Inorganic Carbon Uptake during Photosynthesis¹

I. A THEORETICAL ANALYSIS USING THE ISOTOPIC DISEQUILIBRIUM TECHNIQUE

Received for publication October 2, 1985 and in revised form December 4, 1985

GEORGE S. ESPIE AND BRIAN COLMAN*

Department of Biology, York University, Downsview, Ontario, Canada M3J 1P3

ABSTRACT

Equations have been developed which quantitatively predict the theoretical time-course of photosynthetic ¹⁴C incorporation when CO₂ or HCO3⁻ serves as the sole source of exogenous inorganic carbon taken up for fixation by cells during steady state photosynthesis. Comparison between the shape of theoretical (CO₂ or HCO₃⁻) and experimentally derived time-courses of ¹⁴C incorporation permits the identification of the major species of inorganic carbon which crosses the plasmalemma of photosynthetic cells and facilitates the detection of any combined contribution of CO₂ and HCO₃⁻ transport to the supply of intracellular inorganic carbon. The ability to discriminate between CO₂ or HCO₃⁻ uptake relies upon monitoring changes in the intracellular specific activity (by ¹⁴C fixation) which occur when the inorganic carbon, present in the suspending medium, is in a state of isotopic disequilibrium (JT Lehman 1978 J Phycol 14: 33-42). The presence of intracellular carbonic anhydrase or some other catalyst of the CO2-HCO3⁻ interconversion reaction is required for quantitatively accurate predictions. Analysis of equations describing the rate of ¹⁴C incorporation provides two methods by which any contribution of HCO3⁻ ions to net photosynthetic carbon uptake can be estimated.

A variety of experimental techniques, based on the slow interconversion between CO_2 and HCO_3^- (6), have recently been used to investigate DIC² transport in photosynthetic cells (12, 13, 18). These methods can be classified according to those which utilize a DIC system which is (a) approaching chemical equilibrium (18, 19) or (b) approaching isotopic equilibrium (1, 5, 7, 12). The third method (c) determines the maximum rate at which $HCO_3^$ dehydration provides CO_2 to a closed, aqueous system and compares this rate to the actual rate of photosynthesis (4, 13, 14). Experimentally, (c) is the simplest procedure and provides convincing evidence for HCO_3^- transport into cells if the photosynthetic rate greatly exceeds the CO_2 supply rate. However, application of this technique is limited to low DIC concentrations as the CO_2 supply rate is dependent on the DIC concentration (14).

From an analytical perspective, method (a) is complex in that the rate of photosynthesis and the concentration of ${}^{14}CO_2$ and $H^{14}CO_3^{-}$ continuously change during the time-course of the experiment. Detection of $H^{14}CO_3^{-}$ uptake is based upon a qualitative comparison of the shape of an experimental time-course of ¹⁴C incorporation with those predicted for ¹⁴CO₂ or H¹⁴CO₃⁻ as the transported species (18). Alternatively, measurement of the rate of photosynthesis, following the addition of 'pure' ¹⁴CO₂ or H¹⁴CO₃⁻ to separate, DIC-depleted, cell suspensions, at a time when the concentration of ¹⁴CO₂ is momentarily equal in both suspensions, has also been used as a detection method (19). Bicarbonate transport is implied if the instantaneous rate of photosynthesis is higher when H¹⁴CO₃⁻ is supplied than when ¹⁴CO₂ is supplied (19).

Method (b), introduced by Lehman (12), reduces the analytical complexity associated with (a) without loss of resolution. In this modification, a trace quantity of $H^{14}CO_3^{-}$ is added to a cell suspension photosynthesizing at a constant rate such that the rate of photosynthesis, pH, and the bulk DIC concentration are not altered as a result of the addition. Under these conditions, changes which occur in the DIC system involve changes only in the SA of CO₂ and HCO₃⁻ (12). Since the value of SA_{CO₂} and SA_{HCO₃⁻ are distinctly different from one another during the approach to isotopic equilibrium, the shape of a ¹⁴C incorporation time-course is characteristic of the species of DIC which permeates the cell and thus permits its identification.}

Both methods (a) and (b) rely on the qualitative assessment of experimental results or upon the determination of the instantaneous rate of photosynthesis to identify the species of DIC which permeates the cells. In this paper, we extend the work of Lehman (12) by developing equations which quantitatively predict the theoretical time-course of ¹⁴C incorporation, during steady state photosynthesis, when extracellular CO₂ or HCO₃⁻ serves as the sole source of DIC for photosynthesis. Direct comparison of theoretical and experimental curves permits the identification of the major species of DIC taken up by photosynthetic cells and facilitates detection of any combined uptake of CO₂ and HCO₃⁻. A method is also described whereby the apparent rate constant of isotopic equilibrium can be estimated from ¹⁴C incorporation data. This procedure affords the opportunity to assess the influence of extracellular factors on the uptake of DIC and to estimate the contribution of HCO₃⁻ uptake to the intracellular supply of DIC.

