

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202303457

Lactobacillus Intestinalis Primes Epithelial Cells to Suppress Colitis-Related Th17 Response by Host-Microbe Retinoic Acid Biosynthesis

Qi-Wen Wang, Ding-Jia-Cheng Jia, Jia-Min He, Yong Sun, Yun Qian, Qi-Wei Ge, Ya-Dong Qi, Qing-Yi Wang, Ying-Ying Hu, Lan Wang, Yan-Fei Fang, Hui-Qin He, Man Luo, Li-Jun Feng, Jian-Min Si, Zhang-Fa Song*, Liang-Jing Wang* and Shu-Jie Chen* Supporting Information

L. intestinalis primes epithelial cells to suppress colitis-related Th17 response by host-microbe retinoic acid biosynthesis

Qi-Wen Wang, Ding-Jia-Cheng Jia, Jia-Min He, Yong Sun, Yun Qian, Qi-Wei Ge, Ya-Dong Qi, Qing-Yi Wang, Ying-Ying Hu, Lan Wang, Yan-Fei Fang, Hui-Qin He, Man Luo, Li-Jun Feng, Jian-Min Si, Zhang-Fa Song, Liang-Jing Wang, Shu-Jie Chen

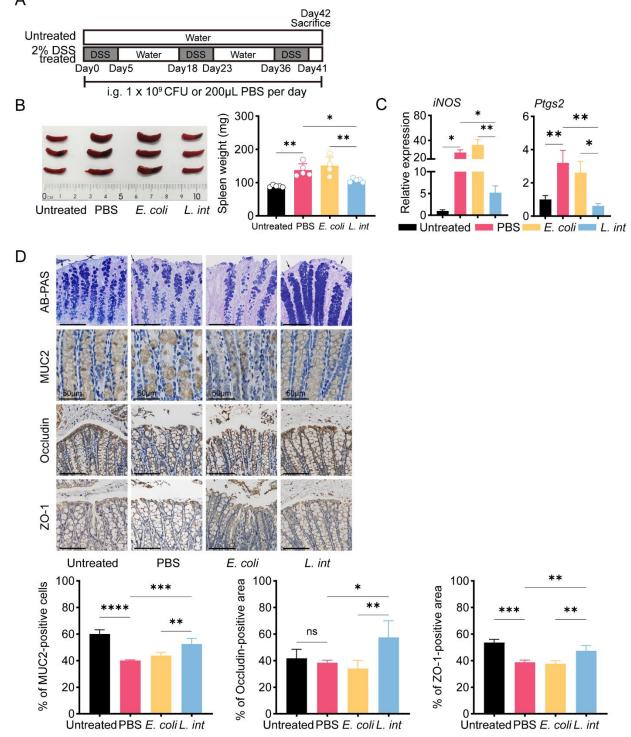


Figure S1, related to Figure 1. L. intestinalis relieved DSS-induced colitis

A, Chronic colitis group mice were treated with 3 cycles of 5-day 2% DSS in drinking water followed by 14-day normal water. Control group mice received normal water during the experiment. **B-D**, spleen size and weight (**B**), and colonic expression of *iNos* and *Ptgs2* (**C**) were compared among mice treated without (Untreated), or with DSS accompanied by PBS, *E. coli*, or *L. intestinalis* (*L. int*) gavage respectively (n = 5). Alcian blue-PAS staining (scale bar, 100 μ m), and the MUC2 (scale bar, 50 μ m), Occludin (scale bar, 100 μ m) and ZO-1 (scale bar, 100 μ m) immunohistochemistry were used for assessment of mucosal barrier (**D**) (n = 3). Error bars indicate mean ± SEM. **P* < .05; ***P* < .01; ****P* < .001; *****P* < .0001. *P* values were based on Mann-Whitney test, Kruskal-Wallis with post-hoc test, and one-way ANOVA with post-hoc test.

