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Supplement A: Spatial Filtering

We use a variational method to perform spatial filtering to better control and improve the

definition of wavefronts. Let be the normalized fluorescent value (in the 0 to 1𝑔(𝑥, 𝑦)

range with 1 corresponding to peak depolarization) of the pixel at the position and ,𝑥 𝑦

and be the desired smoothed value. We define two discrete energy functions.𝑓(𝑥, 𝑦)

First, the smoothness function,

𝑆 =
𝑖,𝑗
∑ 𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦)( )2 + 𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦)( )2.

Next, the data energy function is defined as

𝐷 =
𝑖,𝑗
∑ 𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)( )2.

Our goal is to minimize the total energy, , where is a super-parameter.𝐸 = 𝑆 + λ𝐷 λ

Because of the way energy functions are defined, the total energy is in quadratic form.

The resulting minimization problem reduces to solving a sparse linear system, which

can be done efficiently using the gradient conjugate method.
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Supplement B: Global Analysis

The key to global analysis is to remove the effects of wave propagation to distill the

dynamics to a few aggregate channels focused on the repolarization phase. We shift

the signals to align the upstrokes (Figure 1, panel A is unshifted signals, and B is frame

shifted). Because our signals were recorded while pacing the heart at a stable rate,

frameshifting is possible.

The core of our global processing routines is dimensionality reduction. We use the

standard Principal Component Analysis (PCA) method. Each frame-shifted signal cube

is flattened into a two-dimensional matrix (one temporal and one spatial dimension) and

subjected to the truncated Singular Value Decomposition.

The top few (~5-10) principal components capture most of the dynamics (Figures 1,

panels C and E show the top two principal components, marked as W1 and W2).

Finally, we generate the spectrograms of the top principal components (Figures 1,

panels D and F). The frequency is normalized to the frequency of the driving

stimulation; therefore, the 1:1 peak corresponds to the principal action potential

propagation. We are mainly interested in the sub-harmonics of the 1:1 peak. The 1:2

peak (located at exactly half the driving frequency) is a sign of period-2 alternans.

Similarly, the 1:4 peak is a marker of the period-4 oscillation in the repolarization phase.
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Supplement C: Local Analysis

We discuss the combinatorial algorithm to find the optimal periodicity of each beat in a

given input sequence. The algorithm is applied to each valid pixel in the input data and

outputs a period map, where the dominant periodicity of each pixel is marked.

For each pixel, the input to the algorithm is a sequence of beats separated by the𝑛

upstroke times. Let be a distance function that returns a non-negative real value,𝑑(𝑖, 𝑗,)

quantifying the difference between beats and . We assume that satisfies the𝑖 𝑗 𝑑(𝑖, 𝑗)

axioms of a distance (or metric) function, meaning that , , and𝑑(𝑖, 𝑖) = 0 𝑑(𝑖, 𝑗) = 𝑑(𝑗, 𝑖)

. In this paper, we define to be the mean squared𝑑(𝑖, 𝑗) + 𝑑(𝑗, 𝑘) ≤ 𝑑(𝑖, 𝑘) 𝑑(𝑖, 𝑗)

difference between beats and . In other applications, may be defined as𝑖 𝑗 𝑑(𝑖, 𝑗)

.|𝐴𝑃𝐷(𝑖) − 𝐴𝑃𝐷(𝑗)|

We start the discussion by presenting the combinatorial algorithm to detect period-2

alternans. Our task is to classify each beat in the input sequence as one of two classes

and . For example, can be the long APD beats and the short APD ones. A stable𝐴 𝐵 𝐴 𝐵

alternating sequence can be written as . For such a sequence, we can𝐴𝐵𝐴𝐵𝐴𝐵 ···

simply assign to the odd beats and to the even beats. However, the input sequence𝐴 𝐵

may glitch (e.g., two adjacent beats are both short APD) such that the odd/even

algorithm fails to work. This problem is especially relevant to higher-order periodicity,

where glitches and frameshifts are the rules rather than the exception. The

combinatorial algorithm is designed to overcome this shortcoming of simple periodicity

detection algorithms.

We find the optimal assignment by setting a weighted directed graph in such a way that

the shortest path between the starting vertex (beat 1) and the last vertex (beat )𝑛

reveals the optimal assignment (Figure S1, panel A). Let be a graph𝐺 = (𝑉, 𝐸)

composed of vertices (corresponding to beats) and edges . For the𝑛 𝑉 𝑛 𝑚 > 𝑛 𝐸

detection of period-2, we set up two edge types. An edge of the first type connects
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vertex to vertex with weight . An edge of the second type connects to𝑖 𝑖 + 1 𝑑(𝑖, 𝑖 + 1) 𝑖

with weight , where is the mean distance𝑖 + 2 𝑑(𝑖, 𝑖 + 2) + 𝑑(𝑖 + 1, 𝑖 + 3) +  η𝑤 𝑤

between two adjacent vertices, i.e., , and is a super-parameter. The𝑤 = 𝑑(𝑖, 𝑖 + 1) η

second term is for regularization to prevent spurious high-order detection by favoring

shorter periods. The optimal solution is found by assigning to each vertex on the𝐴

shortest path from 1 to and to the vertices not on the shortest path.𝑛 𝐵

S1. Schematics of the combinatorial algorithm for local analysis. The graph

used to detect alternans, showing (red) and (blue) edges (A).𝑖 → 𝑖 + 1 𝑖 → 𝑖 + 2

An extended graph to detect up to period-4 oscillations. In addition of the links in

A, it also has (green) and (purple) edges (B).𝑖 → 𝑖 + 3 𝑖 → 𝑖 + 4

For detection of period-4, we expand the possible classes of assignment to .{𝐴, 𝐵, 𝐶, 𝐷}

Now, an ideal input sequence is . We can modify the algorithm above by𝐴𝐵𝐶𝐷𝐴𝐵𝐶𝐷𝐴 ···

adding edges of type and to detect periods up to 4 (Figure S1,𝑖 → 𝑖 + 3 𝑖 → 𝑖 + 4

panel B).
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Finally, we extend the algorithm to detect all periodicities up to a maximum . In this𝑝

paper, we set . We add outgoing edges to each vertex as follows. For𝑝 = 8 𝑝 𝑖

, we add an edge with weight .1 ≤ 𝑙 ≤ 𝑝 𝑖 → 𝑖 + 𝑙
𝑗=0

𝑙−1

∑ 𝑑(𝑖 + 𝑗, 𝑖 + 𝑗 + 𝑙) + η(𝑙 − 1)𝑤 

We find the shortest path from 1 to , say . Then, the𝑛 1 → 𝑣
1

→ 𝑣
2

→ ···→ 𝑣
𝑘

→ 𝑛

sequence encodes the periodicity of the signal. The𝐷 = (𝑣
1

− 1,  𝑣
2

− 𝑣
1
, ···, 𝑛 − 𝑣

𝑘
)

predominant periodicity of each pixel is defined as the mode of .𝐷
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