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Figure S1. Distributions of the yearly publication of CCS records and the contributions 

of the main research groups. Different color in the same year indicate the contributions 

of different groups. 

 

 

 

 

Figure S2. Distribution of 9407 CCS values across ion species. 
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Figure S3. The number of compounds detected in positive and negative ion modes. 

 

 

 

Figure S4. Distribution of 7017 CCS values across ion species after consolidation. 
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Table S1. Distribution of 4170 compounds across 17 super classes 

Superclass Count Proportion (%) 

Benzenoids 1247 29.90  

Organoheterocyclic compounds 1084 26.00  

Lipids and lipid-like molecules 541 12.97  

Organic acids and derivatives 411 9.86  

Phenylpropanoids and polyketides 317 7.60  

Organic oxygen compounds 244 5.85  

Alkaloids and derivatives 102 2.45  

Organic nitrogen compounds 85 2.04  

Organohalogen compounds 51 1.22  

Nucleosides, nucleotides, and analogues 42 1.01  

Organosulfur compounds 16 0.38  

Organophosphorus compounds 11 0.26  

Lignans, neolignans and related compounds 10 0.24  

Organometallic compounds 4 0.10  

Hydrocarbon derivatives 3 0.07  

Hydrocarbons 1 0.02  

Organic 1,3-dipolar compounds 1 0.02  

Total 4170 100 

 

 

 

 

Table S2. Comparison between the CCS values measured via DTIMS and TWIMS 

devices. 

Adducts Counts 
Max 

error(%) 

Min 

error(%) 

Median 

error (%) 

Mean 

error (%) 
< 2% < 5% 

[M+H]+ 480 6.2 -6.1 -0.3 -0.4 417 (86.9%) 476 (99.2%) 

[M+Na]+ 38 5.2 -4.2 -0.5 -0.4 28 (73.7%) 37 (97.4%) 

[M]+ 14 1.2 -2.4 -1,4 -1.2 12 (85.7) 14 (100%) 

[M-H]- 48 0.7 -3.5 -1.9 -1.7 25 (52.1%) 48 (100%) 

Total 580 6.2 -6.1 -0.5 -0.5 482 (83.1%) 5 (99.1%) 
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Table S3. Distributions of CCS records across different ionic species. 

  
9407 CCS collected 

7017 CCS after 

normalization 

 
Adducts 

Number of 

CCS 

Proportion 

(%) 

Number of 

CCS 

Proportion 

(%) 

positive 

[M+H]+ 5179 55.1 3360 47.9 

[M+Na]+ 1924 20.5 1664 23.7 

[M+NH4]+ 54 0.6 53 0.8 

[M+H-H2O]+ 74 0.8 73 1.0 

[M]+• 120 1.3 104 1.5 

[M+K]+ 33 0.4 32 0.5 

[M+H-NH3]+ 9 0.1 9 0.1 

[M-Na+2H]+ 5 0.1 5 0.1 

[M-Cl]+ 11 0.1 11 0.2 

Total 7409 78.8 5311 75.7 

negative 

[M-H]- 1543 16.4 1329 18.9 

[M+HCOO]- 267 2.8 258 3.7 

[M-H-CO2]- 60 0.6 31 0.4 

[M-Cl+O]- 49 0.5 26 0.4 

[M+CH3COO]- 23 0.2 22 0.3 

[M+Cl]- 24 0.3 24 0.3 

[M-Br+O]- 32 0.3 16 0.2 

Total 1998 21.2 1706 24.3 

 

 

Table S4. Distribution of RSDs (%) of repeated CCS measurements across different ion 

species 

Ion type Adducts Count Max Min Median Mean < 2% < 5% 

Positive 

[M+H]+ 1059 10.98 0 0.58 0.87 92.3% 98.0% 

[M+Na]+ 214 7.90 0 0.64 0.82 96.7% 98.1% 

[M]+ 16 1.74 0.02 0.93 0.91 100% 100% 

[M+H-

H2O]+ 

1 2.71 2.71 2.71 2.71 0 100% 

Total 1290 10.98 0 0.59 0.86 93.0% 98.1% 

Negative 

[M-H]- 177 7.64 0.01 0.76 0.84 96.6% 99.4% 

[M+HCOO]- 9 1.25 0 0.85 0.69 100% 100% 

[M-Cl+O]- 23 0.26 0.22 0.24 0.24 100% 100% 

[M-Br+O]- 16 0.26 0.22 0.25 0.24 100% 100% 

[M-H-CO2]- 16 3.03 0 0.23 0.37 93.4% 100% 

Total 241 7.64 0 0.30 0.70 97.1% 99.6% 

Total 

ions 

 1531 10.98 0 0.57 0.84 93.7% 98.3% 
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Table S5. Several published CCS prediction tools. 

