Inorganic Carbon Uptake during Photosynthesis¹

II. UPTAKE BY ISOLATED ASPARAGUS MESOPHYLL CELLS DURING ISOTOPIC DISEQUILIBRIUM

Received for publication October 2, 1985 and in revised form December 4, 1985

GEORGE S. ESPIE², GEORGE W. OWTTRIM³, AND BRIAN COLMAN^{*} Department of Biology, York University, Downsview, Ontario, CANADA M3J 1P3

ABSTRACT

The species of inorganic carbon (CO₂ or HCO₃⁻) taken up a a source of substrate for photosynthetic fixation by isolated Asparagus .prengeri mesophyll cells is investigated. Discrimination between CO₂ or HCO₃⁻ transport, during steady state photosynthesis, is achieved by monitoring the changes (by ¹⁴C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Ouantitative comparisons between theoretical (CO₂ or HCO₃⁻ transport) and experimental time-courses of ¹⁴C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO₂, rather than HCO₃⁻, is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO₂ is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO₃⁻ transport, as the incorporation of ¹⁴C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO₂ uptake alone. The contribution of HCO3⁻ to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO₃⁻ concentration. The evidence for direct HCO₃⁻ transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of ¹⁴C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO₂, which is partially alleviated by a high extracellular concentration of HCO3⁻.

It is now apparent that there are a number of specialized mechanisms by which plant cells acquire DIC⁴ from their surroundings for photosynthetic fixation (15) and that the various means of acquisition dramatically affect the efficiency of photosynthetic C assimilation (3–5, 7, 13). In cyanobacteria, for example, HCO_3^- is actively transported across the plasmalemma and accumulated within the cells (2, 13, 16). This process serves to increase the intracellular CO₂ concentration well above the ambient level, resulting in the suppression of photorespiration and enhancement of photosynthesis.

Recent studies with mesophyll cells (19, 20) and protoplasts isolated from the leaves of C_3 terrestrial plants suggest that they may also be capable of transporting HCO₃⁻ across the plasmalemma. These results, however, conflict with other reports which indicate that the diffusive flux of CO₂ across the plasmalemma is the sole means of DIC acquisition (7, 9, 12, 18). Since the uptake of HCO₃⁻ by C₃ mesophyll cells may serve to concentrate intracellular CO₂ to some extent and/or to enhance the flow of C from the environment to the site of photosynthetic carboxylation, it is important to determine whether or not HCO₃⁻ transport occurs.

In this paper, we assess the contributions of exogenous CO_2 and HCO_3^- to the intracellular supply of DIC during steady state *Asparagus* cell photosynthesis and investigate the possibility and significance of carrier-mediated HCO_3^- transport. For this purpose, we have employed an isotopic disequilibrium technique (2, 8, 14) which permits the quantitative separation of the maximum contribution of CO_2 uptake to photosynthesis from that which may occur from the uptake of HCO_3^- . A detailed account of the theory (8, 14) and calculations (8) of this procedure have been presented.

MATERIALS AND METHODS

Mesophyl. cells were mechanically isolated (5, 6) from cladophylls of greenhouse-grown *Asparagus sprengeri* Regel plants. Prior to experiments, the cells were stored in 50 mM Hepes buffer (pH 7.2) for 12 to 16 h in the dark at 10°C. No significant decline in the rate of photosynthesis occurred as a result of the storage (5).

Experiments were conducted at 25°C, and illumination was provided by two 150 W photocreseta lamps positioned to give $550 \ \mu mol$ (photons) $\cdot m^{-2} \cdot s^{-1}$ (400–700 nm) at the back surface of the reaction vessel. In experiments in which the pH was varied, the following 50 mM buffers were employed: Mes, 5.2 to 6.5; Hepes, 7.5; Bicine, 8.5. The pH of the cell suspension was measured after each experiment and this value was used in subsequent calculations. The pH did not change more than 0.03 units.

Photosynthesis. The rate of photosynthesis was measured as O_2 -evolution using a Clark-type electrode (Hansatech, Kings Lynn, Norfolk, U.K.) and was routinely used as a measure of carbon assimilation. This approach is justified as independent experiments indicated that, under the conditions used here, the ratio of O_2 -evolution to CO_2 -fixation is 1:1 (not shown). The Chl concentration of cell suspensions was determined by the method of Arnon (1).

Isotopic Disequilibrium Procedure. Asparagus cells were washed twice by centrifugation (100g, 10 min; 15,000g, 6 s), resuspended in an appropriate buffered solution, and preincubated for 5 to 7 min in the light at the reaction pH. The cells were again pelleted by centrifugation (15,000g, 6 s), resuspended in 2.9 ml of fresh buffer (15–25 μ g Chl·ml⁻¹), and the suspension

¹Supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC). G. S. E. and G. W. O. are the recipients of NSERC Postgraduate Scholarships.

² Present address: Department of Biology, Queen's University, Kingston, Canada K7L 3N6.

³ Present address: Department of Botany, University of Toronto, Toronto, Canada M5S 1A1.