BACKGROUND AND DERIVATION OF BASIC EQUATIONS³

The chemical reactions

$$CO_2 + H_2O \rightleftharpoons_{k-1}^{\kappa_1} H^+ + HCO_3^-$$
 (1)

and

$$\operatorname{CO}_2 + \operatorname{OH}^- \rightleftharpoons_{k=3}^{k_3} \operatorname{HCO}_3^-$$
 (2)

¹Supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC). G. S. E. is the recipient of an NSERC Postgraduate Scholarship.

² Abbreviations: DIC, dissolved inorganic carbon; CA, carbonic anhydrase; dpm, disintegrations per minute; SA, specific activity.

³ We have used the original notation of Lehman (12) where practical.

govern the kinetics of the interconversion among CO_2 , HCO_3^- , ature, follows the equation and CO_3^{2-} as the reaction

$$HCO_3^- \rightleftharpoons H^+ + CO_3^{2-} \tag{3}$$

is virtually instantaneous (16). The rate constants, k_1 , k_{-1} , k_3 and k_{-3} , are related to the equilibrium constant, K_{a1} , of reaction (1) by the equations

$$K_{a_1} = \frac{k_1}{k_{-1}} = \frac{[\mathrm{H}^+][\mathrm{HCO}_3^-]}{[\mathrm{CO}_2]}$$
(4)

and

$$\frac{K_{a1}}{K_w} = \frac{k_3}{k_{-3}} = \frac{[\text{HCO}_3^-]}{[\text{CO}_2][\text{OH}^-]}$$
(5)

where

$$K_{w} = [H^{+}][OH^{-}]$$

The numerical values of the rate constants, at 25°C and infinite dilution are $k_1 = 0.037 \text{ s}^{-1}$ and $k_3 = 8500 \text{ m}^{-1} \text{ s}^{-1}$ (15). At other temperatures we have used the equations

$$\log k_1 = -\frac{3900}{T} + 11.59 \tag{7}$$

and

$$\log k_3 = -\frac{2897}{T} + 13.65 \tag{8}$$

to determine the rate constants. Equations 7 and 8 are derived from the data given by Kern (11) and T is in degrees Kelvin. Values for the equilibrium constants K_{a1} and K_{a2} (Eq. 3) are given by Harned et al. (9, 10) and at 25°C are 4.45×10^{-7} M and 4.69×10^{-11} м, respectively.

The value of K_w is taken as $1.01 \times 10^{-14} \text{ m}^2$ (17). The equilibrium concentrations of CO₂, HCO₃⁻ and CO₃²⁻ in solution of constant DIC concentration and pH were calculated from the equations of Buch (2).

Isotopic Disequilibrium. From a consideration of the rate equations describing the interconversion between CO₂ and HCO_3^- , Lehman (12) has shown that the formation of ${}^{14}CO_2$ from H¹⁴CO₃⁻, added to a solution of constant pH and temper-

Table I. Summary of Equations^a

g	= (k ₁ + k ₃ ·K _w /[H ⁺])	(11)
h	= $k_1 [H^+]/K_{a1} + k_3K_w/K_{a1}$	(12)
[DIC]	= $[C0_2] + [HC0_3] + [C0_3^2]$	(13)
с _ь	= $[HCO_3]$ (HCO_3] + $[CO_3^2]$)	(14)
al	= g + hC _b	(15)
β ₁	= hC _b [DIC]	(16)
a2	= g/C _b + h	(17)
β ₂	= g[DIC]	(18)

^a After Lehman (12)

$$[{}^{14}\text{CO}_2] = (1 - e^{-\alpha_1 t}) \frac{\beta_1}{\alpha_1}.$$
 (9)

Similarly, it can also be shown (3) that the disappearance of $H^{14}CO_3^{-}$ follows the equation

$$[\mathrm{H}^{14}\mathrm{CO}_{3}^{-}] = \left([\mathrm{H}^{14}\mathrm{CO}_{3}^{-}]_{0} - \frac{\beta_{2}}{\alpha_{2}} \right) e^{-\alpha_{2}t} + \frac{\beta_{2}}{\alpha_{2}}.$$
 (10)

The terms α and β are constants and equations relating these terms to the rate and equilibrium constants of reactions (1 to 3) are given in Table I. The ratios β_1/α_1 and β_2/α_2 represent the equilibrium concentrations of ¹⁴CO₂ and H¹⁴CO₃⁻, respectively. The expression $[H^{14}CO_3^-]_0 - \beta_2/\alpha_2$ is the total change in $H^{14}CO_3^-$ concentration (*i.e.* $\Delta H^{14}CO_3^-$), where $[H^{14}CO_3^-]_0$ is the concentration at t = 0 (seconds). For the situation in which H¹⁴CO₃⁻ is is added, to initiate isotopic disequilibrium, Δ [¹⁴CO₂] is equal to β_1/α_1 , as $[^{14}CO_2]_0$ is zero.