Tools Training data Algorithm  Adducts Reference 

CCSondemand 7325 TWCCSN2 values 

from 3775 compounds 

XGBoost [M+H]+, [M+Na]+, 

[M+K]+, [M-H]-, 

[M+HCOO]-, 

Broeckling et al.1 

AllCCS 5119 CCS values from 

2193 compounds 

SVM [M+H]+, [M+Na]+, 

[M+NH4]+, [M+H-

H2O]+, 

[M-H]-, [M+HCOO]-, 

[M+Na-2H]- 

Zhou et al.2 

CCSbase 7405 CCS entries from 

3526 small molecules, 

1041 lipids, 91 peptides, 

84 carbohydrates 

SVM [M+H]+, [M+Na]+, 

[M+NH4]+, [M+K]+, 

[M-H]-, [M+Na-2H]-, 

[M]+•, [M]- 

Ross et al.3 

DeepCCS 2439 CCS values DNN [M+H]+, [M+Na]+, 

[M-H]-, [M-2H]2- 

Plante et al.4 

CCSP 2.0 1546 CCS values  SVM [M+H]+, [M+Na]+, 

[M-H]- 

Rainey et al.5 

LipidCCS 458 CCS values SVM [M+H]+, [M+Na]+, 

[M+NH4]+, [M-H]-, 

[M+HCOO]- 

Zhou et al.6 

MetCCS 796 CCS values SVM [M+H]+, [M+Na]+, 

[M+H-H2O]+, [M-H]-, 

[M+Na-2H]- 

Zhou et al.7 

CCS 

prediction for 

pesticides 

205 CCS values of 

pesticides 

ANN [M+H]+, [M+Na]+ Bijlsma et al.8  

CCS 

prediction for 

drugs 

357 CCS values of 

pharmaceuticals, drugs 

ANN [M+H]+ Mollerup et al.9  

CCS 

prediction for 

plastic 

chemicals 

1721 CCS values of 

chemicals in plastic 

products 

SVM [M+H]+, [M+Na]+ Song et al.10 

Emerging 

contaminants 

895 CCS values of 

emerging contaminants 

MARS [M+H]+, [M+Na]+, 

[M-H]- 

Celma et al.11 

PFAS, PAHs, 

PCBs, PBDEs 

202 CCS values of 

PFAS, PAHs, PCBs, and 

PBDEs 

Linear 

SVM 

[M+H]+, [M-H]-, [M-

H-CO2]-, [M-Br+O]-, 

[M-Cl+O]-, 

Foster et al.12 

CCS 

prediction for 

56 CCS values of 

phenolics 

PLS [M-H]- Gonzales et al.13  
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Tools Training data Algorithm  Adducts Reference 

phenolics 

CCS 

prediction for 

metabolites 

1226 CCS values of 

metabolites 

SVM [M+H]+, [M-H]- Asef et al.14 

Note: XGBoost: extreme gradient boosting; SVM: support vector machine; DNN: deep neural 

network; ANN: artificial neural networks; PLS: partial least squares regression; MARS: multiple 

adaptive regression splines; PFAS: per- and polyfluoroalkyl substances; PAHs: polycyclic aromatic 

hydrocarbons; PCBs: polychlorinated biphenyls; PBDEs: polybrominated diphenyl ethers. 

 

 

Table S6. Several isomeric pairs and their CCS values found in literature. 

Isomer pairs Adducts Experimental CCS (Å2) Reference 

morphine and piperine [M+H]+ 164.0/176.2 Lian et al.15 

15-acetyldeoxynivalenol and 3-

acetyldeoxynivalenol 

T2 alpha-glucoside and T2 beta-

glucoside 

[M+Na]+ 

[M+CH3C

OO]- 

176.7/183.4 

252.9/264.8 

Righetti et al.16 

Alternariol 9-glucuronide, 

Alternariol 3-glucuronide and 

Alternariol 7-glucuronide; 

[M-H]- 197.1/203.8/213.8 Righetti et al.17 

ethiofencarb sulfoxide 

methiocarb sulfoxide; 

testosterone glucuronide 

epitestosterone glucuronide; 

ketamine and 4'-Chloro-alpha-

pyrrolidinopropiophenone 

[M+H]+ 146.5/156.9 

221.5/204.7 

148.9/154.0 

Celma et al.18 

ipconazole and tebufenpyrad [M+H]+ 163.6/193.4 Regueiro et al.19 

Testosterone, DHEA and 

Epitestosterone; 

