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Supplementary Methods 
 

Antibody-antigen complex scoring and native complex relaxation  

The "InterfaceAnalyzer" executable in Rosetta1 (v.3.12) was employed to calculate interface 

energetic scores, using the Rosetta Energy Function 2015 (REF15) scoring function2 and default 

parameters. Prior to scoring, structural relaxation was performed on native antibody-antigen 

complex obtained from PDB using the FastRelax protocol3 (“relax” executable) in Rosetta using 

the following flags: 

-ignore_unrecognized_res 

-relax:constrain_relax_to_start_coords 

-relax:coord_constrain_sidechains 

-relax:ramp_constraints false 

-ex1 

-ex2 

-use_input_sc 

-no_optH false 

-flip_HNQ 

-overwrite 

-nstruct 1 

Rigid-body docking with ZDOCK and IRAD  

To establish a rigid-body docking baseline, ZDOCK version 3.0.24 was used to generate 

antibody-antigen docking models using unbound or bound input structures. Unbound antibody 

and antigen input structures for the ZDOCK algorithm were generated by AlphaFold, using the 
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above-mentioned protocol. Bound antibody and antigen input structures were extracted from 

experimentally resolved antibody-antigen complex structures downloaded from PDB, with 

HETATMs removed. Through dense rotational sampling (“-D” flag in ZDOCK), a total of 

54,000 predictions per complex were generated. Subsequently, the docking poses were scored 

and reranked using the IRAD scoring function5. Predictions were assessed with the DockQ 

program6 to determine the CAPRI model accuracy based on comparison with the known 

complex structure. 

Rigid-body docking with ClusPro 

To establish a baseline for a rigid-body docking algorithm specific to antibody-antigen 

complexes, the ClusPro web server (https://cluspro.bu.edu/) was utilized in its antibody mode7. 

Unbound antibody and antigen input structures (same input for unbound ZDOCK docking) were 

generated by AlphaFold as described above. Within the ClusPro interface, the options 'Use 

Antibody Mode' and 'Automatically Mask non-CDR regions' were selected, in accordance with 

the server's recommendations. Docking poses were ranked using ClusPro's default method, based 

on cluster size from large to small. All docking poses were assessed with the DockQ program6 to 

assess CAPRI model accuracy based on comparison with the known complex structure. 

TM-score calculation 

To provide an assessment of antigen prediction accuracy, we employed the TM-score 

executable8 to calculate the TM-score, comparing the structural similarity between the antigen 

chain(s) in the experimentally resolved antibody-antigen complex structure, and the antigen 

prediction in the antibody-antigen complex predictions. Prior to running TM-score on the antigen 

chains, residues that were not experimentally resolved, or absent from the experimentally 

resolved structure, were removed from the antigen prediction.  
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MSA depth calculation 

The MSA of the antibody-antigen complex was retrieved from the 'msa' key value in the feature 

dictionary (“feature_dict” variable). Given that the MSA values of the ‘msa’ key are encoded in 

AlphaFold residue IDs, we converted the amino acids back to the one-letter amino acid type 

using “ID_TO_HHBLITS_AA” dictionary, and replaced gaps (denoted by “-“)  by “U” for 

downstream MSA depth calculation. Number of effective sequences (Neff) was calculated by 

CD-Hit9.  For consistency with the AlphaFold MSA Neff calculation scheme10, we used an 

identity cutoff of 80% in CD-HIT to calculate nonredundant sequence clusters. MSA depth was 

successfully calculated for 426 out of 427 antibody-antigen complexes, with one failure due to a 

technical issue. 

Hetero-atoms at the interface 

Glycans and ligands at the antibody-antigen interface were identified through inspection of 

HETATM records in experimentally resolved structure coordinates. Asymmetric unit structures 

(defined by the PDB entry) of the antibody-antigen complexes were inspected, and cases with 

hetero-atoms matching the "saccharide" classification identified from PDB ligands summary 

pages (from wwPDB's Chemical Component Dictionary), as well as hetatoms in the category of 

lipids and nucleotides within 6 Å of the antibody and the antigen were identified as positive hits. 

 Glycan clusters were also accounted for, in order to appropriately group individual 

glycan residues into a single N-glycan during analysis. Glycan clusters are identified by checking 

the distance between the C and the O atoms of glycan HETATM residues “MAN”, “BMA”, 

“NAG”, and “FUC”. Glycans were considered to be covalently linked if their C atom to another 

glycan residue’s O atom has a distance < 2.0 Å. One cluster of glycans is formed by pooling 

together all glycan residues that are covalently attached. One cluster of glycans were considered 
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in the interface between antibody and antigen, if the cluster has glycan residues < 6 Å to non-

hydrogen atoms of antibody chains, and has glycan residues < 6 Å to non-hydrogen atoms of 

antigen chains. 

 Since not all antigen glycosylation is experimentally resolved, we predict the possible 

presence of antigen glycosylation near antibody binding site based on the source species of the 

antigen and the presence of surface-accessible glycosylation motifs. We first determined the 

source species of each antigen in our dataset to determine if the antigen can be glycosylated. This 

assessment was based on whether proteins from these species are known to undergo 

glycosylation either intrinsically or through the hijacking of host machinery, as observed in 

enveloped viruses that infect eukaryotic hosts. In our set, such species include eukaryotic species 

(excluding Plasmodia, Butyriboletus subregius, Atractiella rhizophila, Aequorea victoria, Betula 

pendula due to uncertain, less predictable, or lack of N-glycosylation for those organisms) and 

enveloped viruses. For antigens identified as possible to be N-glycosylated based on source 

organism, we next examined their sequences for antibody-proximal glycosylation motifs. 