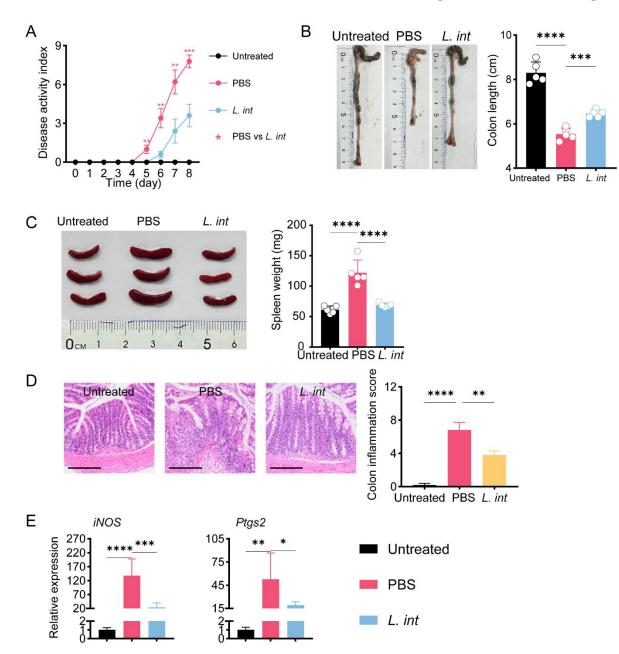


Figure S2, related to Figure 1. L. intestinalis relieved DSS-induced acute colitis

A-E, The pathology of colitis and systemic inflammation was evaluated among control group (Untreated) and the 2 chronic colitis groups with PBS, and *L. intestinalis* (*L. int*) gavage respectively by disease activity index (**A**), colon length (**B**), spleen size and weight (**C**), histological score (scale bar, 200 µm) (**D**), and colonic expression of *iNos* and *Ptgs2* (**E**) (n = 5). Error bars indicate mean \pm SEM. **P* < .05; ***P* < .01; ****P* < .001; *****P* < .0001. *P* values were based on one-way ANOVA with post-hoc test.

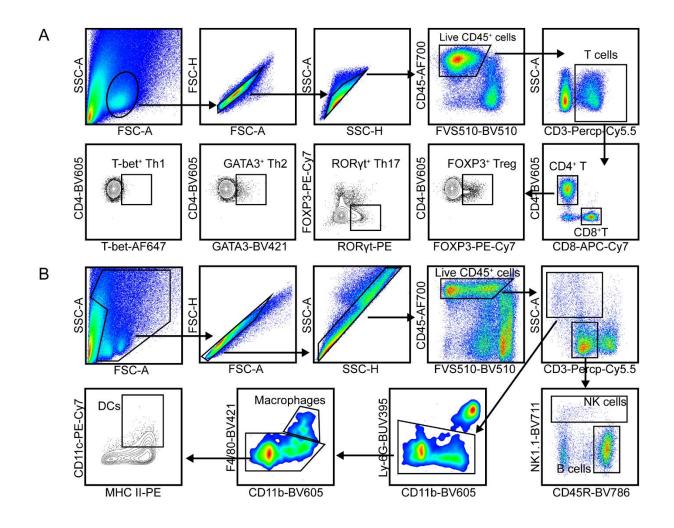


Figure S3, related to Figure 2. Gating strategy for multicolor flow cytometry

A-B, Gating strategy for multicolor flow cytometry.

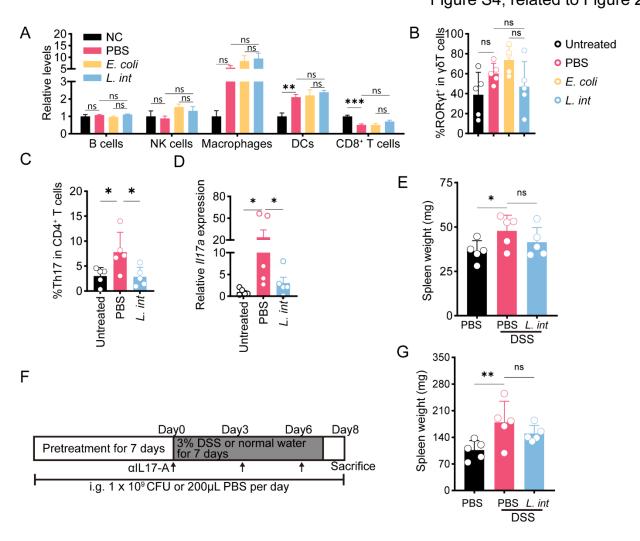


Figure S4, related to Figure 2

Figure S4, related to Figure 2. L. intestinalis relieved colitis in a Th17-dependent way.

