

Fig. S2. Interactions between AP-1 and NFκB pathways. (A) Representative Western blot (left) and quantification (right) of phosphorylated NFκB following 60 minutes of agonist treatment and with/without AP-1 inhibitor (T-5224). Error bars denote Mean \pm SD, * *p* < 0.05 as determined by one-way ANOVA with Dunnet test comparison to control. Statistical significance was determined by one-way ANOVA with Dunnet test comparison to control, p<0.05, n=3. (**B**) Protein-protein association maps of known NFκB and AP-1 signaling pathways combined with proteins detected by mass spectrometry on p-NFκB IP samples. Plot generated by STRING.

Fig. S3. Agonist treatment activates NFkB signaling: (A) Representative Western blots of phosphorylated and total NFkB following 0, 15, 30, 60, and 120 minutes of agonist treatment. (B) Representative immunofluorescence images (left) and quantification (right) of phospho-p65 (60 minutes post-agonist treatment). Error bars denote Mean \pm SD, * p < 0.05 as determined by one-way ANOVA with Dunnet test comparison to control. Statistical significance was determined by one-way ANOVA with Dunnet test comparison to control, p<0.05, n=3.

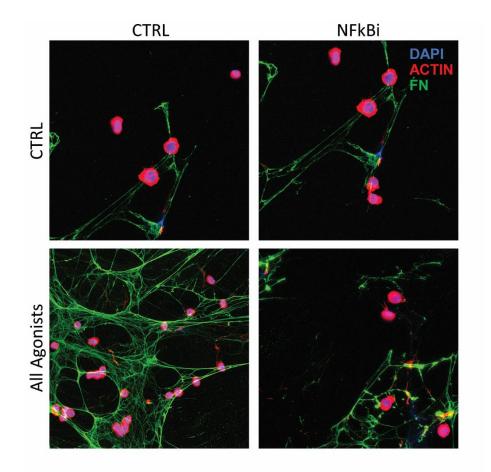
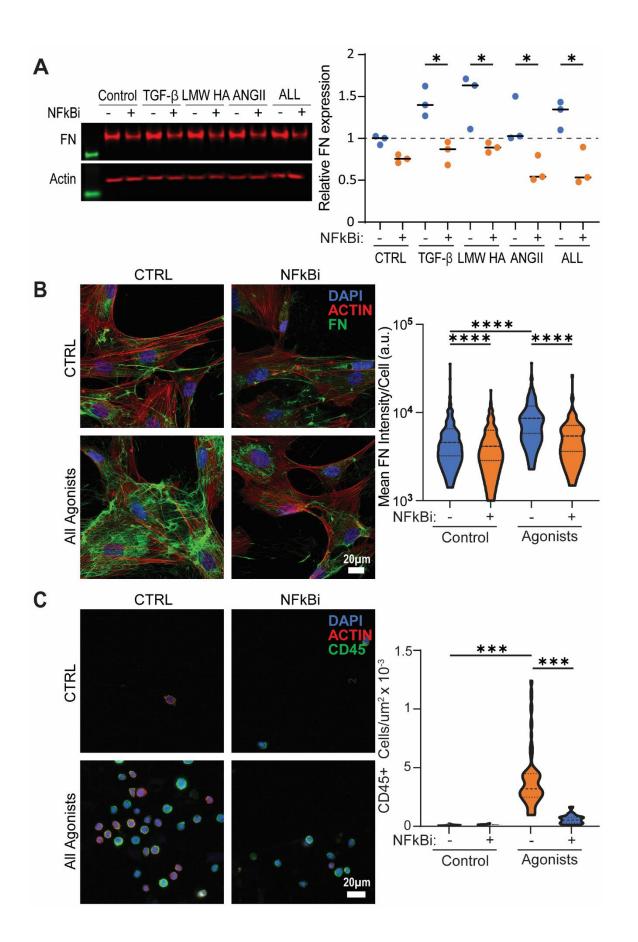



Fig. S4. Monocytes adhere to assembled FN matrix. U937 monocytes adhered primarily to decellularized fibronectin matrix created and assembled by control vs. NF κ B iCFs treated with TGF β , LMW HA, and ANGII for 72 hours.

Fig. S5. NFκB mediates agonist matrix responses. (A) Representative Western blot (left) and quantification (right) of cellular fibronectin (FN) in control vs. NFκB inhibitor (BMS-345541) treated iCFs exposed to TGF β , LMW HA, ANGII, or a combination of all agonists. Error bars denote Mean ± SD for three independent experiments, * *p* < 0.05 as determined by one-way ANOVA. (B) Representative immunofluorescent images of iCFs treated with TGF β , LMW HA, and ANGII for 72 hours (left) and quantification of mean FN signal per cell (right), * *p* < 0.05 as determined by one-way ANOVA. (C) Representative immunofluorescent images of U937 monocytes adhered to decellularized matrices obtained from control vs. NFκB iCFs treated with TGF β , LMW HA, and ANGII for 72 hours, * *p* < 0.05 as determined by a nonparametric Kruskal-Wallis test.

Table S1. Proteins identified by mass spectrometry following p-NFκB IP. Data shown indicate (left to right): the Protein.Group, Protein.ID, Accession, Area.Sample.1, Post-translational Modification (PTM), Average Mass, Description, MassNormPeak, and RelAbund.

Available for download at https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.261152#supplementary-data

Table S2. Summary of ATAQ-Seq on iCFs. Summary includes separate tabs for analysis of all peaks, differentially accessible regions (DARs), RR regions with AP-1 motifs, RKO regions with AP-1 motifs, RR regions with GATA motifs, and RKO regions with GATA motifs. Data shown indicate (left to right): ID, seqnames, start, end, width, Conc,Conc_RR, Conc_RKO, Fold, p.value, FDR, Chr, Start, End, Annotation, Detailed.Annotation, Distance.to.TSS, Nearest.PromoterID, Entrez.ID,Nearest.Unigene, Nearest.Refseq, Nearest.Ensembl, Gene.Name, Gene.Alias, Gene.Description, and Gene.Type.

Available for download at https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.261152#supplementary-data

Table S3. Regions predicted to have both AP-1 and GATA binding sites. This table annotates regions containing predicted motifs for both AP-1 and GATA. Data shown indicate (left to right): Chr, Start, End,Annotation, Distance to TSS,Nearest PromoterID, Nearest Refseq, Gene Name, and Gene Type.

Available for download at https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.261152#supplementary-data

Table S4. Transcriptional expression of AP-1 factors in Risk and Risk KO iPSC-cardiacfibroblasts. TPM values for the indicated samples from RR and RRKO cell lines.

Available for download at https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.261152#supplementary-data