⁴ Abbreviations: DIC, dissolved inorganic carbon; CA, carbonic anhydrase; dpm, disintegrations per minute; SA, specific activity (superscript: *B*, $H^{14}CO_3^{-}$ addition; *C*, ${}^{14}CO_2$ addition; subscript i, intracellular).

was placed in the O₂-electrode chamber. An aliquot was withdrawn for Chl analysis. Photosynthesis was initiated by the addition of NaHCO₃, and the cells were allowed to reach a steady state rate of O₂ evolution (3-5 min). Subsequently, the cap of the O₂-electrode chamber was removed, and the isotopic disequilibrium experiment was commenced by the addition of a μ l quantity of H¹⁴CO₃⁻ or ¹⁴CO₂ to the rapidly stirred cell suspension. Following 6 s of mixing, the cell suspension (2.2 ml) was drawn into the tip of a transparent Eppendorf repeater pipette and positioned in front of a water-shielded lamp (550 µmol. $m^{-2} \cdot s^{-1}$). The reaction was stopped at timed intervals (3 or 6 s) by injecting a 100 μ l aliquot of suspension into 400 μ l of terminating solution (water:acetic acid:methanol, 50:40;10, v/v/v, contained in a scintillation vial. The contents of the vial were evaporated to dryness, the residue suspended in 250 μ l of distilled H₂O, and the incorporation of ¹⁴C into acid-stable products was determined by scintillation counting (Packard Tricarb 300 CD) following the addition of 6 ml of scintillation fluid (ACS, Amersham, Toronto, Canada). The final two samples were injected into vials containing 400 µl of 0.2 M NaOH, and the total radioactivity of the suspension was measured by scintillation counting.

NaH¹⁴CO₃ (54–57.8 μ Ci· μ mol⁻¹) was supplied by Amersham (Toronto, Canada) and was used as received (pH 9.8). The ¹⁴CO₂ was generated by injecting NaH¹⁴CO₃ into CO₂-free acetate buffer (5 mM, pH 4) contained in a sealed vessel. To correct for the continuous loss of ¹⁴CO₂ to the head-space, the solution was routinely assayed for radioactivity immediately prior to its use. The appropriate μ l quantity of ¹⁴CO₂, to be added to the cell suspension, was calculated from the result of the assay.

Measurement of DIC and SA_{DIC}. The DIC concentrations of stock NaHCO₃ solutions and air-equilibrated buffers were measured using a sensitive gas-chromatographic technique (4). The specific activity of the bulk DIC (SA_{DIC}), in units of μ Ci· μ mol⁻¹, was calculated from the results of total radioactivity assays (μ Ci) and DIC measurements (μ mol). Corrections to SA_{DIC} were made to compensate for photosynthetic DIC consumption, which occurred prior to the addition of ¹⁴C, and for the small quantity of DIC added as ¹⁴C.

Isotopic Disequilibrium: Theory and Calculations. When $H^{14}CO_3^{-}$ or ${}^{14}CO_2$ is added to an aqueous system containing a relative excess of unlabeled DIC, such that neither the pH nor bulk DIC concentration is altered, then the various DIC species will be in a state of isotopic disequilibrium (14). Initially, all of the radiocarbon is present in one chemical form while the bulk, unlabeled DIC species are present in equilibrium proportions (14). Thus the initial value of SA_{CO2} and SA_{HCO3}⁻ are distinctly different. However, the value of SA_{CO2} and SA_{HCO3}⁻ exponentially approach a common value, SA_{DIC}, as the system achieves isotopic equilibrium (8, 14).

For cells which experience a transient isotopic disequilibrium during steady state photosynthesis, the SA at the intracellular site of carboxylation (SA_i) depends upon the SA of the DIC species which permeates the cells. Since the ratio of ¹⁴C/¹²C fixation depends upon the value of SA_i, the shape of a ¹⁴C incorporation time-course is characteristic of the species of DIC taken by the cells (8, 14).

Theoretical time-courses of ¹⁴C incorporation were calculated as described previously (8) for the situation in which only CO₂ or HCO₃⁻ is taken up for photosynthetic fixation by the cells. The value of the apparent rate constant of isotopic equilibrium (*i.e.* α_{ob} ; 8) was estimated by nonlinear regression analysis using average rates of ¹⁴C incorporation, determined from time-course experiments, and time as input variables (8). Calculations were performed by computer using the NLIN procedure (Gauss-Newton) of the Statistical Analysis System package (SAS Institute, Cary, NC). A natural logarithmic transformation of equation 25 (8) was employed as the nonlinear regression model and theoretical values of the apparent rate constant (*i.e.* α_1 ; Ref. 8) and the equilibrium rate of ¹⁴C incorporation were used as starting values for the computer program. The theoretical values were determined as described in Espie and Colman (8).