If $H^{14}CO_3^{-1}$ (or $^{14}CO_2$) is added to a solution containing a relative excess of unlabeled DIC, such that the DIC system remains at or close to chemical equilibrium, then changes only in the SA of the various DIC species occur (12). Initially, the values of SA_{CO2} and SA_{HCO3} are distinctly different, but, as the exchange reactions progress, the values exponentially approach a common value, SA_{DIC}, which is the SA of the bulk DIC system. The value of SA_{DIC}, however, does not change during the approach to isotopic equilibrium as total radioactivity and DIC are conserved. In this context, SA_{DIC} is analogous to β_1/α_1 or β_2/α_2 , i.e. it represents the equilibrium being approached by the system. However, the exponential terms of Eqs. 9 and 10 govern the rate at which isotopic equilibrium is achieved. Substituting SADIC into Eqs. 9 and 10, to solve for SA_{CO2} and SA_{HCO3}, yields, upon rearrangement,

$$SA^B_{CO_2} = SA^B_{DIC}(1 - e^{-\alpha_1 t})$$
(19)

and

$$SA^{B}_{HCO_{3}^{-}} = \Delta SA^{B}_{HCO_{3}^{-}} \cdot \left(\frac{SA^{B}_{DIC}}{\Delta SA^{B}_{HCO_{3}}} + e^{-\alpha_{2}t}\right).$$
(20)

The superscript B (or C, Table II) refers to the radiochemical species of DI¹⁴C used to initiate isotopic equilibrium (i.e. $H^{14}CO_3^{-}$ or ${}^{14}CO_2$) and the subscripts CO_2 and HCO_3^{-} indicate the particular DIC species for which the specific activity is calculated.

Photosynthetic ¹⁴C Incorporation. During steady state photosynthesis in a medium of fixed DIC concentration, SA and pH, the rate of ¹⁴C incorporation by cells is constant and described by the equation

$$\frac{d \text{ (dpm)}}{dt} = V = \text{PS} \cdot \text{Chl} \cdot \text{SA}_{\text{DIC}} \cdot 2.22 \times 10^6/3600.$$
(21)

The incorporation velocity, V, is given in units of dpm \cdot s⁻¹ · PS is the rate of photosynthesis (μ mol C·mg⁻¹Chl·h⁻¹), Chl is the quantity of chlorophyll per sample (mg), and SADIC is the specific activity ($\mu Ci \cdot \mu mol^{-1}$). The constants 2.22 \times 10⁶ (dpm $\cdot \mu Ci^{-1}$) and 3600 $(s \cdot h^{-1})$ are required to obtain the appropriate units. The radioactivity (dpm) incorporated at any given time is predicted by the integrated form of Eq. 21 and is simply

$$dpm_t = V \cdot t. \tag{22}$$

The specific activities of the components of the DIC system are not constant for cells which experience a transient isotopic disequilibrium, but change according to Eqs. 19 and 20. If we assume that CO₂ alone is taken up by the cells and that the intracellular specific activity (SA_i) is equal to $SA_{CO_2}^B$ (Eq. 19),

Table II. Summary of Equations

Equations used to calculate the specific activity of CO_2 and HCO_3^- in solution, the theoretical rate of ¹⁴C incorporation and time-course of ¹⁴C incorporation by photosynthetic cells, following the initiation of isotopic disequilibrium by $H^{14}CO_3^-$ or ¹⁴CO₂ addition. Equations based on assumption that CO_2 or HCO_3^- alone is taken up by photosynthetic cells.

