorrect, acceptable, medium, and high categories are 304, 31, 52, 19.
Statistical significance values (Wilcoxon rank-sum test) were calculated between RMSD values
for sets of cases with incorrect versus medium and incorrect versus high CAPRI accuracy
predictions, as noted at top (NS: p > 0.05, *p <0.05).
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Figure S13. Antibody-antigen modeling success determinants of AlphaFold with bound
antibody and antigen structures as templates. Distribution of a interface energy score and b
change in solvent-accessible surface area (ASASA) of hydrophobic part of the antibody-antigen
interface (calculated by the Rosetta InterfaceAnalyzer program), with cases grouped by complex
modeling success for AlphaFold when using bound antibody and antigen structures as templates.
The modeling success is defined as the highest CAPRI criteria prediction in the complex,
considering all 5 predictions. Numbers of data points in incorrect, acceptable, medium and high
categories are 46, 2, 7 and 45. Statistical significance values (Wilcoxon rank-sum test) were
calculated between scores for sets of cases with incorrect versus high CAPRI accuracy
predictions, as noted at top (**p <0.01).
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a Bound antibody and b Bound heavy/nanobody chain, c Bound light chain and antigen chain(s), d Modeled antibody and
antigen chains, ZDOCK default light chain and antigen chain(s) default heavy/nanobody chain antigen chains
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Figure S14. Antibody-antigen modeling success using varying template inputs. Antibody-
antigen modeling success of a ZDOCK (version 3.0.2) with IRAD re-ranking of dense-sampling
predictions (54,000 predictions per complex), utilizing bound antibody and bound antigen chains
as docking input, and of AlphaFold by utilizing b bound heavy/nanobody chain, and default light
chain and antigen chains as templates, ¢ bound light chain, and default heavy/nanobody chain
and antigen chains as templates, d antibody and antigen chains modeled by AlphaFold as
templates. A template date cutoff of 2018-04-30 was applied to identify default templates.
Benchmarking was performed on a total of 100 antibody-antigen complexes. The success rate
was calculated based on the percentage of cases that had at least one model among their top N
predictions that met a specified level of CAPRI accuracy. Bars are colored by CAPRI accuracy
criteria.
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Figure S15. Antibody-antigen modeling success using antigens bound to alternative
antibodies as template inputs. AlphaFold generated antibody-antigen complexes using a bound
antibody and b default antibody, coupled with bound antigen (original), bound antigen
(alternative) and default antigen as templates. A template date cutoff of 2018-04-30 was applied
to identify default templates. Benchmarking was performed on a total of 73 antibody-antigen
complexes. The success rate was calculated based on the percentage of cases that had at least one
model among their top N predictions that met a specified level of CAPRI accuracy. Bars were
colored by CAPRI accuracy criteria.
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Figure S16. Distribution of DockQ scores grouped by ranges of AlphaFold MSA depth. The
DockQ scores selected for each individual data points are the highest DockQ score of all 25
complex predictions generated by AlphaFold. Numbers of data points in (3.69,5.08], (5.08,6.46],
(6.46,7.84], (7.84,9.21] and (9.21,10.6] Neff ranges are 17, 50, 124, 107, 128 respectively.
Statistical significance values (Wilcoxon rank-sum test) were calculated between DockQ scores

for sets of cases with varying ranges of MSA depth, as noted at top (NS.: p > 0.05, *p < 0.005,
**p<0.001, ***p<0.001).
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Figure S17. Antibody-antigen modeling success comparison of AlphaFold (v.2.3) using a
varying number of maximum recycles. The maximum number of recycling iterations were set
toa 5 and b 3, and tested on 41 antibody-antigen complexes. Templates released on or before
September 30, 2021, were allowed during modeling. For each complex, 25 predictions were
generated, and were ranked by AlphaFold model confidence score. Antibody-antigen predictions
were evaluated for complex modeling accuracy using CAPRI criteria for high, medium and
acceptable accuracy. The success rate was calculated based on the percentage of cases that had at

least one model among their top N predictions that met a specified level of CAPRI accuracy.
Bars were colored by CAPRI accuracy criteria.
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Supplementary Table

Table S1. Antibody-antigen structures used for AlphaFold benchmarking.