RESULTS

Optimum Experimental Conditions. The quantity of $H^{14}CO_3^{-1}$ or $^{14}CO_2$ introduced into the cell suspension to initiate isotopic disequilibrium is critical in that it should not significantly alter the bulk DIC concentration or cause an increase in the steady state rate of photosynthesis (8, 14). From a practical point of view, it is desirable that the volume of cell suspension sampled is small, to permit rapid and uniform termination of the reaction, while still containing a quantity of radioactivity which can be easily and accurately measured. We have, therefore, conducted preliminary experiments to determine the appropriate quantity of ^{14}C to add to the cell suspensions and to investigate the consequences of violating the criteria that have been outlined here.

Figures 1 and 2 are examples of the results of such experiments, when the DIC concentration (subsaturating for photosynthesis)

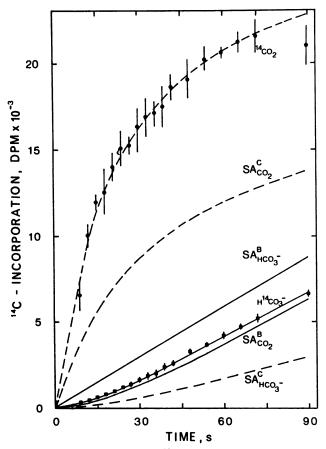


FIG. 1. Observed time-course of ¹⁴C incorporation following the addition of H¹⁴CO₃⁻ (**II**) or ¹⁴CO₂ (**0**). Asparagus cells were allowed to establish a constant rate of O₂ evolution in buffered media (50 mM Hepes, pH 7.55), containing 269 μ M DIC. Isotopic disequilibrium was initiated, at 25°C, by the addition of H¹⁴CO₃⁻ or ¹⁴CO₂, which represented a 6% increase in DIC concentration. Results are the average of triplicate determinations ± sp. Also shown are the theoretical time-courses of ¹⁴C incorporation, following H¹⁴CO₃⁻ addition (——) or ¹⁴CO₂ addition (—– –), expected if SA_i equals the calculated SA of HCO₃ or CO₂ (as labeled). The calculations are based on the rate of photosynthesis (O₂ evolution) obtained just prior to ¹⁴C addition.

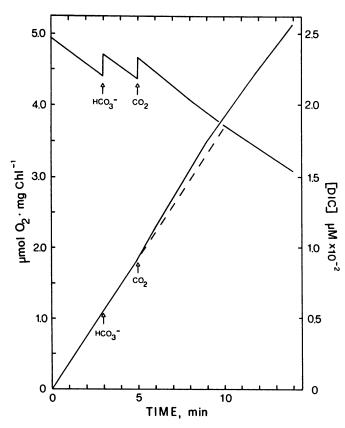


FIG. 2. Typical time-course of O_2 evolution (lower lines) following the addition of HCO₃⁻ or CO₂, calculated to yield a 6.1% increase in DIC concentration. Prior to the additions, *Asparagus* cells were allowed to establish a constant steady state rate of O_2 evolution in buffered media (50 mM Hepes, pH 7.5) containing an initial DIC concentration of 247 μ M. The quantity of O_2 evolved was determined from the recorder trace of the O_2 -electrode. The dashed line (---) represents the projected timecourse of O_2 evolution following HCO₃⁻ addition. Also shown is the change in DIC concentration (upper line).

is increased 6% by the addition of $H^{14}CO_3^{-}$ or ${}^{14}CO_2$. Qualitatively, the form of the ${}^{14}C$ fixation time-course ($H^{14}CO_3^{-}$ addition; Fig. 1) is very similar to that expected when CO₂ serves as the sole source of DIC taken up by the cells, but the quantity of ${}^{14}C$ -fixed is slightly higher than predicted. The incorporation of ${}^{14}C$ is significantly higher than predicted when ${}^{14}CO_2$ is used to initiate isotopic disequilibrium. Again, however, the form of the ${}^{14}C$ fixation time-course is consistent with CO₂ being the major species of DIC taken up by the cells (Fig. 1). Theoretical considerations (8) indicate that ${}^{14}C$ incorporation in excess of the maximum possible incorporation, arising from CO₂ uptake, signifies a direct contribution of HCO₃⁻ ions to the supply of intracellular DIC. Interpretation of Figure 1 in this respect must, however, be tempered in light of the results shown in Figure 2.

In this experiment, O_2 evolution rather than ¹⁴C fixation is monitored following the addition of HCO_3^- or CO_2 . The results (Fig. 2) clearly show that the addition of CO_2 , at this concentration, causes a significant, transient increase (approximately 30%) in the rate of O_2 evolution, while the addition of HCO_3^- has only a small effect. The transient stimulation of photosynthesis by the addition of CO_2 is not totally unexpected. Although the added CO_2 represents only a 6% increase in the DIC concentration, at the pH (7.5) of the cell suspension, this addition causes an initial (t = 0) 86% increase in the concentration of CO_2 . Consequently, most or all of the excess ¹⁴C incorporated (Fig. 1) can be attributed to the enhanced rate of photosynthesis rather than to the uptake of HCO_3^- . We have found that an initial 1 to 2% increase in CO₂ or HCO_3^- concentration, as ${}^{14}CO_2$ or $H{}^{14}CO_3^-$, does not produce a detectable change in the rate of photosynthesis (O₂ evolution) and that good quantitative agreement between observed and predicted (CO₂ uptake) time-courses of ${}^{14}C$ incorporation is obtained at subsaturating DIC concentrations (9). However, to eliminate any possible ambiguity, we have conducted most of the subsequent experiments at DIC concentrations which are saturating for photosynthesis. Consequently, the rate of photosynthesis is independent of the added ${}^{14}C$.