Specifically, we focused on N-glycosylation sequons, defined as the sequence motif N-X-S/T 

(where X is any amino acid except proline). We then employed Naccess v2.1.111 to evaluate the 

surface accessibility of the asparagine residue in each sequon. We consider those with a relative 

accessibility of the side chain above 15% as surface-exposed asparagine residues. Finally, we 

measured the proximity of these candidate asparagine residues to the antibody in the antibody-

antigen complex structure, classifying those within 12 Å as potential sites of antigen 

glycosylation near the antibody binding site.  
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AFsample antibody-antigen modeling  

AFsample was downloaded from GitHub (https://github.com/bjornwallner/alphafoldv2.2.0). The 

modeling protocol described in Wallner, 202312 was followed. A total of 6,000 predictions were 

generated per case, including 2,000 predictions generated using AlphaFold v.2.1 and v.2.2 

models with templates and full dropout, 2,000 predictions generated using v.2.1 and v.2.2 

models without templates and with dropout in Evoformer but not structure module, 1,000 

predictions generated with v.2.1 models without templates, with maximum number of 21 

recycles, with dropout in the Evoformer but not the structure module, and 1,000 predictions 

generated with v.2.2 models without templates, with maximum number of 9 recycles, with 

dropout in the Evoformer but not the structure module. When templates were used, a template 

date cutoff of September 30, 2021 was applied. The top 5 predictions per case were relaxed. 

Modeling runs were performed using NVIDIA Titan RTX, Quadro 6000 and RTX A100 GPUs.  

Identification of experimentally resolved antigens bound to other antibodies 

Antigen chains bound to distinct antibodies were identified through a systematic approach. Each 

antigen sequence from the complexes was queried against the PDB SEQRES database using 

BLAST13 to find PDB chains with at least 95% sequence identity, covering a minimum of 90% 

of the query antigen sequence and structural resolution <= 3.0 Å. Subsequently, the SAbDab14 

database was utilized to determine if the identified PDB chains were complexed with antibodies. 

The hits were further examined for antibody distinctness from the test case. Antibodies 

complexed with the antigen hit were considered distinct if the heavy chain V domain sequence 

identity with the query antibody heavy chain was < 90%, or the full antibody V domain sequence 

identity was < 90%. We additionally removed antigen hits where the experimentally resolved 

sequence covered < 70% of the query antigen sequence. Finally, all qualifying hits were ranked 
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by their resolution, from lowest to highest, and the top hit was selected as the template for 

modeling. 
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Supplementary Results 

Comparing AlphaFold with rigid-body docking algorithms 

To compare antibody-antigen modeling performance with a previously developed 

docking approach, we utilized the global rigid-body docking algorithm, ZDOCK (version 3.0.2)4, 

with the IRAD (Integration of Residue- and Atom-based Potentials for Docking) reranking 

function which was developed to improve the ranking of near-native ZDOCK models5. Since 

many of the antibody-antigen complexes in our benchmark set do not have experimentally 

determined unbound antibody and/or antigen structures, AlphaFold was employed to generate 

unbound antibody and unbound antigen inputs for ZDOCK, using templates released on or 

before April 30, 2018. We selected the top-ranked prediction from AlphaFold as the input for 

ZDOCK, and only performed ZDOCK docking with unbound structures having a minimum 

average pLDDT score over 80, in order to exclude cases with likely low quality input modeled 

structures. In total, 389 complexes met the criteria for minimum average pLDDT score cutoff. 

Using ZDOCK with IRAD reranking, the majority of test cases did not yield highly accurate 

predictions (1% medium or higher accuracy, Fig. S2a) as the top-ranked prediction. In contrast, 

AlphaFold-generated antibody-antigen complex models have a higher percentage of cases (19%) 

with medium or higher accuracy top-ranked predictions within this set (Fig. S2b). The success 

rate increases when we consider top 25 predictions generated by ZDOCK (7% of complexes 

have medium or higher accuracy predictions, Fig. S2a), yet the success is still lower than 

AlphaFold, which produced medium or higher accuracy predictions for 23% of cases when all 25 

predictions were considered. This ZDOCK success is similar to the unbound antibody-antigen 

docking success in Guest et al.15, although the difference in test cases, inputs (unbound versus 
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modeled structures), and ZDOCK sampling and model scoring do not support a direct 

comparison of success rates.  

To compare AlphaFold with a rigid-body docking algorithm that is specialized in 

antibody-antigen docking, we additionally generated antibody-antigen docking predictions using 

ClusPro in antibody mode7 on a subset of 100 cases randomly subsampled from the 389 ZDOCK 

test set cases. As with ZDOCK, the input for ClusPro consisted of the unbound antibody and 

antigen models produced by AlphaFold, which met the quality criteria as previously described. 

The default ranking method of the ClusPro server, which is based on the cluster size, was 

employed for evaluating the docking poses. ClusPro generated comparable results as ZDOCK. 

On this set, AlphaFold generated medium or higher accuracy top-ranked predictions for 19% of 

the test cases (Fig. S3a), whereas ZDOCK achieved this in 1% of cases (Fig. S3b), and ClusPro 

did not produce any such top-ranked predictions (Fig. S3c). When top 20 predictions were 

considered, the success rates rose to 24% for AlphaFold (Fig. S3a), 6% for ZDOCK (Fig. S3b) 

and 9% for ClusPro (Fig. S3c).  

Challenges for the rigid-body docking algorithms likely responsible for the relatively low 

observed success rates include possible local inaccuracies in the unbound models, binding 

conformational changes (e.g. in CDR loops) even in the case of ideal unbound models, as well as 

modeled flexible protein terminal regions that are not resolved in some of the structures, which 

can lead to false positive binding sites for ZDOCK and ClusPro models.  

Additional antibody-antigen modeling success determinants 

While all complexes were modeled with antigen chains comprising the full epitope, a 

subset of cases did not include additional chains from the full antigen multimeric assembly 

(based on PDB “bioassembly”) in the modeling, due to computational limitations and for 
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modeling efficiency. We examined whether these “partial antigen assembly” cases (N=49) were 

not as successfully modeled as the non-multimer or full assembly cases (N=378, Fig. S6a), due 

for instance to non-native surface regions that are normally buried in the full antigen assembly 

being engaged by antibodies in the models. Indeed, the partial antigen assembly cases exhibited 

lower modeling success versus the remainder of the cases. Additionally, consistent with our 

previous benchmarking study16, success analysis on the current set of antibody-antigen 

complexes shows that larger complexes are generally more difficult to predict (Fig. S6b).  