Androsterone and 

Epiandrosterone; 

11-Deoxycortisol and 

Corticosterone 

[2M+Li]+ 283.8/272.7/275.7 

253.7/273.5 

295.1/305.6 

Rister et al.20 

Ergosine and ergosinine 

Ergotamine and ergotaminine 

Ergokryptine and ergokryptinine 

Ergocristine and ergocristinine 

[M+Na]+ 234.2/226.5 

236.2/227.2 

239.1/233.7 

241.7/233.9 

Carbonell-Rozas 

et al.21 

Diclofenac β-1-O-acyl 

glucuronide and 2-, 3-, and 4-O-

acyl isomers. 

[M+H]+ 205.3/201.1/200.9/199.7 Higton et al.22 

Linear PFOS and 1m-PFOS; 

Linear PFHxS and 1m-PFHxS 

[M-H]- 162.3/157.9 

145.8/141.6 

Mu et al.23 
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Isomer pairs Adducts Experimental CCS (Å2) Reference 

tri-m-tolyl phosphate 

tri-o-tolyl phosphate 

tri-p-tolyl phosphate 

[M+H]+ 

[M+Na]+ 

188.6/182.4/190.0 

198.6/192.4/200.0 

Belva et al.24 

PA 6 dimer and PA66 monomer; 

PA6 tetramer and PA66 dimer; 

PA6 hexamer and PA66 trimer 

[M+H]+ 150.4/157.8 

209.6/214.7 

255.1/261.1 

Schweighuber et 

al.25 

Pregnenolone and 5α-

dihydroprogesterone; 

[M+H]+ 176.7/191.4 Chouinard et 

al.26 

Aldosterone and cortisone  [M+Na]+ 197.7/211.7 

 

 

 

Table S7. Comparison of the CCS measurements of 12 molecules obtained from FDA 

approved drugs profiling CCS library27 and Celma et al.28 

Compounds PubChem 

CID 

CCS from 

FDA 

CCS from 

Celma et al. 

Variations 

Flumethasone 16490 191.57 195.21 3.64 

Clindamycin 446598 197.69 204.41 6.72 

Lincomycin 3000540 196.77 202.26 5.49 

Amoxicillin 33613 183.83 188.68 4.85 

Mefenamic acid 4044 157.25 161.30 4.05 

Metaproterenol 4086 151.49 155.30 3.81 

Butylparaben 7184 146.52 150.14 3.62 

Fenofibric acid 64929 181.44 185.72 4.28 

Salbutamol 2083 162.83 166.60 3.77 

Flubendazole 35802 173.42 177.36 3.94 

Cefotaxime 5742673 200.26 204.79 4.53 

Telmisartan 65999 237.16 242.47 5.31 

 

 

 

Introduction of DTIMS, TWIMS and TIMS 

DTIMS is a classic IMS technique, the design of stacked ring electrodes to 

maintain a uniform field can be traced back to 1930s,29 and the first commercialized 

DTIMS technique was introduced in 1970s.30 The drift tube of DTIMS is made from a 

series of stacked-ring electrodes that can provide a uniform, static and weak electric 

field, normally in the range of 13–18 V/cm.31 The ionized molecules are pushed by an 
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electric field force into the drift tube and collide with stationary buffer gas (normally 

nitrogen or helium, but also carbon dioxide). Molecules with smaller cross-section  

traverse the drift tube more quickly than the molecules with larger cross-section since 

they have fewer collisions with buffer gas. The time taken to traverse the drift cell is 

called drift time (𝑡𝑑), which can be used to calculate the mobility constant K, and further 

the CCS values of ions, using the Mason-Schamp equation.32 The ability of directly 

calculating CCS values from first principles seems the most attractive advantage of 

DTIMS. The CCS values obtained using this method are considered more accurate and 

are always used for the CCS calibration of other types of IMS.33 The resolving power 

(Rp) of DTIMS changes based on temperature, length and pressure, the DTIMS 6560 

commercialized by Agilent Technologies can provide a Rp ~60.34 Increasing the drift 

tube length can theoretically enhance Rp. A cyclic DTIMS devices, produced by 

Clemmer group, can achieve Rp ~1000 when the ions travel 100 cycles with an effective 

distance of about 180 m.35 In addition, DTIMS coupled with high resolution 

demultiplexing (HRdm) technique, also achieve Rp between 180 to 250.36 One 

disadvantage of DTIMS involves the low duty cycle, which leads to reduced sensitivity 

of the detection. More detailed discussions about the advantages and disadvantages of 