Inorganic C Uptake during Isotopic Disequilibrium. Figure 3A shows the time-course of ¹⁴C incorporation into acid-stable products of photosynthesis by *Asparagus* cells, following the addition of a small quantity of highly labeled H¹⁴CO₃⁻ or ¹⁴CO₂ (55 μ Ci μ mol⁻¹). Prior to the addition of ¹⁴C, the cells were allowed to establish a constant rate of photosynthesis (43.2 μ mol O₂ mg⁻¹ Chl h⁻¹ ± 1.5 sD, n = 12). This rate together with the calculated SA_{CO2} or SA_{HCO3}⁻ (8) was used to calculate the theoretical time-course of ¹⁴C incorporation, when either CO₂ or HCO₃⁻ serves as the sole source of exogenous DIC taken up for photosynthetic fixation (Fig. 3B).

The addition of $H^{14}CO_3^{-}$ to the cell suspension results in a biphasic time-course of ${}^{14}C$ -fixation (Fig. 3A). A distinct lag in the incorporation of ${}^{14}C$ is observed, lasting 35 to 40 s, followed thereafter by an essentially constant rate of ${}^{14}C$ incorporation. A biphasic time-course is also observed when ${}^{14}CO_2$ is used to initiate isotopic disequilibrium. In this case, however, an initial rapid incorporation of ${}^{14}C$ is observed, followed by a much reduced but constant rate of ${}^{14}C$ incorporation, 35 to 40 s later.

The addition of CA, a potent catalyst of the CO_2 -HCO₃⁻ interconversion reaction, to the cell suspension has a radical effect upon the pattern of ¹⁴C incorporation (Fig. 3A). Linear instead of biphasic time-courses are observed in both instances. In the presence of CA, the constancy of the rate of photosynthesis (O₂ evolution) is immediately reflected in the rate of ¹⁴C incorporation rather than after a 35 to 40 s delay. These results establish that the biphasic nature of the time-courses (-CA) are due to the slowness of the extracellular interconversion between CO_2 and HCO_3^- . Furthermore, these results indicate the absence of an effective extracellular catalyst of the CO_2 - HCO_3^- interconversion reaction at the surface of the cells.

The shapes of observed and predicted time-courses (-CA), calculated on the basis of CO_2 uptake alone, are quite similar (Fig. 3, A and B). Quantitative agreement between the observed and predicted time-courses (CO_2 uptake) is also very good, particularly in light of the large number of factors required to make the quantitative predictions. These results, therefore, indicate that ¹⁴C fixation by *Asparagus* cells occurs from an intracellular DIC pool in which the value of SA_i is closely approximated by the calculated value of SA_{cO2} rather than SA_{HCO3}⁻.

Effect of pH. The effect of pH on the observed time-courses of ¹⁴C incorporation is shown in Figure 4. Following the addition of H¹⁴CO₃⁻, no trace of inflection is evident in the ¹⁴C fixation time-course (Fig. 4A) when the pH of the medium is 5.25. However, as the pH of the reaction medium is increased to 7.5 (Fig. 4, B-D), a distinct lag in the incorporation of ¹⁴C arises. In all cases, very good quantitative agreement between experimental and predicted (CO₂ uptake) time-courses is found. Visual inspection of the time-courses does not reveal any significant deviation in the duration or degree of curvature, from that predicted when intracellular DIC is derived from the uptake of CO₂ alone. A more quantitative assessment of the curvature, however, can be obtained through analysis of the rate of ¹⁴C incorporation by nonlinear regression (8).

If the kinetics of the CO_2 -HCO₃⁻ interconversion reactions strictly control the rate of ¹⁴C incorporation, then the observed rates will be exactly described by equation 25 (8), when CO_2