 We also examined the accuracy of six complementarity determining region (CDR) loops 

in the modeled complexes, computing CDR loop RMSDs in the models with respect to the 

corresponding CDR loop from the experimentally determined complex structure (Fig. S7). 

Interestingly, the CDRH3 loop exhibited differences in accuracy across sets of models with 

different CAPRI accuracy levels, with median CDRH3 RMSD of 0.6 Å for high accuracy 

models, 1.2 Å for medium accuracy models, 2.2 Å for acceptable accuracy models, and 2.4 Å for 

incorrect models, indicating that accurate prediction of CDRH3 loops is associated with near-

native modeling accuracy in antibody-antigen complex prediction in AlphaFold. However, it 

should be noted that CDR loop accuracy (among other features of the modeled interfaces) can 

play a role in the CAPRI antibody-antigen complex accuracy assessments themselves, with high 

CAPRI accuracy models likely requiring relatively low CDRH3 RMSDs to closely reflect the 

native interface. 

We also examined possible failures of antigen structure modeling as factors in antibody-

antigen modeling success (Fig. S8). The analysis of the antigen accuracy in top-ranked complex 

predictions revealed that while only 12 complexes out of 427 complexes have antigen 

predictions with TM-score8 values below 0.7 with respect to the experimentally determined 
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antigen, indicating a relatively lower level of structural similarity17, the majority of complex 

predictions included relatively accurate modeling of the antigen subunit. This suggests that most 

of the failed predictions can be primarily attributed to incorrect docking poses or local structural 

perturbations rather than inaccurate antigen subunit predictions. 

Accurate subunit modeling and antibody-antigen prediction success 
 For comparison of predictive success with bound component inputs, we employed 

ZDOCK4 with IRAD5 scoring to perform global rigid-body docking and ranking with the bound 

antibody and antigen structures (with randomized initial orientations). This approach led to a 

relatively high proportion (62%) of cases having top-ranked predictions with medium or higher 

accuracy (Fig. S14a), indicating that both traditional docking as well as AlphaFold can 

successfully assemble over half, antibody-antigen complex structures with bound components, 

while still unable to assemble a sizable fraction of them. 

Compared to using all experimentally determined chains as templates, utilizing only 

certain bound chains as templates resulted in decreased model accuracy. Specifically, with 

default antigen templates, and experimentally determined antibody heavy and light chains 

provided as templates, 36% of top-ranked predictions were of medium or higher accuracy (Fig. 

5c). A similar near-native success rate (35%) was observed when using only bound antibody 

heavy chains as templates (Fig. S14b), while light chain and antigen bound chain templates led 

to 28% of cases with near-native top-ranked predictions (Fig. S14c). Overall, the resulting 

success rates of these bound chain template scenarios are higher than those obtained using the 

default templates, in which case 18% of the complexes have medium or higher accuracy top-

ranked predictions. While not reflective of actual predictive modeling scenarios due to the use of 

bound structure information, these results indicate the potential impact of accurate and bound-
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like subunit modeling, as well as its theoretical maximal effect, for AlphaFold antibody-antigen 

modeling success. 

 Inspired by the findings, we tested using modeled subunit structures as templates in 

antibody-antigen modeling, as we hypothesized that if these models are more accurate than the 

default pipeline’s selected template structures, they could potentially improve AlphaFold’s 

performance over the default pipeline and templates. However, this yielded lower success than 

observed when using default templates (12%, versus 18% for near-native modeling success) 

(Fig. S14d), showing that inaccuracies or deviations from the bound components for the 

unbound models led to far different behavior than when using actual bound components. 

Utilizing antigen structures bound to other antibodies as templates 

Given the practical limitations in obtaining antigens bound to the target antibodies as modeling 

templates, we evaluated the impact of using antigens that are bound to distinct antibodies as 

templates. The criteria for selecting such antigens are outlined in the Supplementary Methods. In 

the subset of 100 antibody-antigen complexes, we conducted such experiment on 73 antibody-

antigen complexes with qualifying antigen templates identified. Results indicated that use of 

alternative antigen templates, compared to the original antigen template, decreased modeling 

success. Percentage of cases with top-ranked medium or higher accuracy predictions were 49% 

using bound antibody and bound original antigen (Fig. S15a), 41% using bound antibody and 

alternative bound antigen (Fig. S15a), 18% using default AlphaFold antibody templates and 

bound original antigen (Fig. S15b), 14% with default antibody and alternative bound antigen 

(Fig. S15b). When models were generated with bound antibody templates, the use of alternative 

bound antigens resulted in higher modeling success (41% cases with medium or higher top 

ranked predictions, Fig. S15a) compared to the default AlphaFold antigen templates (35%, Fig. 
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S15a). Conversely, when default AlphaFold antibody templates were employed, the success rate 

with alternative bound antigens (14%, Fig. S15b) was comparable to that achieved with default 

AlphaFold antigen templates (15%, Fig. S15b). This suggest that while alternative bound 

antigens can enhance model accuracy when paired with their corresponding bound antibodies, 

their advantage diminishes when used with generic antibody templates. Taken together, these 

results highlight the importance of the antibody template choice in modeling outcomes, and more 

broadly, deviations in modeling template from bound form led to decrease in modeling success.  

Sustained v2.3 modeling success despite fewer recycles 
Compared to v.2.2, v.2.3 predictions were produced with a higher number of recycles, 

with 95% of v.2.3 predictions generated using more than three recycles. To investigate the 

impact of recycles, we reduced the maximum number of recycles in v.2.3 from 20 to 5 (Fig. 

