SUPPLEMENTARY TABLES

Entended Duta Fuble It of ystanographic statistic	Extended	Data	Table	1.	Crystallo	grap	hic	statisti	cs
---	----------	------	-------	----	-----------	------	-----	----------	----

	Lettuce-DFHBI-1T	Lettuce–DFHBI-1T Thallium I Dataset	Lettuce-DFHO	Lettuce-DFAME
Data collection* [†]		Thaman T Dataset		
Beamline	APS 24-ID-E	APS 24-ID-C	APS 24-ID-E	ALS 5.01
Wavelength (Å)	0.912	0.976	0.912	0.977
Space group	$P 2_1 2_1 2_1$	$P 2_1 2_1 2_1$	$P 2_1 2_1 2_1$	$P 2_1 2_1 2_1$
Cell dimensions		1 1 1	1 1 1	
a, b, c (Å)	25.01 44.42 118.92	24.65 42.82 119.53	24.57 42.28 119.13	24.88 43.02 119.62
α, β, γ (°)	90 90 90	90 90 90	90 90 90	90 90 90
Resolution (Å)	59.46 - 2.5	119.53 - 2.27	119.13 - 2.01	59.81 - 2.90
R _{merge}	0.102 (0.287)	0.127 (1.223)	0.065 (2.844)	0.070 (0.269)
$CC_{1/2}$	0.998 (0.956)	0.996 (0.689)	0.998 (0.382)	0.994 (0.987)
<i>/<\sigma(I)></i>	13.9 (2.0)	12.6 (1.4)	15.6 (0.8)	20.0 (3.1)
Completeness (%)	97.63 (99.79)	99.8 (98.0)	99.5 (99.4)	99.91 (100.0)
Redundancy	10.2 (11.62)	12.1 (13.2)	12.5 (13.5)	11.46 (12.39)
Refinement				
Resolution (Å)	41.61 - 2.5 (2.59 -	59.77 - 2.5 (2.59 -	59.57 - 2.60 (2.69 -	40.48 - 3.0 (3.10 -
	2.5)	2.5)	2.60)	3.0)
Unique reflections	4869 (473)	4773 (444)	4167 (409)	2870 (296)
$R_{\rm work}$ / $R_{\rm free}$	0.225 / 0.268	0.212 / 0.251	0.214 / 0.265	0.228 / 0.291
No. atoms				
DNA	1153	1110	1091	1120
Ligand/ion	28	28	26	29
Water	17	29	18	16
<i>B</i> -factors ($Å^2$)				
DNA	59.77	61.69	72.26	53.07
Ligand/ion	49.64	53.25	60.41	44.76
Water	45.98	52.41	59.82	41.20
R.m.s. deviations				
Bond lengths (Å)	0.005	0.005	0.011	0.04
Bond angles (°)	0.78	0.83	1.23	0.66
Mean precision (Å)	0.42	0.39	0.44	0.41
PDB ID	8FHV	8FHX	8FHZ	8FI0

*One crystal was used for each dataset. [†]Values in parentheses are for highest resolution shell.

Lettuce C20G – Lettuce C	C20T – Lettuce C20T	– Lettuce C20T –
--------------------------	---------------------	------------------

DFHO	DFHBI-1T	DFHO	DFAME
APS 24-ID-C	APS 24-ID-C	APS 24-ID-C	APS 24-ID-C
1.105	1.105	1.105	1.105
$P 2_1 2_1 2_1$	$P 2_1 2_1 2_1$	$P 2_1 2_1 2_1$	$P 2_1 2_1 2_1$
25.81 46.99 120.98	24.84 44.56 119.59	24.57 43.10 117.64	25.02 43.95 120.10
90 90 90	90 90 90	90 90 90	90 90 90
120.98 - 2.35	41.76 - 2.70	43.10 - 2.80	60.05 - 2.40
0.154 (2.191)	0.174 (0.563)	0.164 (0.442)	0.113 (0.527)
0.985 (0.496)	0.998 (0.860)	0.996 (0.958)	0.998 (0.916)
9.6 (0.9)	10.7 (1.0)	22.8 (2.50)	19.3 (1.1)
99.9 (100)	99.0 (97.38)	98.63 (98.79)	98.48 (100.0)
12.3 (13.1)	10.5 (10.49)	9.15 (10.97)	11.6 (11.74)
43.81 - 2.6 (2.69 -	35.73 - 3.0 (3.11 -	34.77 - 2.90 (3.0 -	41.28 - 2.8 (2.9 -
2.6)	3.0)	2.9)	2.8)
4913 (461)	2926 (290)	3048 (289)	3540 (330)
0.219 / 0.271	0.244 / 0.287	0.244 / 0.289	0.217 / 0.283
1115	1154	1121	1117
25	27	25	28
19	9	16	16
72.46	(1.05	45.10	12.00
73.46	61.25	45.18	43.08
55.77	53.09	44.16	41.4/
63.43	50.07	30.13	37.01
0.006	0.004	0.005	0.006
0.77	0.70	0.68	0.75
0.49	0.24	0.38	0.23
8FI1	8FI2	8FI7	8FI8