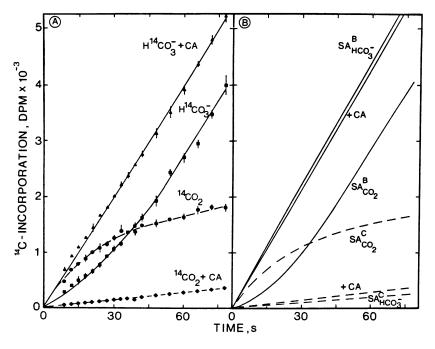


FIG. 3. A, Observed time-courses of ¹⁴C incorporation following the initiation of isotopic disequilibrium by the addition of H¹⁴CO₃⁻ (\blacksquare , \blacktriangle) or ¹⁴CO₂ (\bigcirc , \blacklozenge) to cell suspensions containing + (\blacktriangle , \blacklozenge) or - (\blacksquare , \circlearrowright) CA (0.1 mg·ml⁻¹) at 25°C. Results are the average of triplicate determinations \pm sD. Prior to the addition, *Asparagus* cells were allowed to establish a constant rate of photosynthesis in 50 mM Hepes buffer (pH 7.49) containing 2.4 mM DIC. B, Theoretical time-courses of ¹⁴C incorporation, following the addition of H¹⁴CO₃⁻ (----) or ¹⁴CO₂ (---), expected if SA_i equals the calculated SA_{HCO3}⁻ or SA_{CO}² (as labeled) at all times during isotopic disequilibrium. Also shown are expected time-courses when CA (+CA) is included in the cell suspension and ¹⁴C incorporation is calculated from the equilibrium (SA_{DIC}) SA.

alone is taken up by the cells. Estimation of the apparent kinetic constant (α_{ob}) of the interconversion reaction from time-course data can, therefore, provide a means to detect and assess the influence other factors may have on the uptake of DIC (8). Figure 5 shows the results of nonlinear regression analysis on the observed rate of ¹⁴C incorporation as a function of time together with the expected rate of ¹⁴C incorporation, if CO₂ or HCO₃⁻ alone is taken up by the cells. These data are derived from Figure 4. The nonlinear regression analysis indicates that the rate of ¹⁴C incorporation is somewhat slower than predicted (CO₂ uptake) at acid pH (Fig. 5, B–C), but that close agreement is obtained between observed and predicted (CO₂ uptake) at a slightly alkaline pH (Fig. 5D). In these experiments, the values of α_{ob} are 0.069, 0.039, and 0.042 (Fig. 5, B–D, respectively) compared to theoretical values of α_1 of 0.120, 0.064, and 0.043 (Fig. 5, B–D).

Figure 5A is a special case in that sampling of the cell suspension was commenced (9 s) after 97% isotopic equilibrium had been attained. Consequently, the rate of ¹⁴C incorporation reflects the constancy of the rate of photosynthesis at all times and, therefore, the data cannot be used to obtain an estimate of α_{ob} . However, linear regression analysis (Fig. 4A; r = 0.9995) indicates that the value of the extrapolated *y*-intercept is negative. This result is consistent with the occurrence of a small lag in the incorporation of ¹⁴C prior to the sampling period, as predicted for CO₂ uptake.

Assessment of the Role of HCO₃⁻. In experiments conducted at pH 8.5, a distinct lag in ¹⁴C incorporation is also observed (Fig. 6A) which is consistent with the uptake of CO₂ (8, 14). In this case, however, ¹⁴C incorporation exceeds the expected level and α_{ob} (Fig. 6B) is 1.6 times higher than the overall rate constant (α_1) of the uncatalyzed CO₂-HCO₃⁻ interconversion reaction. These results indicate that intracellular DIC is acquired from two external sources, CO₂ and HCO₃⁻ (8).

The role of HCO₃⁻ was further investigated in experiments in which the CO₂ concentration was held constant while the HCO₃⁻ concentration and pH were varied. At acid pH (6.0, Fig. 7) the calculated value of α_{ob} is 45% lower than the theoretical value (α_1), while at pH 7.5 this difference decreases to 15%. As CO₂ alone is taken up by the cells in the pH range 5.2 to 7.5 (Figs. 3– 5), these observations indicate that the exchange flux of CO₂ between the medium and the cells is not instantaneous, but encounters some resistance, and that high HCO_3^- concentrations (at constant [CO₂]) enhances the velocity of the exchange flux (20).

In contrast, at pH 8.5, the measured value of the apparent rate constant exceeds the predicted value by 1.2- to 2.4-fold, indicating that HCO_3^- , as well as CO_2 , permeates the plasmalemma. Using the equation given in Espie and Colman (8), we have calculated that the contribution of extracellular HCO_3^- to net DIC uptake is between 5 and 16%.

The relationship between HCO₃⁻ concentration and the uptake of HCO₃⁻ by Asparagus cells, at pH 8.5, is shown in Figure 8. In these experiments, the CO₂ concentration ranged from near the compensation point (6 μ M) to saturation (150 μ M). As indicated by the measured value of α (8), no evident dependence of HCO₃⁻ uptake on the extracellular HCO₃⁻ concentration occurs, although a direct contribution of HCO₃⁻ is indicated at all HCO₃⁻ concentrations examined (*i.e.* $\alpha_{ob} > \alpha_1$, Fig. 8). It is significant, however, that at HCO₃⁻ concentrations between 790 to 3000 μ M (pH 8.5, Fig. 8) a direct contribution of HCO₃⁻ is indicated whereas at pH 7.5 and similar HCO₃⁻ concentrations (2500 μ M, Fig. 5D; 250 μ M, Ref. 9), HCO₃⁻ uptake is not indicated. This observation suggests that pH itself has a direct effect upon the cells, which alters the kinetics of ¹⁴C incorporation.