H ¹ CO ₃ ADDITION		1 °CO2 ADDITION				
SPECIFIC ACTIVITY						
$SA_{CO_2}^{B} = SA_{OIC} (1 - e^{-\alpha_1 t})$	(19)	$SA_{CO_2}^{C} = \Delta SA_{CO_2}^{C} \left(\frac{SA_{DIC}^{C}}{\Delta SA_{CO_2}^{C}} + e^{-\alpha_1 t} \right)$	(32)			
$SA_{HCO_{3}}^{B} = \Delta SA_{HCO_{3}}^{B} \left(\frac{SA_{DIC}^{B}}{\Delta SA_{HCO_{3}}^{B}} + e^{-cc_{2}t} \right)$	(20)	$SA_{HCO_{3}}^{C} = SA_{DIC}^{C} (1 - e^{-cc_{2}t})$	(33)			
RATE OF 14C-INCORPORATION CO2 UPTAKE						
$\frac{d(DPM)}{dt} = V_{CO_2}^{B} (1 - e^{-\alpha_1 t})$	(27)	$\frac{d(DPM)}{dt} = V_{CO_2}^{C} \left(\frac{SA_{DIC}^{C}}{s_{A}C^{C}} + e^{-\alpha_1 t} \right)$	(34)			
$V_{CO_2}^{B} = 616.67 \cdot PS \cdot Ch1 \cdot SA_{DIC}^{B}$	(28)	$V_{CO_2}^{C}$ = 616.67 · PS · Ch1 · $\Delta SA_{CO_2}^{C}$	(35)			
RATE OF 14C-INCORPORATION HCO3 UPTAKE						
$\frac{d(DPM)}{dt} = V_{HCO_3}^{B} \left(\frac{SA_{DIC}^{D}}{\Delta SA_{HCO_3}^{B}} + e^{-\alpha_2 t} \right)$	(2 9)	$\frac{d(DPM)}{dt} = V_{HCO_3}^C (1 - e^{-cc_2 t})$	(36)			
V ^B _{HC03} = 616.67•PS•ch1•aSA ^B _{HC03}	(30)	$V_{HCO_3}^{C} = 616.67 \cdot PS \cdot Ch1 \cdot SA_{DIC}^{C}$	(37)			
UB 14C-INCORPORATION CO2 UPTAKE						
$DPM_{t} = \frac{V_{CO_{2}}}{\alpha_{1}} \left(e^{-\alpha_{1}t} + \alpha_{1}t - 1 \right)$	(26)	$DPM_{t} = \frac{V_{CO_{2}}}{\alpha_{1}} \left(-e^{-\alpha_{1}t} + \frac{\alpha_{1} SA_{DIC} t}{\delta SA_{CO_{2}}^{C}} + 1 \right)$	(38)			
VC-INCORPORATION HCO3 UPTAKE						
$DPM_{t} = \frac{V_{HCO_{3}}^{B}}{\alpha_{2}} \left(-e^{-\alpha_{2}t} + \frac{\alpha_{2} SA_{01C}^{B} t}{\Delta SA_{HCO_{3}}^{B}} + 1 \right)$	(31)	$DPM_{t} = \frac{V_{HCO_{3}}^{C}}{\alpha_{2}} \left(e^{-\alpha_{2}t} + \alpha_{2}t - 1 \right)$	(39)			

then the rate of change of ¹⁴C incorporation is given by

$$\frac{d(\text{dpm})}{dt} = 616.67 \cdot \text{PS} \cdot \text{Chl} \cdot \text{SA}^{B}_{\text{CO}_{2}}$$
(23)

$$= 616.67 \cdot \text{PS} \cdot \text{Chl} \cdot \text{SA}_{\text{DIC}}^{B}(1 - e^{-\alpha_{1}t})$$
(24)

$$= V_{\rm CO_2}^{\mathcal{B}} \left(1 - e^{-\alpha_1 t} \right) \tag{25}$$

when $H^{14}CO_3^{-}$ is employed to initiate isotopic disequilibrium.

The assumption used in developing Eq. 25 effectively requires that the exchange flux of CO₂ between the cells and the surrounding medium occurs rapidly with respect to the change of $SA_{CO_2}^{B}$. This assumption can be tested experimentally by following the time-course of ¹⁴C incorporation when CA is included in the cell suspension. In this case, isotopic equilibrium is attained within a few milliseconds and, since the rate of photosynthesis is constant, fixation of ¹⁴C will be a linear function of time (*i.e.* SA_i = SA_{DIC}), if the intracellular pool turns over rapidly. Alternatively, if the value of SA_i gradually approaches the value of SA_{DIC} (slow turnover), then a lag in ¹⁴C incorporation is expected and the extrapolated value of the *y*-intercept, from the linear portion of a ¹⁴C incorporation *versus* time plot, will be negative.

The incorporation of ¹⁴C into products of photosynthesis (-CA) is predicted by the integrated form of Eq. 25 and is, following rearrangement,

$$dpm_{t} = \frac{V_{CO_{2}}^{a}}{\alpha_{1}} \left(e^{-\alpha_{1}t} + \alpha_{1}t - 1 \right).$$
(26)

Using similar considerations, equations for the HCO_3^- component of SA can also be derived (Table II). These equations quantitatively predict the time-course of ¹⁴C incorporation assuming that CO_2 or HCO_3^- alone is taken up. Isotopic disequilibrium can also be initiated by the addition of a small quantity of ¹⁴CO₂. Equations for this case are summarized in Table II.

RESULTS AND DISCUSSION

Effect of Temperature and pH. The temperature and pH dependence of the approach to isotopic equilibrium $(t_{1/2})$, at low ionic strength, are given in Figure 1. Equilibrium is established most slowly at low temperature and pH 7.5 (12), requiring more than 90 s for 50% completion at 10°C. At pH values below 7.5, the contribution of reaction (2) to establishing equilibrium is minimal, while the velocity of the dehydration reaction (1) is enhanced by increasing H⁺ concentration. Consequently, $t_{1/2}$ decreases with decreasing pH (Fig. 1). Above pH 7.5, both reactions (1) and (2) contribute to establishing equilibrium, the significance of reaction (2) increasing with pH.

Specific Activity of the DIC Component. Figure 2 (pH 7.5, 25°C) illustrates the expected changes in the SA of the DIC components for the situations where isotopic disequilibrium is initiated by $H^{14}CO_3^{-}$ or ${}^{14}CO_2$ addition. The conditions (Fig. 2) are adjusted so that $SA_{HCO_3}^{\mu}$ ($H^{14}CO_3^{-}$ addition) and $SA_{CO_3}^{\mu}$.