S17a) or 3 (Fig. S17b). Compared to the default setting with a maximum number of recycles of 

20, the antibody-antigen complex prediction success remained identical for generating near-

native (medium or higher accuracy) top-ranked predictions, regardless of the recycle limit.  
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Supplementary Figures 
 

 
 
 

 
 

  
Figure S1. Antibody-antigen modeling success by ColabFold and AlphaFold. Antibody-
antigen modeling success comparison of a ColabFold and b AlphaFold on 426 antibody-antigen 
complexes for which both algorithms successfully generated predictions. Structures released on 
or before April 30, 2018, were allowed as templates during modeling. For each complex, 25 
predictions were generated, and were ranked by AlphaFold model confidence score. Antibody-
antigen predictions were evaluated for complex modeling accuracy using CAPRI criteria for 
high, medium, and acceptable accuracy. The success rate was calculated based on the percentage 
of cases that had at least one model among their top N predictions that met a specified level of 
CAPRI accuracy. Bars are colored by CAPRI accuracy criteria.  
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Figure S2. Antibody-antigen modeling success by ZDOCK and AlphaFold. Antibody-
antigen modeling success comparison of a ZDOCK (version 3.0.2)4 b AlphaFold on 389 
antibody-antigen complexes. AlphaFold was used to generate unbound antibody and antigen 
structure inputs for ZDOCK. Templates released on or before April 30, 2018, were allowed 
during modeling. Only the top-ranked prediction, based on AlphaFold’s model confidence score, 
was used as input. ZDOCK docking was performed only on inputs with a minimum antibody or 
antigen pLDDT score above 80 to ensure input model quality. ZDOCK dense sampling was 
employed, generating in 54,000 predictions per complex, which were subsequently ranked using 
IRAD5 scores. Antibody-antigen predictions were evaluated for complex modeling accuracy 
using CAPRI criteria for high, medium, and acceptable accuracy. For each complex, 25 
predictions were generated, and were ranked by AlphaFold model confidence score. The success 
rate was calculated based on the percentage of cases that had at least one model among their top 
N predictions that met a specified level of CAPRI accuracy. Bars are colored by CAPRI 
accuracy criteria.  
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Figure S3. Antibody-antigen modeling success by AlphaFold, ZDOCK and ClusPro. 
Antibody-antigen modeling success comparison of a AlphaFold b ZDOCK (version 3.0.2)4 and c 
ClusPro (antibody mode)7 on 100 antibody-antigen complexes. For each complex, 25 predictions 
were generated by AlphaFold, and were ranked by AlphaFold model confidence score. 
AlphaFold was also used to generate unbound antibody and antigen structure inputs for ZDOCK 
and ClusPro. Templates released on or before April 30, 2018, were allowed during modeling. 
Only the top-ranked prediction, based on AlphaFold’s model confidence score, was used as 
input. To ensure input quality, only antibody or antigen predictions with minimum pLDDT score 
above 80 were used. ZDOCK dense sampling was employed, generating in 54,000 predictions 
per complex, which were subsequently ranked using IRAD5 scores. ClusPro antibody mode and 
automatic masking of non-CDR regions were enabled. Modeling success up to top 20 predictions 
were shown in the figure, as ClusPro generated 20-30 predictions for most cases, except for case 
7aqy, where ClusPro produced only 14 predictions. Antibody-antigen predictions were evaluated 
for complex modeling accuracy using CAPRI criteria for high, medium, and acceptable 
accuracy. The success rate was calculated based on the percentage of cases that had at least one 
model among their top N predictions that met a specified level of CAPRI accuracy. Bars are 
colored by CAPRI accuracy criteria.  
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Figure S4. Presence of experimentally resolved and predicted interface glycans on 
modeling success. Complexes were classified as either “Resolved” (glycans or ligands found in 
antibody-antigen chain interface in experimentally resolved structures, N=49), “Predicted” 
(glycans not found in antibody-antigen interface of experimentally resolved structures but the 
antibody-antigen complex was predicted to have antibody-proximal antigen glycosylation, 
N=91), and “None” (none of the above, N=287). Bars were colored by CAPRI criteria. 
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Figure S5. Distribution of MSA depth (Neff) grouped by antibody type. Based on the 
antibody type, complexes are categorized into heavy-light chain antibody-antigen complexes 
(Ab, N=294), or nanobody/VHH-antibody complexes (Nano, N=132). Statistical significance 
values (Wilcoxon rank-sum test) were calculated between MSA depth for antibody targets versus 
nanobody targets, as noted at top (NS.: not significant, p > 0.05). 
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Figure S6. Antibody-antigen modeling success determinants. A Partial versus full antigen 
assembly input. Complexes were classified as either “Yes” (N=49) or “No” (N=378) to indicate 
whether a partial antigen assembly was modeled, meaning that the antigen was modeled without 
additional chains that are present in the full PDB bioassembly. T1 and T25 denote AlphaFold 
modeling accuracy in top 1 (ranked by AlphaFold model confidence score) and in all 25 
predictions of the complex. Bars are colored by CAPRI criteria. b Total number of residues in 
the complex grouped by AlphaFold modeling success. The modeling success is defined as the 
highest CAPRI criteria prediction in the complex, considering all 25 predictions. Statistical 
significance values (Wilcoxon rank-sum test) were calculated between total residue counts for 
sets of cases with incorrect versus medium and incorrect versus high CAPRI accuracy 
predictions, as noted at top (*p ≤ 0.05, ***p ≤ 0.001). 
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Figure S7. Distribution of CDR modeling accuracy, grouped by CDR type and by 
AlphaFold modeling accuracy. AlphaFold modeling accuracy is defined as the accuracy of 
highest CAPRI criteria prediction in the complex, considering all 25 predictions. For CDRH1, 
CDRH2 and CDRH3, the numbers of data points in each category are 261, 60, 62, 25 for 
incorrect, acceptable, medium and high success groups. For CDRL1, CDRL2 and CDRL3, the 
numbers of data points in each category are 192, 45, 39, 10 for incorrect, acceptable, medium, 
and high success groups. Bars are colored by CAPRI model accuracy. 
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Figure S8. Relationship between antigen modeling accuracy and complex prediction 
accuracy. Top-ranked predictions of 427 complexes generated by AlphaFold are represented as 
data points. The antigen accuracy is measured by TM-score of the top-ranked prediction, and the 
complex model accuracy measured by DockQ score. If the antigen has multiple chains, the 
minimum TM-score of all antigen chains is selected as the antigen TM-score. Data points are 
colored by CAPRI model accuracy. 
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Figure S9. Relationship between model confidence scores and model accuracy. Scatter plots 
depicting the association between the a pTM, b ipTM scores and DockQ scores. In the scatter 
plots, all 25 models representing 427 complexes are depicted as data points, with their colors 
indicating the model quality according to CAPRI criteria. The orange line represents the linear 
regression, and the lower right corner of the scatter plots displays the Pearson's correlation 
coefficients and correlation p-values. 
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Figure S10. Relationship between model scores and model accuracy. Scatter plots depicting 
the association between the a model confidence, b interface pLDDT scores and the DockQ 
scores. A total of 10,236 data points were present in each scatter plot, which include all 25 
models representing 427 complexes, excluding models without side-chain contacts within 4 Å 
across the antibody-antigen interface. Data points are colors indicating the model quality 
according to CAPRI criteria. The orange line represents the linear regression, and the lower right 
corner of the scatter plots displays the Pearson's correlation coefficients and correlation p-values. 
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Figure S11. Analysis of antibody-antigen predictions accuracy across recycling iterations. 
The modeling success of complexes at each recycle focusing on a subset of predictions that 
reached medium or higher accuracy after 3 recycling iterations (N=106). Recycle=0 denotes the 
state of the prediction before recycling iterations begin.  
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Figure S12. The distribution of CDRH3 modeling accuracy in top-ranked unbound 
antibody model grouped by top-ranked complex modeling success. The modeling success is 
CAPRI criteria of top-ranked complex prediction generated by AlphaFold. The CDRH3 RMSD 
measures the RMSD of the top-ranked unbound antibody prediction generated by AlphaFold. 
Numbers of data points in incorrect, acceptable, medium, and high categories are 304, 31, 52, 19. 
Statistical significance values (Wilcoxon rank-sum test) were calculated between RMSD values 
for sets of cases with incorrect versus medium and incorrect versus high CAPRI accuracy 
predictions, as noted at top (NS: p > 0.05, *p ≤ 0.05). 
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Figure S13. Antibody-antigen modeling success determinants of AlphaFold with bound 
antibody and antigen structures as templates. Distribution of a interface energy score and b 
change in solvent-accessible surface area (ΔSASA) of hydrophobic part of the antibody-antigen 
interface (calculated by the Rosetta InterfaceAnalyzer program), with cases grouped by complex 
modeling success for AlphaFold when using bound antibody and antigen structures as templates. 
The modeling success is defined as the highest CAPRI criteria prediction in the complex, 
considering all 5 predictions. Numbers of data points in incorrect, acceptable, medium and high 
categories are 46, 2, 7 and 45. Statistical significance values (Wilcoxon rank-sum test) were 
calculated between scores for sets of cases with incorrect versus high CAPRI accuracy 
predictions, as noted at top (**p ≤ 0.01). 
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Figure S14. Antibody-antigen modeling success using varying template inputs. Antibody-
antigen modeling success of a ZDOCK (version 3.0.2) with IRAD re-ranking of dense-sampling 
predictions (54,000 predictions per complex), utilizing bound antibody and bound antigen chains 
as docking input, and of AlphaFold by utilizing b bound heavy/nanobody chain, and default light 
chain and antigen chains as templates, c bound light chain, and default heavy/nanobody chain 
and antigen chains as templates, d antibody and antigen chains modeled by AlphaFold as 
templates. A template date cutoff of 2018-04-30 was applied to identify default templates. 
Benchmarking was performed on a total of 100 antibody-antigen complexes. The success rate 
was calculated based on the percentage of cases that had at least one model among their top N 
predictions that met a specified level of CAPRI accuracy. Bars are colored by CAPRI accuracy 
criteria.  
  



