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Figure S1 Schematics of the experimental setup, closed-loop controller algorithm and lentiviral vectors. Related to Figure 1
and STAR Methods. (A) Schematics of the experimental system and design. Real-time V, data is obtained by the whole-cell
mode of the patch clamp technique in single hiAMs or hiAM monolayers and is fed to two separate computers via analog-
digital interfaces. A computer running the pClamp software package (pClamp PC) is used to record Vr, and to create the
preprogrammed analog output Vpror. The real-time computer (RT-Linux PC) also samples Vi and produces the dynamic analog
output signal Vapqgr. In our system, Vi, can be targeted by direct current injection or by means of optogenetics. To generate
electrical output, Vot and Vapgr are summed by a custom-built summing amplifier (¥) to yield Vcom that serves as command
input for the patch clamp amplifier to create lin;. For optical output, Voo and Vaeqr may be summed or used separately in Viep
for the modulation of LED drivers generating I ep. (B) Closed-loop controller used in single cell experiments. The output "I’
was used either as command signal for the patch clamp amplifier to generate direct current injection or as control signal for the
617-nm LED driver. (C) Closed-loop controller used in dual-actuator optogenetic Vn control for AP restoration and for the
enforcement of AP morphologies. (D and E) Schematic maps of lentiviral vector shuttle constructs used in the study for the
over-expression of Jaws (D) and CheRiff (E). Indicated are viral vector elements (gray), including the human
immunodeficiency virus type 1 5° long terminal repeat (LTR) containing the Rous sarcoma virus LTR promoter (5° LTR), the



U3 region-deleted 3' LTR (3' LTR [AU3]), packaging signal (¥), Rev-response element (RRE), central termination site and
polypurine tract (cPPT/CTS) and the woodchuck hepatitis virus post-transcriptional regulatory element (WHVO0PRE) or the
human hepatitis B virus posttranscriptional regulatory element (HBVPRE), bacterial replication origin (Ori) and Escherichia
coli B-lactamase gene (AmpR). Jaws expression was driven by the human ubiquitin C promoter (HsUBC) and coupled with the
expression of puromycin-N-acetyltransferase (PurR) via an internal ribosomal entry site (IRES). Both CheRiff and Jaws were
C-terminally fused to the enhanced green fluorescent protein (eGFP). Jaws was equipped with the plasma membrane
trafficking signal (MTS) and ER exit signal (ERS) of Kir2.1 [S1], whereas CheRiff was only equipped with the MTS of Kir2.1
[S2]. The expression of the CheRiff cassette was driven by the chicken troponin T promoter (GgTnnt2).
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Figure S2 Extended data on Vi, error during AP shape restoration and characterization of light response in optogenetically
modified hiAM cells and monolayers. Related to Figures 2—7. (A) Average Vn, error following 4AP administration (4AP) and
during direct current injection-mediated AP restoration in the presence of 4AP (4AP+APqr) in n=7 single hiAMs. (B) Average
Vn error following 4AP administration (4AP) and during light-mediated AP restoration in the presence of 4AP (4AP+APqr) in
n=4 single hiAMs expressing Jaws. (C) Average Vm error in the presence of an optogenetically induced AP abnormality
(disturbance) and during light-mediated AP restoration (dist.+APgrPID) in n=7 hiAM monolayers expressing CheRiff and
Jaws. (D) Average Vn, error following 4AP administration (4AP) and during light-mediated AP restoration (4AP+APQgrPID) in
n=7 hiAM monolayers expressing Cheriff and Jaws. In panels A to D, data are shown as mean + SD, represented by
continuous lines and shaded areas, respectively. A-D related to Figures 2-5. (E) Representative recording of Jaws current
elicited by 565 nm light (1 s, 1.5 mW/mm?) in a single hiAM from test potentials between -80 and 60 mV in 10 mV
increments. (F) Current-voltage relationships obtained from the recording shown in panel E. (G) Whole cell current density
(open circles, left axis) and Vi, shift from V(e (filled squares, right axis) observed at the end of 617-nm light pulses of 1 s and
various intensities from 0.05 to 1.5 mW/mm? in single hiAMs expressing Jaws. E-G related to Figure 3. (H) Vpiateau,
representing Vi observed at the end of 470- and 617-nm light pulses of 1 s and various intensities from 0.04 to 0.48 mW/mm?
and from 0.04 to 0.93 mW/mm?, respectively, in hiAM monolayers expressing CheRiff and Jaws. Figure H related to Figures
4-7.
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Figure S3 Vr, and light output during AP shape restoration and enforcement experiments. Related to Figures 4, 5 and 6. (A) Representative recordings from the dual-actuator optogenetic
AP restoration experiment in the context of a light-induced electrical disturbance (also shown in Figure 4C). (B) Representative recordings from the dual-actuator optogenetic AP
restoration experiment in the context of a drug-induced electrical disturbance (also shown in Figure 5C). (C) Representative recordings from the dual-actuator optogenetic AP morphology
enforcement of the ‘carbachol’ model APs (also shown in Figure 6B). (D) Representative recordings from the dual-actuator optogenetic AP morphology enforcement of the ‘4AP’ model
APs (also shown in Figure 6C).
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Figure S4 Extended data on AP parameters during enforcement of drug-induced AP abnormality models. Related to Figure 6.
(A and B) Mean APD values + SD measured at 20, 50 and 90% repolarization. (C) Vpea representing the most positive Vi
value during an AP. (D) dV/dtmax representing maximum upstroke velocity. (E) Time to reach dV/dtmax from an arbitrarily
chosen time point preceding the AP. (F) Resting potential. (G and H) The moment when 30%, 50% or 90% repolarization is
reached during enforcement of the carbachol and the 4AP models. Data are shown as mean + SD. *: P < 0.05, **: P <0.01,
***%. P < 0.0001, ns: not significant.
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Figure S5 Representative recordings from the dual-actuator optogenetic AP morphology enforcement of the ‘t13”, ‘t09°, ‘t05° and ‘t01” model APs. Related to Figure 7.
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Figure S6 Extended data on enforcement of simplified AP models. The endogenous APs (CTL) were compared to model
(model) and enforced (forced) APs. Related to Figure 7. (A—D) APD values measured at 20, 50 and 90% repolarization for the
models t13, t09, t05 and t01, respectively. (E) Vpea representing the most positive Vi value during an AP. (F) dV/dtmax
representing maximum upstroke velocity. (G) Time to reach dV/dtmax from an arbitrarily chosen time point preceding the AP.
(H) The moment when 90% repolarization is reached. (1) Resting potential. Data are shown as mean + SD. *: P < 0.05, ***: P
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<0.001, ****: P < 0.0001, ns: not significant. Column labels for each panel are as shown in panel H.
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Figure S7 Extended data on enforcement of simplified AP models. Related to Figure 7. (A-D) Vn error representing the
difference over time between model vs endogenous APs (CTL) and model vs enforced APs (APgrLE) for AP models t13, t09,
t05 and t01, respectively. Data are shown as mean (continuous lines) + SD (shaded areas). (E-H) Frequency distribution of Vi,
error for n=5 monolayers with a 5-mV bin width for AP models t13, t09, t05 and t01, respectively.
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