A-B, Related levels of major immune cells (**A**) and frequencies of TCRγδ⁺RORγt⁺ T cells (**B**) were tested by multicolor flow cytometry in colon lamina propria of untreated mice and chronic DSS-treated mice with gavage of PBS, *E. coli*, or *L. intestinalis* (*L. int*). **C-D**, Frequencies of Th17 cells in colon lamina propria of untreated mice and acute DSS-treated mice with gavage of PBS or *L. intestinalis* (*L. int*) (**C**), and *Il17a* expression were performed (**D**). **E**, Spleen weight was compared among untreated *Rag1^{-/-}* mice and acute DSS-treated or the 7th day before DSS treatment with gavage of PBS or *L. intestinalis* (*L. int*). **F**, Pretreatment with gavage of PBS or *L. intestinalis* (*L. int*) was started on the 7th day before DSS treatment and until the end of the experiment. Control group (Untreated) received PBS gavage without DSS treatment. On day 0, 3, and 6 of DSS course, all mice were intraperitoneally injected with IL-17A neutralizing antibodies (αIL17-A). **G**, Spleen weight was compared among untreated mice with gavage of PBS or *L. intestinalis* (*L. int*), which all were administrated with αIL17-A. Error bars indicate mean ± SEM. n = 5. ns, no significance; **P* < .05; ***P* < .01; ****P* < .001. *P* values were based on one-way ANOVA with post-hoc test.

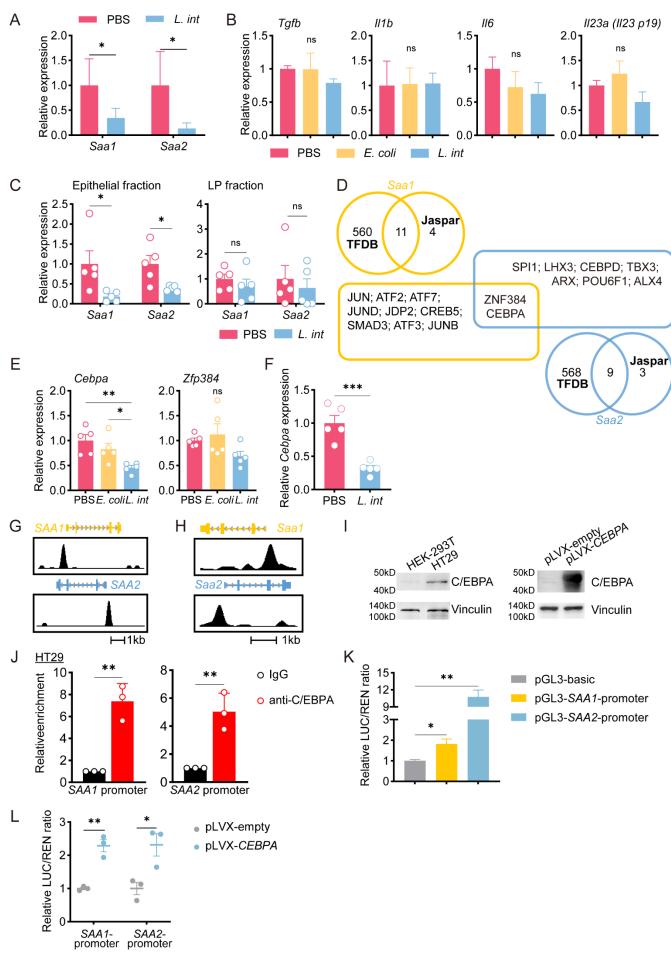


Figure S5, related to Figure 3

Figure S5, related to Figure 3. The colonization of *L. intestinalis* induced colonic epithelial SAA1/2 expression via CEBP/A, but did not alter cytokine profiles