DISCUSSION

The qualitative (shape) and quantitative (14 C incorporation) results of isotopic disequilibrium experiments indicate that CO₂, rather than HCO₃⁻, is the primary source of exogenous DIC taken up for fixation by *Asparagus* cells during steady state photosynthesis (Figs. 3–5 and 7). The transient increase in the steady state rate of photosynthesis when *Asparagus* cells are challenged with a 6% increase in DIC concentration as CO₂, in contrast to the marginal effect of HCO₃⁻, further supports this conclusion (Figs. 1 and 2).

Analysis of the rate of ¹⁴C-incorporation, during isotopic disequilibrium (Figs. 5 and 7), indicates the presence of a small, extracellular, aqueous-phase resistance to the exchange flux of CO₂ between the cells and the medium. A similar conclusion has been arrived at by Volokita *et al.* (20) who found that at ratelimiting DIC concentrations for photosynthesis, exogenous CA stimulated the rate of *Asparagus* cell photosynthesis. This stim-

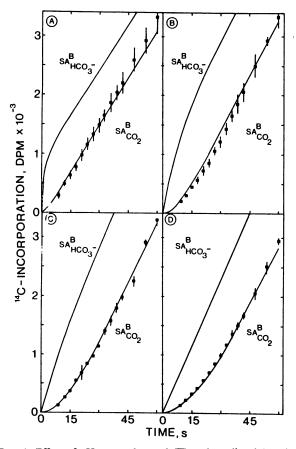


FIG. 4. Effect of pH upon observed (\blacksquare) and predicted (—) timecourses of ¹⁴C incorporation following the addition of H¹⁴CO₃⁻ to cell suspensions, photosynthesizing at a constant rate. Experimental conditions were: (A), pH 5.25; DIC = 218; PS = 31.2; (B), pH 6.00; DIC = 314; PS 42.4; (C), pH 6.50; DIC = 507; PS = 46.5; (D), pH 7.50; DIC 2712; PS 52.1. The unit of DIC concentration is μ M and photosynthetic rate is in μ mol O₂·mg⁻¹Chl·h⁻¹. Data points are the average of triplicate determinations \pm SD, except for (A) where n = 6. Solid lines represent the theoretical time-course of ¹⁴C incorporation, expected if SA_i equals the SA^B_{CO2} or SA^B_{HCO3}⁻ (as labeled) at all times during isotopic disequilibrium.

ulation was attributed to the chemical facilitation by CA of CO₂ diffusion within the unstirred layer (10, 20). Apparently, the formation of CO₂ from HCO₃⁻ dehydration, in the absence of CA, was inadequate to alleviate the diffusion limitation. It is important to note that HCO₃⁻ uptake (with subsequent intracellular conversion to CO₂) would be expected to redress the rate limitation imposed by CO₂ diffusion. The significant stimulation of photosynthesis by CA (9, 20), therefore, suggests that the direct uptake of HCO₃⁻ is small. The results of experiments conducted at pH 8.5 (Figs. 6, 8) indicate that the contribution of HCO₃⁻ is, in fact, small representing from 5 to 16% of net DIC uptake over an HCO₃⁻ concentration range of 790 to 21,000 μ M.

It has been suggested (19, 20) that the uptake of HCO_3^- by mesophyll cells occurs via a carrier-mediated process. Several experimental results presented here are inconsistent with this proposal. First, at similar HCO_3^- concentrations uptake of HCO_3^- is indicated at pH 8.5 (Figs. 6–8) but not at pH 7.5 (Figs. 3 and 5). Although the rate of transport might be expected to be affected by pH, total inhibition, in the presence of abundant substrate, seems unlikely. In *Anabaena variabilis*, HCO_3^- transport is not abolished at pH values as low as 6 (21). Second, the contribution of HCO_3^- to net DIC uptake would be expected to be dependent upon the HCO_3^- concentration, over the subsatur-

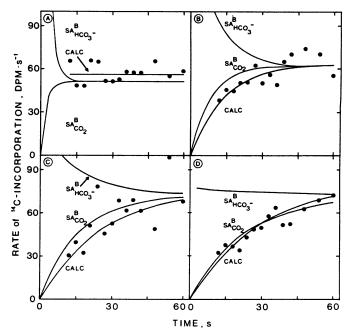


FIG. 5. Nonlinear regression analysis of the rate of ¹⁴C incorporation as a function of time. The data are derived from Figure 4: (A), pH 5.25; (B), pH 6.00; (C), pH 6.50; (D), pH 7.50. The average rate of ¹⁴C incorporation was determined, over small time intervals, as the slope of the line joining two consecutive data points, observed in time-course experiments. Shown are the theoretical rate of ¹⁴C incorporation expected if SA_i equals either the SA^B_{CO2} or SA^B_{HCO3}⁻ (as labeled), and the results (CALC) of the nonlinear regression analysis.