FIG. 1. The pH and temperature dependence of the approach to one-half isotopic equilibrium (t_{16}) . Temperatures are in °C.

[¹⁴CO₂ addition) are initially equal. In the case of H¹⁴CO₃⁻ addition, SA^B_{CO2} is initially zero, but increases with time, approaching the equilibrium value SA^B_{DIC}, over a period of more than 90 s (Fig. 2). The change in SA^B_{HCO3}- is small in this particular case (pH 7.5) as chemical equilibrium greatly favors HCO3⁻.

The value of SA_{DIC} remains constant if total radioactivity and DIC are conserved, but the absolute values differ in the two cases as a consequence of the initial criterion $[SA_{HCO_3}^{\mu} = SA_{CO_2}^{\mu}]$. Maintaining SA_{DIC} constant for $H^{14}CO_3^{-}$ and $^{14}CO_2$ addition is also an acceptable procedure; however, care must be exercised to ensure that chemical equilibrium is not significantly disturbed when pH of the solution is far from the apparent pK_{a1} of H_2CO_3 (6.35 at 25°C).

The change in SAs occurs in an opposite direction to that described above when ${}^{14}\text{CO}_2$ is used to initiate isotopic disequilibrium (Fig. 2). SA ξ_{CO_2} declines in value while a small increase in SA ξ_{HCO_3} - occurs (Fig. 2). Again, both components approach equilibrium over a time period in excess of 90 s.

Photosynthetic ¹⁴C **Incorporation during Isotopic Disequilibrium.** The theoretical time-courses of ¹⁴C incorporation by photosynthetic cells, which experience a transient isotopic disequilibrium, are given in Figure 3. These curves were calculated using the equations given in Table II. Equation 22 was used to calculate the lines marked +CA since isotopic equilibrium is achieved very rapidly in the presence of this enzyme.

A distinct lag in the incorporation of ¹⁴C is predicted (H¹⁴CO₃⁻ addition) if the cells take up CO₂ alone (Fig. 3). The incorporation of ¹⁴C eventually becomes a linear function of time as isotopic equilibrium is achieved. Alternatively, the uptake of HCO₃⁻ by the cells would result in an almost constant rate of ¹⁴C incorporation, as the change in SA_{HCO3}⁻ is small. In the presence of extracellular CA, incorporation of ¹⁴C (taken up as ¹⁴CO₂ or H¹⁴CO₃) is expected to be slightly less than that predicted for cells which utilize HCO₃⁻ (+CA, Fig. 3).

When isotopic disequilibrium is initiated by the addition of

FIG. 2. Time-dependent changes in the specific activity of CO₂ and HCO₃⁻ (as labeled) following the initiation of isotopic disequilibrium by $H^{14}CO_3^{-}$ (----) addition or ${}^{14}CO_2$ (---) addition in a closed aqueous system containing an equilibrium distribution of $H^{12}CO_3^{-}$ and ${}^{12}CO_2$. Initial conditions have been adjusted such that $SA_{HCO^{-3}}^{B}$ (H¹⁴CO₃⁻ addition) equals $SA_{CO_2}^{C}$ (${}^{14}CO_2$ addition). Lines marked DIC represent the specific activity of the inorganic carbon system as a whole. The curves were calculated from the equations given in Table II for 25°C and pH 7.5.

 $^{14}CO_2$, an initial rapid incorporation of ^{14}C is predicted, if CO_2 is the sole source of DIC taken up. The rate of ^{14}C incorporation declines over time becoming constant as equilibrium is attained. If HCO_3^- alone is taken up, however, a small lag in ^{14}C incorporation is anticipated. This time photosynthetic ^{14}C incorporation is expected to be slightly less than that predicted when extracellular CA is included in the reaction medium (Fig. 3).

Figure 4 shows the pH dependence of the expected patterns of ⁴C incorporation for CO₂ or HCO₃⁻ uptake alone. Since isotopic equilibrium is established most slowly at pH 7.5 (Fig. 1) (12), the duration of the nonlinear portion of the time-course plots is expected to be a maximum at this pH, as is evident in Figure 4, A and B (CO₂ uptake). This is, however, not obvious from Figure 4, C and D (HCO₃⁻ uptake). Although it can be shown by calculation that the duration of the nonlinear portion of the time-course plots is in fact a maximum at this pH, the degree of curvature is very slight. The duration and degree of curvature are controlled by two factors: the time required to establish isotopic equilibrium and the magnitude of the change in SA_{HCO_3} - or SA_{CO_2} . As the pH of the medium is increased or decreased around 7.5, the duration of the nonlinear portion of the time-course plots decreases. However, the magnitude of the change in SA_{HCO1}- increases under acidic conditions, whereas the magnitude of the change in SA_{CO2} increases under alkaline conditions. The net effect created by the interaction of these factors is that the most pronounced curvatures occur around pH 6.3 (Fig. 4, C and D) or pH 7.5 (Fig. 4, A and B). Thus, by the appropriate manipulation of pH (and temperature), significantly different predictions arise which may be utilized to investigate inorganic carbon transport.