A, Expression of *Saa1/2* was evaluated in bulk colon samples from acute DSS-treated mice with gavage of PBS or *L*. *intestinalis* (*L*. *int*) (n = 5). **B**, Expression of *Tgfb*, *Il1b*, *Il6* and *Il23a* was evaluated in bulk colon

samples from chronic DSS-treated mice with gavage of PBS, E. coli or L. intestinalis (L. int) (n = 5). C, Expression of Saa1/2 was evaluated in colonic epithelial and lamina propria fractions from acute DSStreated mice with gavage of PBS and L. intestinalis (L. int) (n = 5). D, The potential transcriptions of Saal and Saa2 were predicted by JASPAR and TFDB. E, Expression levels of Cebpa and Zfp384 were evaluated in bulk colon samples from chronic DSS-treated mice with gavage of PBS, E. coli, and L. intestinalis (L. int) (n = 5). **F**, *Cebpa* expression was evaluated in bulk colon samples from acute DSS-treated mice with gavage of PBS and L. intestinalis (L. int) (n = 5). G-H, C/EBPA binding regions near the transcription start sites of human SAA1/2 (G) and mouse Saa1/2 (H) were obtained from Cistrome Data Browser. I, The endogenous expression level of C/EBPA in HEK-293T and HT29 was detected by western blot (left). Overexpression of C/EBPA was tested by western blot in HEK-293T (right). J. The enrichment at SAA1 and SAA2 promoter was detected by CUT&RUN-qPCR in HT29 cell using anti-C/EBPA or control IgG. K, The luciferase activity was tested for the transcription function of SAA1 and SAA2 promoter-driven luciferase reporters. The firefly luciferase (LUC) was driven by SAA1 or SAA2 promoter region. The trans-activation ability of C/EBPA was measured by the LUC / Renilla luciferase (REN) ratio in HEK-293T cells co-transfected with pLVX-empty or pLVX-CEBPA (n = 3). Error bars indicate mean \pm SEM. ns, no significance; *P < .05; **P<.01; ***P <.001. P values were based on Student's t test and one-way ANOVA with post-hoc test.

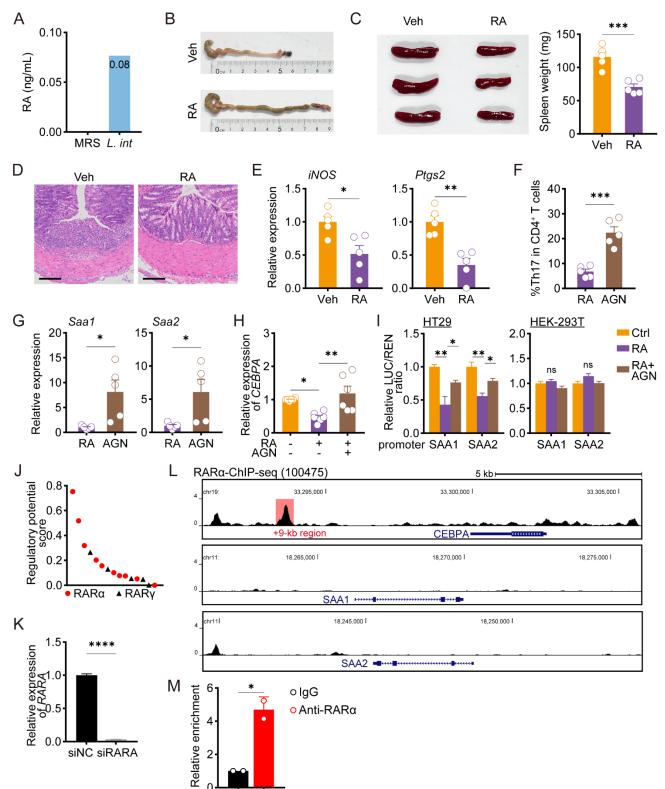


Figure S6, related to Figure 4

Figure S6, related to Figure 4. L. intestinalis contributed retinoic acid synthesis to relieve colitis.

A, Quantification of retinoic acid (RA) was performed in the MRS media or MRS media incubated with *L*. *intestinalis* (*L. int*). **B-E**, Representative colon images (**B**), spleen size and weight (**C**), pathology (scale bar, 200 μ m) (**D**), and colonic expressions of *iNOS* and *Ptgs2* (**E**) were compared between DSS-treated mice with vehicle (Veh) or retinoic acid (RA) gavage (n=5). **F-G**, Frequencies of Th17 cells in colon lamina propria (**F**) and expression of *Saa1/2* (**G**) were compared between DSS-treated mice with retinoic acid (RA) or retinoic acid + AGN193109 (AGN) administration (n=5). **H**, Expression of C/EBPA was tested in HT29 cells treated with RA or AGN (n=6). **I**, The firefly luciferase was driven by *SAA1* or *SAA2* promoters. The LUC / REN ratio was measured in HT29 and HEK-293T cells with treatment of retinoic acid (RA) or retinoic acid receptors antagonist (AGN193109, AGN). **J**, The regulatory potential score of RARs were