ating range for photosynthesis. Instead, it is found that, although variable, the contribution of HCO₃⁻ is nearly a fixed proportion at all HCO₃⁻ concentrations examined (Fig. 8). It is possible that the HCO₃⁻ transport system is saturated even at the lowest HCO_3^- concentration used. This proposal implies that the K_m (HCO₃⁻) of the transport system is lower than 800 μ M and well the half-saturation constant for photosynthesis below $(K_{\mu}[HCO_{3}^{-}] = 3100 \ \mu M \ [pH \ 8.4])$. In this event, the halfsaturation constant of transport would be near the compensation concentration and, as net photosynthesis is zero, the HCO₃⁻ transport system would be an ineffective source of DIC for photosynthesis. If the transport system is saturated at low HCO₃⁻ concentrations, then the flux of HCO_3^- will be constant, and the fractional contribution of HCO₃⁻ to net DIC uptake should decline as the CO₂ concentration and rate of photosynthesis increases. This situation is also not observed (Fig. 8).

Alternative mechanisms to explain the uptake of HCO_3^- , other than carrier-mediation, have been discussed in Volokita *et al.* (20). To these alternatives we add the following. If the pH at the cell surface is more alkaline than the bulk medium, isotopic equilibrium will be attained more rapidly than predicted, resulting in SA_{CO2} being higher in value throughout the duration of the experiment. In order to rationalize the results of the experiments at pH 8.5 in terms of CO₂ uptake, the pH at the cell surface would have to be between 8.6 and 9.2.

Studies with intact spinach chloroplasts indicate that the membrane is not totally impermeable to HCO_3^- (11). At pH 8.5, the extracellular concentration of HCO_3^- is 3 to 4 times higher than the intracellular concentration of HCO_3^- (6), whereas at lower pH, the direction of the HCO_3^- concentration gradient is reversed. At high pH, this concentration gradient in conjunction with a leaky membrane would permit the passage of some $HCO_3^$ across the plasmalemma. Mixing of $H^{14}CO_3^-$ with the intracellular pool would then result in an SA_i which is higher than SA_{CO2}.

60

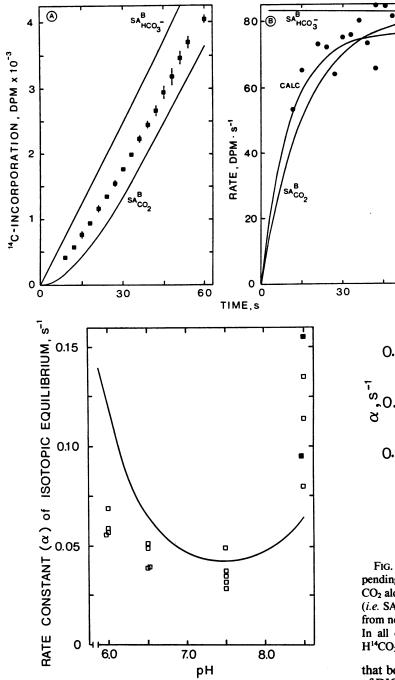


FIG. 7. Effect of increasing HCO₃⁻ concentration and pH on the value of α_{ob} . At each pH the DIC concentration was adjusted to yield a CO₂ concentration of approximately 170 to 200 μ M CO₂ (\Box) or 100 to 110 μ M CO₂ (\Box). Each data point represents the value of α_{ob} obtained from nonlinear regression analysis of triplicate time-course experiments. In all cases isotopic disequilibrium was initiated by the addition of H¹⁴CO₃⁻. Also shown (——) is the effect of pH on the theoretical value of α_1 when CO₂ alone is taken up by the cells and no resistance to the exchange of CO₂ is assumed (*i.e.* SA^B_{CO₂} = SA_i).

Although the data presented here and elsewhere (19, 20) indicate that *Asparagus* cells and pea protoplasts may take up HCO_3^- from the medium, the mechanistic basis is unclear. Previous studies with cyanobacteria (2, 9), organisms which transport HCO_3^- (13, 16), have shown that the patterns of ¹⁴C incorporation, during isotopic disequilibrium, are quite different from those found for *Asparagus* cells. It seems unlikely, therefore,

FIG. 6. A, Time-course of ¹⁴C incorporation (**II**) following the addition of H¹⁴CO₃⁻ to a cell suspension photosynthesizing at a constant rate. Experimental conditions were: pH 8.45; DIC = 14,046 μ M; PS = 35.9 μ mol O₂·mg⁻¹Chl·h⁻¹. Data points are the average of triplicate determinations ± sD. Solid lines represent the theoretical time-course of ¹⁴C incorporation expected if SA_i equals SA⁶_{CO2} or SA⁸_{HCO3}⁻ at all times during isotopic disequilibrium. B, Nonlinear regression analysis of the rate of ¹⁴C incorporation expected if SA_i equal SA⁶_{CO2} or SA⁸_{HCO3}⁻ and the results (CALC) of the nonlinear regression analysis.