Release v.2.3.0 100

PDB  Heavy chain Light chain  Antigen chain(s) Date set! subset?
6was H L J 3/31/21 X
6p50 H L C 9/4/19

6urm H L F 9/16/20
6umg h 1 cr 2/12/20

6a0z H L A 6/20/18 X
7daa H L A 10/20/21 X X
6s8j P 0] C 2/12/20

6s81 P 0] C 2/12/20

717 A B M 8/4/21

6urh H L C 3/18/20

71fb H L X 8/4/21

oktr A B C 7/8/20
6meh H L C 11/21/18

6vel H L C 1/29/20 X
6y9b I M A 5/20/20

6xkq H L A 10/14/20

60%h H L D 1/22/20

6yio H L B 11/11/20

7r B A G 12/1/21 X

7r D C G 12/1/21 X X
6svl A B C 11/27/19
60km H L R 8/28/19

6z3p H L CAB 9/2/20

6u3o6 H L B 11/6/19

6jbt H L F 6/19/19
6wbv H L A 9/9/20

Timp H L A 8/26/20 X
6wo5 G I F 8/19/20 X
71fa B D A 8/4/21

Tnpl H L A 11/17/21

6hig H L B 6/5/19

6vyh D C A 11/11/20

6k65 H L A 8/14/19
6umx h 1 B 2/26/20

Tnx3 B C F 10/27/21 X
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7jv6
6xqw
Titg
6091
Te7x
6wo5
6mvl
7kqg
6glw
6gku
Tlue
7k9j
7n8h
6wo3
6wmw
6wmw
Tczx
Tczw
7rah
7rah
7kn4
onyq
6xkr
6jp
7Ixy
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7r89
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6k0y
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6wgl
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10/14/20

3/3/21

3/10/21 X
1/22/20 X
6/9/21

8/19/20

10/23/19

12/16/20

6/5/19

6/5/19

6/16/21

9/29/21

7/14/21

8/19/20

7/15/20

7/15/20

3/10/21

3/10/21

9/15/21

9/15/21

9/22/21

1/22/20

9/9/20 X
10/30/19

4/14/21

12/15/21

9/8/21

10/7/20

4/22/20

4/14/21

12/30/20

12/11/19 X
10/7/20

9/16/20

7/21/21

10/30/19

11/25/20

4/14/21

6/23/21

12/2/20

33



60sv
7lbg
7lbg
6a3w
7bnv
7lm9
7052
7s4s
7lop
6xkp
6h2y
6phc
60sh
7n3d
TeTy
7chf
7lm8
7kn3
Tn0Ou
7jo0
7dk2
6sni
7c88
7dc8
7mmo
Tktv
7k9z
6mlk
6mg7
7101
60gx
Tlcv
6pi7
Tps6
orlo
7lab
Tcm4
6gv4
6j14
60hg

QAP II<QOQIWMPOIITIITWHNIW > TUTTZTEST»PP>PIZQZIXITITITT>»>oOTT

WX ITCfrmmOOrfCfCf QOO Z0WCCN0OCf Z< 00 C 0O AQC

PECrmUN0PArmmTOOXTOATEPARAROATDITTNEC > > 0> > R

BA

> Q

4/1/20
3/10/21
3/10/21
10/10/18
11/17/21
3/31/21
7/28/21
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8/14/19
10/2/19
4/1/20
7/7/21
6/9/21
9/16/20
3/31/21
9/22/21
8/11/21
10/14/20
12/8/21
3/11/20
4/14/21
1/13/21
5/12/21
12/2/20
10/28/20
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9/25/19
11/3/21
7/10/19
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10/6/21

8/14/19

9/16/20

1/20/21

1/20/21 X
11/6/19

2/17/21

8/25/21

12/9/20

8/11/21

8/11/21

8/5/20 X
6/26/19

9/23/20

7/8/20

7/10/19

2/19/20 X
6/26/19

6/26/19

9/23/20

9/15/21

7/7/21

6/24/20

11/13/19 X
9/8/21

12/9/20 X
12/1/21 X

12/1/21 X

12/23/20

1/30/19

6/19/19
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10/27/21 X

6/3/20
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3/24/21
11/3/21
8/26/20
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10/2/19
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12/22/21
12/22/21
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6/2/21
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1/30/19
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11/3/21
9/25/19
4/1/20
6/9/21
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Tmfu F D 6/2/21
Tkgj B A 2/3/21
Tkgk B A 2/3/21
Tnow C D 4/7/21
Tnqa D A 7/21/21
6xzu A B 8/12/20
Tezd A B 7/14/21

'Subset of cases used for benchmarking AlphaFold v.2.3.
2Subset of 100 cases used for benchmarking the use of bound input template structures.
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