*One crystal was used for each dataset. [†]Values in parentheses are for highest resolution shell.

	Unliganded Lettuce
Microscope	Glacios
Voltage (keV)	200
Nominal Magnification	105,000x
Cumulative Exposure (e/Å ²)	52
Detector	Falcon 4
Pixel Size (Å/pix)	0.9
Defocus Range (µm)	(-0.8) – (-2.2)
Micrographs Used (no.)	3,327
Total Extracted Particles ¹ (no.)	1,105,996
Refined Particles (no.)	55,288
Map Resolution ² (Å)	6.5
EMDB ID	EMD-29329

Extended Data Table 2. Cryo-EM data collection and processing parameters

Total extracted particles are defined as the particles obtained after Topaz picking.
Resolution was calculated based on the FSC-curve at the value of 0.143.

	Lettuce (8	e DNA apt structures	amer)	Deoxyribo 9DB1	5 5 5	Deoxyribo Dz36	⁶ ₆	<i>i</i> Spinach aptame	RNA er ⁷
Position	Nucleotide	Angle mean	Standard dev.	Nucleotide	Angle	Nucleotide	Angle	Nucleotide	Angle
1	С	156	21.7	А	3	Т	165	G	6
2	Т	155	8.4	Т	13	G	105	G	6
3	Т	158	5.1	С	17	Т	109	G	8
4	А	154	18.4	С	164	А	123	А	9
5	G	139	6.5	G	164	А	151	G	14
6	Т	156	18.0	А	150	С	125	U	16
7	А	148	4.7	Т	144	G	153	А	14
8	G	142	11.0	G	163	С	86	С	15
9	G	172	34.2	G	145	А	166	G	11
10	G	142	5.4	А	148	С	144	G	14
11	А	32	13.3	Т	152	Т	151	U	12
12	Т	24	5.0	С	191	G	25	G	9
13	G	11	1.8	А	201	С	146	А	21
14	А	164	21.3	Т	354	С	149	G	17
15	Т	140	29.9	А	135	А	185	G	160
16	G	149	16.3	С	40	G	19	G	150
17	С	101	31.5	G	173	С	210	U	164
18	G	159	31.1	G	183	G	178	С	18
19	G	176	22.3	Т	161	G	79	G	8
20	C, G or T	154	23.4	С	0	С	59	G	13
21	А	186	9.9	G	185	Т	47	G	17
22	G	147	23.1	G	7	С	156	U	15
23	Т	145	5.4	А	173	G	138	С	22
24	G	179	6.1	G	86	А	164	С	16
25	G	154	18.5	G	191	А	142	А	11
26	G	115	59.9	G	190	А	144	G	11
27	С	124	54.2	G	182	Т	108	U	13
28	Т	81	45.5	Т	195	С	46	А	15
29	Т	162	1.9	Т	193	Т	160	G	7
30	С	152	45.1	Т	208	С	125	G	18
31	G	183	12.6	G	5	Т	152	U	15
32	С	155	3.2	С	15	С	127	А	167
33	А	172	8.5	С	1	Т	130	С	161
34	G	149	11.4	G	5	С	42	G	22
35	Т	71	25.5	Т	20	G	17	С	14
36	Т	Disorde	ered loop	Т	134	Т	31	C	10
37	C	Disorde	ered loop	Т	128	-	-	U	18