Effect of CO₂ plus HCO₃⁻ Transport on SA_i and Photosynthetic ¹⁴C Incorporation. Lipid bilayers are far more permeable

FIG. 3. Theoretical time-course of photosynthetic ¹⁴C incorporation by cells which experience a transient isotopic disequilibrium, initiated by $H^{14}CO_{3}^{-}(---)$ addition or ¹⁴CO₂ (---). The curves were calculated from the equations given in Table II, assuming that the intracellular specific activity is equal to either the specific activity of CO₂ or HCO₃⁻ (as labeled) in the suspending medium (pH 7.5, 25°C). Also shown are the expected time-courses of ¹⁴C incorporation when isotopic equilibrium is attained instantaneously (+CA). In all cases the rate of photosynthesis is constant.

to CO₂ than to $HCO_3^{-}(8)$. Passive flux of HCO_3^{-} into photosynthetic cells is, therefore, expected to be minimal. However, the exchange between intracellular and extracellular CO₂ and net influx of CO₂, following a concentration gradient, encounters substantially less resistance. In this case, changes in the intracellular specific activity (SA_i), during isotopic disequilibrium, should closely follow the changes in SA_{CO_2} . If carrier-mediated HCO_3^- transport occurs, its contribution of ¹⁴C to the intracellular DIC pool is in addition to that provided by CO₂ exchange. Consequently, the value of SA_i is expected to be intermediate between that predicted for CO_2 or HCO_3^- uptake. A quantita-tively different time-course of ¹⁴C incorporation is, therefore, expected if both CO_2 and HCO_3^- transport contribute to the intracellular supply of DIC, as the value of SA_i governs the ratio of ¹⁴C/¹²C fixation. Observable differences in an experimental time-course would be manifested as a change in the degree and duration of the nonlinear portion of the fixation curve as well as increased incorporation of 14C compared to that predicted for CO₂ uptake alone (Figs. 3, 4).

Estimating the Contribution of HCO₃⁻ to Net DIC Uptake. At equilibrium, the value of $e^{-\alpha_1 t}$ is zero and ¹⁴C incorporation becomes a linear function of time. Using equation (26) (H¹⁴CO₃⁻ addition) as an example, the straight line portion of the time-course is described by

$$dpm_t = V_{CO_2}^{\mathcal{B}} \cdot t - \frac{V_{CO_2}^{\mathcal{B}}}{\alpha_1}$$
(40)

FIG. 4. The effect of pH (labeled at right) upon the theoretical timecourse of photosynthetic ¹⁴C incorporation, during the approach to isotopic equilibrium, following H¹⁴CO₃⁻ (----) addition or ¹⁴CO₂ (---) addition. The specific activity of the particular DIC species used in the calculations is labeled in the upper left-hand corner of each panel. Initially, SA^g_{CO2} (H¹⁴CO₃⁻ additions) equals SA^g_{CO2} (¹⁴CO₂) addition). In all cases the rate of photosynthesis is constant and calculations are based on the same numerical value of this rate at 25°C. All values of dpm are plotted on the same scale.

where $V_{CO_2}^{B}$ is the slope of the line and $V_{CO_2}^{B}/\alpha_1$ is the y-intercept. Provided the rate of photosynthesis and pH remain constant, the slope of the ¹⁴C incorporation time-course will be the same, regardless of whether HCO_3^- is taken up by the cells or not, since the SA of the DIC species are equal at equilibrium. However, uptake of HCO_3^- results in an SA₁ which is higher in value than that predicted for CO₂ uptake alone. Consequently, ¹⁴C incorporation will be higher than predicted, thereby displacing the linear portion of the ¹⁴C fixation time-course upward. In this event, the value of the y-intercept changes and the difference between the actual and predicted intercepts $(b_o - b_p)$ represents ¹⁴C incorporation which cannot be accounted for on the basis of CO₂ uptake alone. In other words, the ¹⁴C incorporation in excess of the maximum possible contribution of ¹⁴C from CO₂ uptake must be attributed to ¹⁴C taken up from the medium as $H^{14}CO_3^{-}$. The contribution of $H^{14}CO_3^{-}$ ions (B), expressed as a percentage of the theoretical net DI14C uptake arising from photosynthetic consumption, is

$$B = \frac{b_o - b_p}{\operatorname{dpm}_{r(eq)}} \times 100 \tag{41}$$

where dpm_(eq) is the predicted incorporation of ¹⁴C at the time that isotopic equilibrium is attained. For the purpose of this estimate, the right hand side of this Eq. 40 is used to determine

dpm_(eq) and t(eq) is approximated as, 99.99% of isotopic equilibrium, from the expression 1 n 0.01/- α_1 .