 29 

 
 
 

 
 

Figure S15. Antibody-antigen modeling success using antigens bound to alternative 
antibodies as template inputs. AlphaFold generated antibody-antigen complexes using a bound 
antibody and b default antibody, coupled with bound antigen (original), bound antigen 
(alternative) and default antigen as templates. A template date cutoff of 2018-04-30 was applied 
to identify default templates. Benchmarking was performed on a total of 73 antibody-antigen 
complexes. The success rate was calculated based on the percentage of cases that had at least one 
model among their top N predictions that met a specified level of CAPRI accuracy. Bars were 
colored by CAPRI accuracy criteria.  
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Figure S16. Distribution of DockQ scores grouped by ranges of AlphaFold MSA depth. The 
DockQ scores selected for each individual data points are the highest DockQ score of all 25 
complex predictions generated by AlphaFold. Numbers of data points in (3.69,5.08], (5.08,6.46], 
(6.46,7.84], (7.84,9.21] and (9.21,10.6] Neff ranges are 17, 50, 124, 107, 128 respectively. 
Statistical significance values (Wilcoxon rank-sum test) were calculated between DockQ scores 
for sets of cases with varying ranges of MSA depth, as noted at top (NS.: p > 0.05, *p ≤ 0.005, 
**p ≤ 0 .001, ***p ≤ 0.001). 
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Figure S17. Antibody-antigen modeling success comparison of AlphaFold (v.2.3) using a 
varying number of maximum recycles. The maximum number of recycling iterations were set 
to a 5 and b 3, and tested on 41 antibody-antigen complexes. Templates released on or before 
September 30, 2021, were allowed during modeling. For each complex, 25 predictions were 
generated, and were ranked by AlphaFold model confidence score. Antibody-antigen predictions 
were evaluated for complex modeling accuracy using CAPRI criteria for high, medium and 
acceptable accuracy. The success rate was calculated based on the percentage of cases that had at 
least one model among their top N predictions that met a specified level of CAPRI accuracy. 
Bars were colored by CAPRI accuracy criteria.  
  



 32 

Supplementary Table 

Table S1. Antibody-antigen structures used for AlphaFold benchmarking.  