obtained from Cistrome Data Browser, spanning a region of ~100 kb from transcription start site of *CEBPA* gene. **K**, Expression of *RARA* was tested in HT29 cells with RARA knockdown by siRNA. **L**, RAR α binding regions in the flanking regions of *CEBPA* were obtained from Cistrome Data Browser. **M**, The enrichment at +9-kb region of *CEBPA* was detected by ChIP-qPCR in HT29 cells using anti-RAR α or control IgG. Error bars indicate mean ± SEM. ns, no significance; **P* < .05; ***P* < .01; ****P* < .001. *P* values were based on Student's t test and one-way ANOVA with post-hoc test.

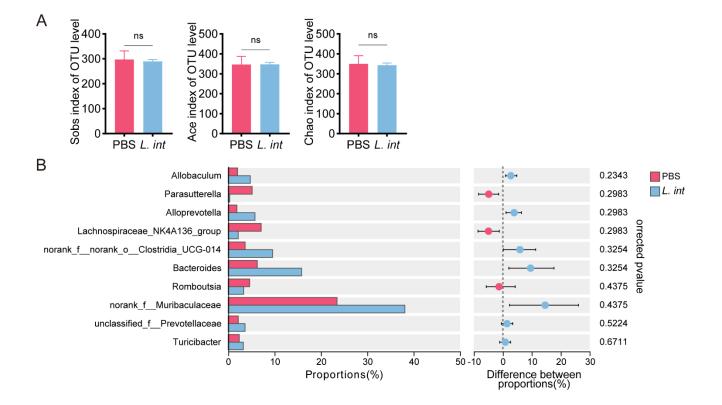
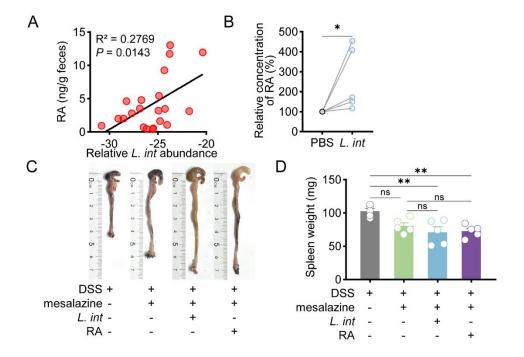



Figure S7, related to Figure 5

Figure S7, related to Figure 5. *L. intestinalis* promoted retinoic acid synthesis through its own ALDH and by enhancing host ALDH

A, The α -diversity of the fecal was compared between chronic DSS-treated mice with PBS gavage and with *L. intestinalis* (*L. int*) gavage (n = 5). **B**, The genus-level taxonomic compositions with top 10 P value were compared between chronic DSS-treated mice with PBS gavage and with *L. intestinalis* (*L. int*) gavage using Wilcoxon rank-sum test with corrected P value. *P* values were based on Student's t test and Wilcoxon rank-sum test with corrected P value.

Figure S8, related to Figure 6. *L. intestinalis* suppressed the CEBP/A-SAA1/2-Th17 axis in UC patients and exerted therapeutic effect on DSS-induced colitis.

A, The correlation analysis was performed in feces from IBD patients to determine the relationship between the retinoic acid (RA) concentration and *L. intestinalis* (*L. int*) abundance. **B**, The relative concentration of RA was measured in supernatant of fecal *in vitro* anaerobic fermentation administrated with or without *L. intestinalis* (*L. int*). **C-D**, Representative colon images (**C**) and spleen size and weight (**D**) were compared DSS-treated mice treated with vehicle (Veh), or mesalazine alone or in combination with *L. intestinalis* (*L. int*) or retinoic acid (RA) (n=5). Error bars indicate mean \pm SEM. ns no significant; **P* < .05; ***P* < .01. *P* values were based on Pearson correlation test, ratio paired t test, and one-way ANOVA with post-hoc test.