From a practical point of view, this method, of estimating the contribution of HCO_3^- ions requires that the sampling of cell suspensions be extended well into the equilibrium phase of the time-course, in order to accurately estimate the slope and *y*-intercept. However, prolonged photosynthesis may substantially reduce the DIC concentration, possibly resulting in a decrease in the rate of photosynthesis and in a change in the slope and *y*-intercept. For this reason, the application of this method must be restricted to situations where the DIC concentration is well above the saturation level.

Examination of Eq. 40, however, suggests an alternative approach. The y-intercept, $V_{CO_2}^B/\alpha_1$, is defined by the slope, $V_{CO_2}^B$, and α_1 , which is the overall rate constant of equilibration. In any given experiment, the slopes of observed and predicted timecourses (linear portion) are identical and, consequently, the yintercept will be uniquely defined by the apparent value of α_1 . In other words, HCO₃⁻ transport will be manifested as an apparent change in the value of α_1 , but this is not to say that the actual rate of exchange between CO_2 and HCO_3^- (in the medium) is altered. An apparent change in the value of α_1 is the consequence of intracellular DIC being acquired from two external sources, CO_2 and HCO_3^- . The ¹⁴C incorporation time-course merely indicates the value of SA, at any given time. It does not strictly monitor the progress of the interconversion reactions towards equilibrium, although this would be the case if only CO₂ or HCO₃⁻ were taken up. Thus, an apparent change in the value of α_1 means that acquisition of intracellular ¹⁴C is not rigidly controlled by the kinetics of the interconversion reactions and indicates the involvement of HCO₃⁻ transport. Substituting the terms $-V_{\rm CO_2}^B/\alpha_{ob}$ and $-V_{\rm CO_2}^B/\alpha_1$ for b_o and b_p in Eq. 41 together with the right-hand side of Eq. 40 for the term $dpm_{r(eq)}$, will also yield an expression describing the fractional contribution of $H^{14}CO_3^{-}$ ions and is, following rearrangement,

$$B = \frac{\alpha_{ob} - \alpha_1}{\alpha_{ob} \cdot \alpha_1 \cdot t_{(eq)} - \alpha_{ob}}.$$
 (42)

The experimental value of a (α_{ob}) and $V_{CO_2}^{B}$ can be estimated by nonlinear regression analysis using average rates of ¹⁴C incorporation, calculated from a time-course experiment, and time as the input variables. The average rate of ¹⁴C incorporation is determined, over small time intervals, as the slope of the line between two consecutive data points. The theoretical nonlinear regression model, for this example, is given by Eq. 25 and predicts the rate of ¹⁴C incorporation as a function of time, if CO₂ alone is taken up (H¹⁴CO₃⁻ addition). The expected shapes of rate *versus* time plots are identical to those shown for the dependence of SA on time (Fig. 2). This method provides a sensitive means by which a small deviation from the theoretical expectation can be detected, as the analysis employs the entire observed trend of the rate of ¹⁴C incorporation to arrive at estimates of α_{ob} and $V_{CO_2}^{B}$.

If SA_i equals SA^B_{CO2} at all times during isotopic disequilibrium, then the predicted values of V^{B}_{CO2} and α_1 will satisfy the observations, and the ratio of α_{ob}/α_1 will be unity. When SA_i takes on values which are somewhat higher than predicted by SA^B_{CO2} (*i.e.* HCO₃⁻ uptake), incorporation of ¹⁴C will occur at faster rates than can be reconciled by the kinetics of the interconversion reactions, and the ratio α_{ob}/α_1 will be greater than unity. Within the limits of experimental error, however, the observed and predicted values of V^{B}_{CO2} will, of necessity, be equal as V^{B}_{CO2} depends only on the maintenance of a constant rate of photosynthesis and the equilibrium value of SA_{DIC}. The necessary equivalence of observed and predicted values of V^{B}_{CO2} can, therefore, provide a valuable internal check of prior calculations and the validity of experimental results. The possibility arises that α_{ob}/α_1 may be less than unity, indicating that SA_i is less than SA^P_{CO2} during the approach to isotopic equilibrium. The exchange flux of CO₂ between the cells and the medium cannot then be assumed to occur instantaneously. A contribution of HCO₃⁻ ions to net DIC uptake cannot be conclusively ruled out in this event, but diffusion limited uptake of CO₂ alone is adequate to explain this observation.

A Requirement for Intracellular CA. An assumption implicit in the calculations described is that the intracellular specific activity of CO_2 and HCO_3^- are maintained in instantaneous equilibrium with respect to each other and the transported DIC species, while the extracellular DIC approaches isotopic equilibrium. This condition is necessary to ensure that the availability of the DI¹⁴C substrate fixed in the primary carboxylation reaction is not limited by a slow interconversion between CO_2 and $HCO_3^$ within the cells. If this is the situation, however, the results of isotopic disequilibrium experiments will reflect this limitation in ¹⁴C-substrate. Thus, the presence of intracellular CA, or some other catalyst of the interconversion reaction, is required to enhance the intracellular rate of reaction.