PDB Heavy chain Light chain Antigen chain(s) 
Release 

Date 
v.2.3.0 

set1 
100 

subset2 
6was H L J 3/31/21  X 
6p50 H L C 9/4/19  

 

6urm H L F 9/16/20   

6umg h l cr 2/12/20   

6a0z H L A 6/20/18  X 
7daa H L A 10/20/21 X X 
6s8j P O C 2/12/20   

6s8i P O C 2/12/20  
 

7lf7 A B M 8/4/21   

6urh H L C 3/18/20   

7lfb H L X 8/4/21  
 

6ktr A B C 7/8/20   

6meh H L C 11/21/18   

6vel H L C 1/29/20  X 
6y9b I M A 5/20/20   

6xkq H L A 10/14/20   

6o9h H L D 1/22/20  
 

6yio H L B 11/11/20   

7l7r B A G 12/1/21 X  

7l7r D C G 12/1/21 X X 
6svl A B C 11/27/19   

6okm H L R 8/28/19   

6z3p H L CAB 9/2/20  
 

6u36 H L B 11/6/19   

6jbt H L F 6/19/19   

6wbv H L A 9/9/20  
 

7jmp H L A 8/26/20  X 
6wo5 G I F 8/19/20  X 
7lfa B D A 8/4/21  

 

7np1 H L A 11/17/21   

6hig H L B 6/5/19   

6vyh D C A 11/11/20  
 

6k65 H L A 8/14/19   

6umx h l B 2/26/20   

7nx3 B C F 10/27/21 X  



 33 

7jv6 C D B 10/14/20  
 

6xqw H L E 3/3/21   

7jtg A B E 3/10/21  X 
6o9i D E C 1/22/20  X 
7e7x H L A 6/9/21   

6wo5 A B E 8/19/20   

6mvl H L A 10/23/19  
 

7kqg B C A 12/16/20   

6glw H L A 6/5/19   

6gku H L A 6/5/19  
 

7lue H L A 6/16/21   

7k9j J N C 9/29/21   

7n8h C B A 7/14/21  
 

6wo3 H L E 8/19/20   

6wmw M N B 7/15/20   

6wmw H L B 7/15/20  
 

7czx I M B 3/10/21   

7czw H L A 3/10/21   

7rah B A E 9/15/21  
 

7rah D C E 9/15/21   

7kn4 M N B 9/22/21   

6nyq H L C 1/22/20  
 

6xkr H L P 9/9/20  X 
6jjp D E F 10/30/19   

7lxy N O J 4/14/21  
 

7lr4 H L D 12/15/21   

7r89 C D BA 9/8/21   

6ywc D E F 10/7/20  
 

6xxv D E F 4/22/20   

7ly2 N O J 4/14/21   

6vvu G I D 12/30/20  
 

6k0y A B C 12/11/19  X 
6v4o H L N 10/7/20   

6wgl A B C 9/16/20  
 

6xsw D E F 7/21/21   

6hx4 H L B 10/30/19   

6wzk A B E 11/25/20  
 

7lxz H J A 4/14/21   

7ceb C D B 6/23/21   

6lxi C D B 12/2/20  
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6osv H L K 4/1/20  
 

7lbg H G A 3/10/21   

7lbg F E A 3/10/21  X 
6a3w A B C 10/10/18  

 

7bnv H L A 11/17/21 X X 
7lm9 H L A 3/31/21   

7o52 H L U 7/28/21  
 

7s4s H L A 9/22/21   

7lop X Y Z 3/3/21   

6xkp M N B 10/14/20  
 

6h2y H L D 8/14/19   

6phc C D E 10/2/19  X 
6osh H L K 4/1/20  

 

7n3d H L C 7/7/21   

7e7y A B R 6/9/21   

7chf A B R 9/16/20  X 
7lm8 H L A 3/31/21  X 
7kn3 M N B 9/22/21  X 
7n0u H L C 8/11/21  

 

7joo H L C 10/14/20   

7dk2 D E F 12/8/21  X 
6sni H L X 3/11/20  

 

7c88 A B C 4/14/21  X 
7dc8 B A C 1/13/21   

7mmo D E F 5/12/21  
 

7kfv F G E 12/2/20  X 
7k9z B A E 10/28/20   

6mlk H L A 10/17/18  
 

6mg7 H L G 9/25/19  X 
7l0l H L BA 11/3/21 X  

6ogx C D G 7/10/19  
 

7lcv A B C 6/9/21   

6pi7 F E D 7/24/19   

7ps6 H L E 12/15/21 X X 
6rlo G H L 5/12/21   

7lab Y X B 3/10/21   

7cm4 H L A 1/20/21  
 

6gv4 H L BA 11/21/18   

6j14 A B G 11/6/19   

6ohg C B A 6/17/20  
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6v4n D E W 10/7/20  
 

7e5o H L A 9/8/21  X 
6p67 A B K 9/4/19   

7ean H L A 3/31/21  X 
7eam H L A 3/17/21   

6ppg B A G 12/11/19  X 
6nmr J K M 8/7/19  

 

7djz A B C 6/9/21  X 
6m3b C B A 7/8/20  X 
6o1f H L AI 10/16/19  

 

7lr3 H L D 12/15/21   

6r8x C B A 4/10/19  X 
6wxl F E DC 6/9/21  

 

6a67 H L A 8/29/18   

6mej H L C 11/21/18  X 
6mej A B C 11/21/18  

 

6udj H I J 1/29/20   

7cho B C A 5/19/21  X 
7bwj H L E 6/3/20  X 
7kqb H L A 5/26/21   

6kz0 K L J 5/27/20   

7vux H L A 11/17/21 X  

7q0i H L C 12/22/21 X X 
7orb E F X 7/7/21   

6nmu B A C 8/7/19  
 

7s0b C D E 10/6/21   

6rps H L A 11/13/19   

7l7e O P K 9/1/21  
 

7orb H L R 7/7/21   

7r6w A B R 7/21/21   

7r6w H L R 7/21/21  
 

7kyl H L E 4/7/21   

6iut H L A 1/16/19   

6nmt B A C 8/7/19  
 

6dkj A B D 5/8/19  X 
7c61 H L A 7/29/20   

7m3n H L A 7/28/21  
 

7s13 H L D 10/20/21   

7m7w C D S 5/5/21   

6nmv H L S 8/7/19  X 
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6icc H L A 2/13/19  
 