DTIMS can be seen in Dodds et al.37 

TWIMS is another widely used IMS technique, which was first commercialized 

by Waters Corporation in 2006.38 TWIMS consists of a stacked ring ion guide where a 

series of voltage pulses are applied, creating a travelling wave that ions can ‘surf’ 

along.39 A radio frequency voltage is applied to adjacent ring electrodes to radially 
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confine ions, in order to maintain high transmission. Unlike DTIMS in which CCS 

values can be directly calculated from drift time, in TWIMS, the IMS cell has to be 

calibrated with a set of reference compounds with known CCS values. Currently, Rp 

around 40-50 CCS/ΔCCS have been reported for some commercial TWIMS 

platforms,40 however, an extremely high Rp of 750 was achieved for ions traveling 100 

passes in a cyclic TWIMS platform.41. 

TIMS was commercialized by Bruker Daltonics in 2011.42 Unlike conventional 

DTIMS and TWIMS where the ions move in a stationary buffer gas forced by a low 

electric field, TIMS holds the ions stationary in a moving buffer gas by applying an 

electric field in the opposite direction. The field strength in TIMS is slowly decreased 

allowing the ejection of the ions with specific mobility.43 It has been reported that TIMS 

can offer a Rp exceeding 250.44 In TIMS, experimental CCS values are obtained by 

applying an appropriate calibration derived using reference compounds with known 

CCS values. 

 

Three Reasons Leading to High CCS Deviations  

Presence of Protomers. The presence of protomers can lead to high CCS errors 

since different protonation sites result in the molecules having a different shape and 

size. This can be demonstrated by the multiple CCS values that have been determined 

for the [M + H]+ adduct of enoxacin. The study of Hines and coworkers reports two 

different CCS values for enoxacin of 168.1 and 184.7 Å2,45 two other CCS values for 

this compound were also found in the published data: 185.4 Å2 from the FDA approved 
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drugs profiling CCS library,27 and 178.0 Å2 from Tejada-Casado et al.46 Together, the 

four CCS values resulted in an RSD value of 5.12%. Only single CCS values were 

obtained for enoxacin in the latter two publications because the ion mobility data was 

not sufficiently resolved, given the relatively low resolving power of current 

commercial IMS techniques. Some high RSDs values of other CCS values can also be 

explained by the presence of protomers, for example, Hines et al.45 also report two CCS 

values for the [M + H]+ adduct of bacampicillinm (199.0 and 220.8 Å2), two CCS values 

for the [M + H]+ adduct of temefos (187.6 and 203.2 Å2). 

IMS separation of protomers for pesticides and pharmaceuticals has also been 

reported in other literature.47-50 One advantage of protomer formation is that multiple 

CCS values can be obtained for each molecule (generally with CCS deviations higher 

than 2%), these values can be utilized to further add the specificity for chemical 

identifications in screening analyses. In addition, the fragmentation of protomers of the 

same compound can be different and the in-depth study of their mass spectra can help 

us to gain more understanding of ionization and dissociation mechanisms occurring in 

the mass spectrometer.49 It is important to note though that the presence of protomers 

can complicate the data treatment of TA and SSA. True identifications may be missed 

if a compound exhibits multiple CCS values and only one of the values is targeted. 

Calibration Approach. The fact that the calibration standards for different 

TWIMS platforms can vary is another reason that can lead to high CCS discrepancies.33 

As an example of this, three CCS values were found for the [M − H]− adduct of captopril, 

two of which were 146.6 Å2 27 and 148.1 Å2,51 while the third, in the study by Hines et 
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al.,45 had a value of 141.4 Å2, which is much lower than the other two values. In addition, 

two CCS values were found for the [M + H]+ adduct of ferulic acid: 128.845 and 141.1 

Å2,51 with the high CCS deviation occurring, once again, between Hines et al.45 and 

Song et al.51 In their study, Song et al.51 used the Major Mix IMS/ToF calibration kit 

(p/n 186008113) from Waters (Manchester, UK) for the CCS calibration. This mixture 

is also always used for the CCS calibration of other TWIMS platforms from Waters 

Corporation, and contains polyalanine, Ultramark, and drug-like compounds. Two 

additional fluoroalkanoic acids are added into the calibration mixture to calibrate 

negative ion mode. In the work of Hines and coworkers,45 the TWIMS device was 

calibrated using polyalanine and nine drug-like compounds, but the nine drug-like 

compounds were not the same as those used in the work of Song et al.51 The high CCS 

variation due to calibration issues can be decreased or eliminated by adopting a 

consistent CCS calibration approach for TWIMS instrumentation. 