Conclusion. The equations developed here provide a means by which the incorporation of ¹⁴C by photosynthetic cells can be quantitatively predicted when CO_2 or HCO_3^- serves as the sole source of DIC available for uptake during steady state photosynthesis. The present analysis, therefore, establishes valuable baseline criteria from which to assess the role that CO₂ or HCO₃⁻ uptake plays in the supply of intracellular DIC, for photosynthesis. This scheme differs from other methods (7, 18) in that the ability to discriminate between CO2 or HCO3⁻ uptake relies upon monitoring the changes in SA_i(by ¹⁴C fixation) which occur during isotopic disequilibrium, rather than upon the assumption that ¹⁴C fixation is linearly proportional to ¹⁴CO₂ or H¹⁴CO₃⁻ concentration. The latter assumption is only valid when the concentration of DIC is low (6, 18), and thus quantitative evaluation of experimental data must be confined within a small DIC concentration range. Since the overall rate constant of isotopic equilibration (α) is independent of CO₂ and HCO₃⁻ concentration, the application of the isotopic disequilibrium procedure need not be restricted to low DIC concentrations but can be employed quantitatively over a wide range of concentrations. In an accompanying paper we demonstrate the utility of the present scheme in evaluating the uptake of DIC by photosynthetically active Asparagus mesophyll cells.

Acknowledgments.—We would like to express our appreciation to Darlene Ager, John Cats, John Fox, and Robert H. Haynes for providing valuable advice and assistance and Ms. Despy Whyte-Simms for patiently typing the manuscript.

LITERATURE CITED

- BADGER MR, TJ ANDREWS 1982 Photosynthesis and inorganic carbon usage by the marine cyanobacterium, Synechococcus sp. Plant Physiol 70: 517-523
- BUCH K 1960 Dissoziation der Kohlensaure, Gleichgewicht und Puffersysteme. In W Ruhland, ed, Handbuch der Pflanzenphysiologie, Vol 1. Springer-Verlag, Berlin, pp 1-11
- ESPIE GS 1985 Photosynthesis and the mechanism of inorganic carbon acquisition in isolated Asparagus mesophyll cells and other photosynthetic cells. PhD thesis. York University, Toronto
- ESPIE GS, B COLMAN 1982 Photosynthesis and inorganic carbon transport in isolated Asparagus mesophyll cells. Plant Physiol 70: 649–654
- ESPIE GS, GW OWTTRIM, B COLMAN 1984 A comparative study of inorganic carbon transport in photosynthetic cells. *In* C Sybesma, ed, Advances in Photosynthesis Research, Vol 3. Martinus Nijoff/Dr. W Junk Publishers, The Hague, pp 681-684
- FILMER DL, TG COOPER 1970 Effect of varying temperature and pH upon the predicted rate of "CO₂" utilization by carboxylases. J Theor Biol 29: 131– 145
- FINDENEGG GR 1980 Inorganic carbon transport in microalgae. II. Uptake of HCO₃⁻ ions during photosynthesis of five microalgal species. Plant Sci Lett 18: 289-297
- GUTKNECHT J, MA BISSON, FC TOSTESON 1977 Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate,

and unstirred layers. J Gen Physiol 69: 779-794

- 9. HARNED HS, R DAVIS 1943 The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°. J Am Chem Soc 65: 2030-2037
- 10. HARNED HS, SR SCHOLES 1941 The ionization constant of HCO₃⁻ from 0 to 50°. J Am Chem Soc 63: 1706-1709
- 11. KERN DM 1960 The hydration of carbon dioxide. J Chem Educ 37: 14-23
- 12. LEHMAN JT 1978 Enhanced transport of inorganic carbon into algal cells and
- its implication for biological fixation of carbon. J Phycol 14: 33-42 13. LUCAS WJ 1975 Photosynthetic fixation of ¹⁴carbon by internodal cells of *Chara corallina*. J Exp Bot 26: 331-346
- MILLER AG, B COLMAN 1980 Evidence for HCO₃⁻ transport by the blue-green alga (cyanobacterium) Coccochloris peniocystis. Plant Physiol 65: 397–402
- POCKER Y, DW BJORKQUIST 1977 Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in H₂O and D₂O. Acid-base and metal ion catalysis. J Am Chem Soc 99: 6537-6543
- SIRS JA 1958 Electrometric stopped-flow measurements of rapid reactions in solution. 2. Glass electrode pH measurements. Trans Faraday Soc 54: 207-212
- STUMM W, JJ MORGAN 1981 Aquatic Chemistry, Ed 2. Wiley, New York, p 127
- TSUZUKI M, Y SHIRAIWA, S MIYACHI 1980 Role of carbonic anhydrase in photosynthesis in *Chlorella* derived from kinetic analysis of ¹⁴CO₂ fixation. Plant Cell Physiol 21: 677–688
- VOLOKITA M, A KAPLAN, L REINHOLD 1983 Nature of the rate-limiting step in the supply of inorganic carbon for photosynthesis in isolated Asparagus mesophyll cells. Plant Physiol 72: 886–890