7m7w H L R 5/5/21  X 
6j15 A B C 11/6/19  X 
6whk C B A 4/14/21  

 

7kpb H L AC 1/13/21   

6pe8 H L T 8/14/19   

7ket A B C 6/9/21  
 

6ion H L A 1/15/20  X 
6nms B A C 8/7/19   

6lz9 H L B 3/11/20  X 
6p3r C D E 5/27/20   

7coe B C D 8/4/21   

7ps4 H L E 12/15/21 X  

7ps1 A B E 12/15/21  X 
6phb D C I 10/2/19   

6lgw C D F 2/19/20  
 

7s11 I M D 11/3/21 X  

6ieb E F B 4/10/19   

6e63 H L P 11/28/18  X 
7seg H L C 11/24/21  X 
6wh9 E F D 9/9/20   

7ps0 H L E 12/15/21 X X 
6xlq B C A 9/2/20   

7dm1 D C A 12/23/20   

7dm2 H L A 12/23/20  X 
6j5d H L A 2/6/19   

7o9s H L A 6/23/21  X 
7kmg D E F 1/27/21  

 

6q0e H L A 12/18/19   

7cr5 H L A 3/24/21   

7q0g A B E 12/22/21 X X 
6h3t I M B 2/27/19   

6s5a H L DA 9/25/19   

7dha C B A 9/22/21  
 

6ddm B A C 10/24/18   

7mzm H L A 10/6/21 X X 
6nha H L AB 12/25/19  

 

6xpx B C A 5/19/21   

6xq0 E F D 5/19/21   

6e56 H J A 5/22/19  
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7ps2 H L G 12/15/21 X X 
7ps2 A B G 12/15/21  X 
6tyb H L G 10/2/19   

6u9s D E F 5/13/20  X 
7bq5 H L A 3/24/21   

7dr4 A B J 4/14/21  X 
6m58 C D B 4/29/20  

 

6ss2 H L A 6/10/20   

7kzb H L C 2/3/21  X 
6vug D C B 2/17/21  

 

6e4x Z Y B 5/22/19  X 
6otc H L A 6/5/19   

6oy4 D C A 8/28/19  X 
7nx8 H L E 4/7/21  X 
7bel C D X 3/3/21   

7mzg H L A 10/6/21  
 

7bek H L E 3/3/21   

7mf1 H L A 5/12/21   

7bei H L E 3/3/21  X 
7bel E F X 3/3/21   

6iuv C D B 1/16/19  X 
6iea H L A 4/10/19  

 

7e3o H L R 9/15/21   

7ahu B A EF 7/7/21   

6q18 H L A 12/18/19  
 

7kmh A B C 1/27/21   

7mzk N M B 10/6/21 X  

7or9 H L E 7/7/21  X 
6oz2 H L G 8/19/20   

6xzw H L D 10/14/20  X 
6iek B C A 4/10/19  X 
7rks I M S 9/22/21   

6w7s H L A 9/9/20  X 
7mzi H L A 10/6/21  

 

7neh H L E 3/3/21   

7mzj H L A 10/6/21 X X 
6i8s E I A 2/13/19  

 

6oor H L A 7/17/19   

6vy6 H L A 1/6/21  X 
7bbj H L A 12/29/21 X  
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6mfp C D A 9/18/19  
 

6wm9 E F D 1/27/21   

7mzh H L E 10/6/21   

7bep A B E 3/3/21  
 

7chz H L I 1/13/21  X 
6qig H L A 9/4/19   

6hhc H L A 9/11/19  X 
6woz K L J 1/27/21   

7lsg H L C 4/7/21  X 
7jx3 C D R 10/14/20  

 

7jx3 H L R 10/14/20  X 
6j6y E F D 8/7/19   

7kq7 H L B 4/7/21  
 

6ztr A B J 5/5/21  X 
7ce2 Z B A 4/7/21   

6wtu E F D 1/27/21  
 

6ocb H L A 5/29/19   

6wds H L CAB 7/15/20   

7kyo H L B 8/25/21  
 

6o39 B A C 4/3/19   

6ba5 F E O 6/13/18   

6n6b K L A 7/3/19  
 

6ye3 G H I 12/30/20  X 
7bsc H L A 12/23/20   

6kyz B C A 5/27/20  
 

7ec5 E F BAC 3/31/21   

6mhr A B C 11/21/18   

6pzf F E B 12/4/19  
 

6pze H L A 12/4/19   

6z2l C B A 7/22/20   

6e3h H L BA 9/26/18  
 

6cxy H L C 4/10/19   

6nz7 H L BA 5/8/19   

6vy4 C D B 12/30/20  
 

7e72 C D F 11/10/21 X X 
7n4j H L A 10/6/21 X  

6e62 H L P 11/28/18  
 

6q20 H L A 10/23/19   

6vc9 H L A 11/11/20   

6lyn H L D 2/24/21  
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6ivz H L A 2/13/19  
 

6id4 C D EF 2/6/19   

6hxw C D B 8/28/19   

7d85 E F D 4/7/21  
 

7r8l H L E 8/4/21   

7klh H L A 2/10/21   

7mhy O P A 6/16/21  X 
7mhy M N A 6/16/21   

6hga H L B 3/18/20   

6pxh H L B 9/25/19  
 

7cj2 K L B 7/14/21   

6j11 F G B 7/24/19   

7jie E F A 6/30/21  
 

6n5e G F B 6/5/19   

6u6u H L R 4/22/20   

6iap E D A 6/12/19  
 

6iap H L A 6/12/19  X 
7n3c H L C 7/7/21   

7e9b H L C 7/28/21  
 

7kpg H L S 12/16/20   

6jep H L E 5/15/19   

6dfj H L E 10/24/18  X 
6ute C D S 4/15/20  X 
6ddr B A C 10/24/18  X 
6ddv B A C 10/24/18  X 
6a77 H L A 1/30/19   