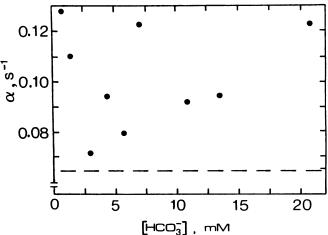


FIG. 8. Dependence of α_{ob} on the HCO₃⁻ concentration of the suspending medium (pH 8.5), and the expected dependence (---) when CO₂ alone is taken up by the cells and is in rapid equilibrium exchange (*i.e.* SA^B_{CO2} = SA_i). Each data point represents the value of α_{ob} obtained from nonlinear regression analysis of duplicate time-course experiments. In all cases isotopic disequilibrium was initiated by the addition of H¹⁴CO₃⁻.

that both organisms utilize a similar mechanism for the uptake of DIC.

The pH of the extracellular fluid surrounding leaf mesophylls is presumed to be between 6 and 7 (17). Consequently, $HCO_3^$ uptake will not be a significant factor in the acquisition of DIC for photosynthesis *in vivo*.

Acknowledgments—The authors wish to express their gratitude to Dr. John Fox for his assistance with the nonlinear regression analysis and Despy Whyte-Simms for typing the manuscript.

LITERATURE CITED

- ARNON DI 1949 Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1-15
- BADGER MR, TJ ANDREWS 1982 Photosynthesis and inorganic carbon usage by the marine cyanobacterium, Synechococcus sp. Plant Physiol 70: 517-523
- BADGER MR, A KAPLAN, JA BERRY 1980 Internal inorganic carbon pool of Chlamydomonas reinhardtii: evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66: 407–413

- BIRMINGHAM BC, B COLMAN 1979 Measurement of carbon dioxide compensation points of fresh water algae. Plant Physiol 64: 892-895
- COLMAN B, BT MAWSON, GS ESPIE 1979 The rapid isolation of photosynthetically active mesophyll cells from Asparagus cladophylls. Can J Bot 57: 1505-1510
- ESPIE GS, B COLMAN 1981 The intracellular pH of isolated, photosynthetically active Asparagus mesophyll cells. Planta 153: 210–216
- ESPIE GS, B COLMAN 1982 Photosynthesis and inorganic carbon transport in isolated Asparagus mesophyll cells. Plant Physiol 70: 649–654
- ESPIE GS, B COLMAN 1986 Inorganic carbon uptake during photosynthesis. I. A theoretical analysis using the isotopic disequilibrium technique. Plant Physiol 80: 866-872
- ESPIE GS, GW OWTTRIM, B COLMAN 1984 A comparative study of inorganic carbon transport in photosynthetic cells. *In C* Sybesma, ed, Advances in Photosynthesis Research; Proceedings of the VIth International Congress on Photosynthesis, Vol III. Martinus Nijhoff/Dr. W Junk, The Hague, pp 681– 684
- GUTKNECHT J, MA BISSON, FC TOSTESON 1977 Diffusion of carbon dioxide through lipid bilayer membranes. J Gen Physiol 69: 779-794
- HEBER U, P PURCZELD 1977 Substrate and product fluxes across the chloroplast envelope during bicarbonate and nitrite reduction. In D Hall, J Coombs, T Goodwin, eds, Proceedings of the 4th International Congress on Photosynthesis, Reading, UK, London Biochem Soc pp 107-118
- 12. JONES HG, CB OSMOND 1973 Photosynthesis by thin leaf slices in solution. I.

Properties of leaf slices and comparison with whole leaves. Aust J Biol Sci 26: 15-24

- KAPLAN A, MR BADGER, JA BERRY 1980 Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: response to external CO₂ concentration. Planta 149: 219-226
- 14. LEHMAN JT 1978 Enhanced transport of inorganic carbon into algal cells and its implication for biological fixation of carbon. J Phycol 14: 33-42
- LUCAS WJ 1983 Photosynthetic assimilation of exogenous HCO₃⁻ by aquatic plants. Annu Rev Plant Physiol 34: 71-104
- MILLER AG, B COLMAN 1980 Evidence for HCO₃⁻ transport by the blue-green alga (cyanobacterium) Coccochloris peniocystis. Plant Physiol 65: 397–402
- 17. NOBEL PS 1974 Introduction to Biophysical Plant Physiology. WH Freeman, San Francisco
- ULLRICH-EBERIUS CI, U LUTTGE, L NEHER 1976 CO₂ uptake by barley leaf slices as measured by photosynthetic O₂ evolution. Z Pflanzenphysiol 79: 336-346
- VOLOKITA M, A KAPLAN, L REINHOLD 1981 Evidence for mediated HCO₃⁻ transport in isolated pea protoplasts. Plant Physiol 67: 1119–1123
- VOLOKITA M, A KAPLAN, L REINHOLD 1983 Nature of the rate-limiting step in the supply of inorganic carbon for photosynthesis in isolated Asparagus mesophyll cells. Plant Physiol 72: 886–890
- ZENVIRTH D, M VOLOKITA, A KAPLAN 1984 Evidence against H⁺-HCO₃⁻ symport as the mechanism of HCO₃⁻ transport in the cyanobacterium Anabaena variabilis. J Membr Biol 79: 271–274