In some cases, high CCS variations still occur even if the same CCS calibration 

procedures are applied to the TWIMS platforms. Table S7 shows the CCS values of 12 

compounds obtained from two publications. Generally, the CCS values in the FDA 

approved drugs profiling CCS library27 were ~5 Å2 lower than those obtained for the 

same compounds in the study of Celma et al.28 and both studies used the same CCS 

calibration approach. Therefore, these CCS variations indicates that an improved CCS 

calibration approach, producing higher reproducibility for CCS measurements, needs 

to be proposed for the current TWIMS platforms. 

Post-IMS Dissociation of Noncovalent Clusters. Another reason for high CCS 
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variations is the post-IMS dissociation of noncovalent clusters. In some cases, a 

noncovalent cluster can be formed in the ion source and then travel in IMS cell, thus 

producing an elevated CCS value due to its larger size compared with target ion. This 

phenomenon was well depicted and explained in the study of Song and coworkers,51 in 

which five CCS values were obtained for the [M − H]− adduct of triclosan. The actual 

CCS value of triclosan was 157.4 Å2, this value matched the CCS values from other 

publications.24, 27, 28 The other four elevated CCS values obtained for triclosan were 

177.5, 203.9, 227.5, and 257.0 Å2, all of which are much higher than the actual value. 

In this CCS compendium, there is a high variation of the CCS values of protonated 

chlorpyrifos (RSD value of 10.98%) and may arise from the post-IMS dissociation of 

noncovalent clusters. Four CCS values were found for chlorpyrifos from publications,19, 

28, 45, 52 three of which ranged from 163.0 to 165.0 Å2,19, 28, 52 while the fourth, in the 

study of Hines et al.,45 had a value of 201.7 Å2, depicting a variation of ~38 Å2 from 

other three values. In many cases the sources of CCS variations can be difficult to 

pinpoint. For example, five experimental CCS values were found for the [M + H]+ 

adduct of dexamethasone, four of which ranged from 183.5 to 191.6 Å2,27, 45, 51, 53 while 

the fifth, from the study by Plachka et al.54, had a value of 216.4 Å2. Additionally, the 

study of Plachka et al.54 also produced a relatively higher CCS value (216.2 Å2) for the 

[M + H]+ of betamethasone, compared to the values (186.7-194.2 Å2) obtained from 

other literature.27, 28, 45, 53 As these two compounds contain multiple protonation sites in 

their structures, these high CCS discrepancies could be caused by the formation of 

protomers or the post-IMS dissociation of noncovalent clusters. 
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The CCS records with high discrepancies are likely to be removed by using CCS 

versus mass trend lines for each super class with a predefined predictive interval,2 

however, this method has a risk of removing correct CCS records that are far from the 

trend lines. The use of Grubbs’ test is also an alternative approach to remove CCS 

outliers, however, this method is not applicable in cases where two significantly 

different CCS values are published for the same adducts of compounds. Another 

promising approach of removing potential outliers is by using CCS prediction tools, 

some suspect outliers can be easily detected by comparing their predicted and measured 

CCS values, this approach was adopted in the study of Plante et al.,4 which enabled the 

successful identification of five outliers.  

 

Commonly Used Molecular Descriptors for CCS Prediction 

Currently, there is no universal agreement on which molecular descriptor is 

essential for predicting the CCS values, however, certain descriptors have been 

frequently utilized in various CCS prediction models. Atom molar refractivity (AMR) 

is a constitutional descriptor, it represents the volume of the molecules for a radiation 

of infinite wavelength,55 and is used to predict the CCS in MetCCS,7 AllCCS,2 Song et 

al.10 and Celma et al.11 The descriptors calculating the polarizability of molecules are 

also often used for CCS prediction.5, 7, 10 In CCSP 2.0,5 the most prominent descriptor 

classes used in SVR models are autocorrelation of topological structure (ATS) 

descriptors and Barysz Matrix descriptors, which are also related to the molecular 

polarizability. Some constitutional descriptor, such as the number of atoms (nAtom), 
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the number of atoms in the longest aliphatic chain (nAtomLAC), the number of atoms 

in the largest chain (nAtomLC), molecular weight, are also contribute to CCS 

prediction.2, 10 The topological descriptors, such as Kier & Hall Chi path indices, kappa 

shape index, Wiener index, are constantly utilized in AllCCS,2 CCSP 2.0,5 Gonzales et 

al.13 and Mollerup et al.9 
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