6rvc D  A 10/2/19   

6gju C  A 6/26/19  
 

6gjq B  A 6/19/19   

6r7t A  B 5/1/19   

7l1v S  R 2/10/21  
 

7my3 E  A 6/16/21   

7kkl E  C 11/11/20   

6v7y F  A 9/16/20  
 

6x04 H  G 12/9/20  X 
7rnn C  D 8/11/21   

7p77 A  B 8/4/21  
 

6u54 A  B 11/6/19   

7mjh F  C 5/12/21   

7my2 H  E 6/16/21  
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7kn6 C  A 1/20/21  X 
7kjh A  C 2/3/21   

7o06 A  C 9/8/21  X 
6zxn E  B 9/23/20  

 

7a29 E  B 10/21/20   

6ze1 B  A 6/30/21  X 
7d6y B  A 10/6/21  

 

6rnk B  A 8/14/19   

6v7z F  AB 9/16/20   

7kn5 E  A 1/20/21  
 

7kn5 C  A 1/20/21  X 
6u55 A  B 11/6/19   

6yu8 B  A 2/17/21  
 

7apj B  A 8/25/21   

6x05 K  A 12/9/20   

7olz B  A 8/11/21  
 

7olz C  A 8/11/21   

6qup B  A 8/5/20  X 
6qgw B  A 6/26/19  

 

6z20 D  C 9/23/20   

6rqm B  A 7/8/20   

6oyh E  A 7/10/19  
 

6os2 D  A 2/19/20  X 
6qgx B  A 6/26/19   

6qgy B  A 6/26/19  
 

6z1v B  A 9/23/20   

7o0s A  B 9/15/21   

7r98 F  C 7/7/21  
 

7c8v A  B 6/24/20   

6ir1 B  A 11/13/19  X 
7cz0 E  A 9/8/21  

 

6x07 B  A 12/9/20  X 
7nfq C  A 12/1/21 X  

7nfr B  A 12/1/21 X  

6lz2 B  A 12/23/20   

6gs4 H  A 1/30/19   

6gk4 F  D 6/19/19  
 

6o3c B  A 7/3/19   

7nx0 D  C 10/27/21 X  

6yz5 F  E 6/3/20  
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6z6v G  BC 6/10/20  
 

6rtw B  A 10/2/19   

7k84 B  A 10/14/20   

6uc6 D  B 3/4/20  
 

7lzp G  A 12/22/21  X 
6oq6 D  A 7/10/19   

6ir2 B  A 11/13/19  X 
6gkd B  A 6/19/19   

7d30 A  B 2/17/21   

7lzp F  D 12/22/21  X 
7lzp E  D 12/22/21 X  

6mxt N  A 11/14/18   

6dbg C  B 7/18/18  
 

6vbg D  B 11/25/20   

7azb B  A 11/25/20   

6gwn B  A 1/1/20  
 

6gwn C  A 1/1/20   

6zg3 E  AI 3/3/21   

7a0v B  A 12/30/20  
 

6ssi J  E 2/12/20   

6gjs C  A 6/26/19   

6gjs B  A 6/26/19  
 

6lr7 B  A 4/29/20  X 
7vnb A  B 11/24/21 X  

7ldj G  C 5/5/21  X 
7anq B  A 10/20/21 X X 
6h02 B  A 8/29/18   

6hhu G  A 7/24/19  X 
6hhu H  A 7/24/19   

6uft B  A 3/4/20  X 
7e53 B  A 10/13/21 X  

6oca C  A 4/1/20   

7m1h G  A 12/22/21 X  

7m1h E  A 12/22/21 X  

7m1h F  A 12/22/21 X  

7kdu C  BA 8/4/21   

6fyu C  BA 11/7/18  
 

6h6y G  C 12/19/18   

7na9 D  A 12/22/21 X X 
6ui1 D  A 3/4/20  X 
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7t5f E  D 12/29/21 X  

7kc9 F  ED 8/4/21   

7lvw I  D 3/24/21   

7aqy C  B 11/3/21 X  

6zrv B  A 8/26/20   

7t5f C  A 12/29/21 X X 
7kbk C  AB 8/4/21  

 

7kd2 C  BA 8/4/21   

6ul6 C  A 3/4/20   

6ul6 B  A 3/4/20  
 

6i8g B  A 10/2/19   

6h16 B  A 1/30/19   

7kd0 C  BA 8/4/21  
 

7aqz D  A 11/3/21   

7l6v B  A 12/22/21 X  

7l6v D  A 12/22/21 X  

7l6v C  A 12/22/21 X  

7l6v F  A 12/22/21 X  

6uht C  A 3/4/20  
 

7n0r D  B 6/2/21   

6oq7 C  A 7/10/19   

6rah C  B 7/31/19  
 

7ar0 B  A 11/3/21 X  

6xw4 C  A 4/22/20   

6h15 D  B 1/30/19  
 

6h72 C  A 12/19/18   

7aqx D  B 11/3/21   

6sge B  A 9/25/19  
 

6waq A  B 4/1/20   

7n0i L  GH 6/9/21   

7d2z A  B 2/17/21  
 

6ocd B  A 4/1/20   

6tej C  B 4/1/20   

6oq8 D  A 7/10/19  
 

6b20 F  A 5/30/18   

6obe B  A 4/1/20   

6obc B  A 4/1/20  
 

6obo C  A 4/1/20  X 
6i6j C  A 2/27/19  X 

7mfu B  A 6/2/21  X 
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1Subset of cases used for benchmarking AlphaFold v.2.3. 
2Subset of 100 cases used for benchmarking the use of bound input template structures.  

7mfu F  D 6/2/21  
 

7kgj B  A 2/3/21  X 
7kgk B  A 2/3/21   

7now C  D 4/7/21  X 
7nqa D  A 7/21/21   

6xzu A  B 8/12/20   

7czd A  B 7/14/21  
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