Extended Data Table 3. Pucker angle analysis

38	С	Disorde	ered loop	А	51	-	-	А	11
39	Т	150	32.9	А	32	-	-	С	13
40	G	158	23.5	G	353	-	-	U	14
41	С	192	7.6	Т	359	-	-	G	23
42	G	16	11.2	G	21	-	-	U	133
43	А	188	14.7	С	19	-	-	U	28
44	G	153	18.9	С	147	-	-	G	25
45	G	183	9.0	-	-	-	-	А	168
46	G	104	35.2	-	-	-	-	G	17
47	G	57	38.5	-	-	-	-	U	164
48	А	158	13.6	-	-	-	-	А	161
49	С	130	31.4	-	-	-	-	G	72
50	Т	164	11.6	-	-	-	-	А	154
51	А	159	17.9	-	-	-	-	G	162
52	А	135	11.0	-	-	-	-	U	163
53	G	163	20.5	-	-	-	-	G	21
54	-	-	-	-	-	-	-	U	39
55	-	-	-	-	-	-	-	G	1
56	-	-	-	-	-	-	-	G	14
57	-	-	-	-	-	-	-	G	14
58	-	-	-	-	-	-	-	С	11
59	-	-	-	-	-	-	-	U	22
60	-	-	-	-	-	-	-	С	14
61	-	-	-	-	-	-	-	С	14
62	-	-	-	-	-	-	-	G	18
63	-	-	-	-	-	-	-	U	357
64	-	-	-	-	-	-	-	А	11
65	-	-	-	-	-	-	-	С	352
66	-	-	-	-	-	-	-	U	354
67	-	-	-	-	-	-	-	С	18
68	-	-	-	-	-	-	-	С	20
69	-	-	-	-	-	-	-	С	16

Extended Data Table 4. Sequences of constructs used in this study

Name	Sequence, 5' to 3'				
Lettuce w.t crystallization	CTTAGT AGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGAGGGG ACTAAG				
C20G - crystallization					
construct	CTTAGT AGGGATGATGCGGGGAGTGGGCTTCGCAGTTCCTGCGAGGGG ACTAAG				
C20T - crystallization construct	CTTAGT AGGGATGATGCGGTAGTGGGCTTCGCAGTTCCTGCGAGGGG ACTAAG				
Lettuce w.t fluorescence experiments construct (f.c.) - modified P1 (4 nts)	CCGT AGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGAGGGG ACGG				
Split Lettuce w.t. part 1	CTTAGT AGGGATGATGCGGCAGTGGGCTTCGCAG				
Split Lettuce w.t. part 2	CTGCGAGGGG ACTAAG				
A11G	CCGT AGGGGTGATGCGGAAGTGGGCTTCGCAGTTCCTGCGAGGGGACGG				
A11C	CCGT AGGGCTGATGCGGAAGTGGGCTTCGCAGTTCCTGCGAGGGG ACGG				
A11T	CCGT AGGGTTGATGCGGAAGTGGGCTTCGCAGTTCCTGCGAGGGG ACGG				
G26A	CCGT AGGGATGATGCGGCAGTGG <mark>A</mark> CTTCGCAGTTCCTGCGAGGGG ACGG				
G26T	CCGT AGGGATGATGCGGCAGTGGTCTTCGCAGTTCCTGCGAGGGG ACGG				
C17G and G26C	CCGT AGGGATGATG <mark>G</mark> GGCAGTGG <mark>C</mark> CTTCGCAGTTCCTGCGAGGGG ACGG				
C17T and G26A	CCGT AGGGATGATGTGGCAGTGGACTTCGCAGTTCCTGCGAGGGG ACGG				
C20G	CCGT AGGGATGATGCGGGAGTGGGCTTCGCAGTTCCTGCGAGGGG ACGG				
C20A	CCGT AGGGATGATGCGGAAGTGGGCTTCGCAGTTCCTGCGAGGGG ACGG				
С20Т	CCGT AGGGATGATGCGGTAGTGGGCTTCGCAGTTCCTGCGAGGGG ACGG				
C20 deletion (del)	CCGT AGGGATGATGCGG/del/AGTGGGCTTCGCAGTTCCTGCGAGGGG ACGG				
G18I*	CCGT AGGG ATGAT GC/I/GC AGTGG GCTTC GCAGT TCCTG CGAGG GG ACGG				
C17>rC17, G18>rG18, G25>rG25, and G26>rG26*	CCGT AGGGATGATG <mark>rCrG</mark> GCAGTG <mark>rGrG</mark> CTTCGCAGTTCCTGCGAGGGG ACGG				
A14T and T29A	CCGT AGGGATGTTGCGGCAGTGGGCTACGCAGTTCCTGCGAGGGG ACGG				
A14G and T29C	CCGT AGGGATG <mark>G</mark> TGCGGCAGTGGGCTCCGCAGTTCCTGCGAGGGG ACGG				
A14C and T29G	CCGT AGGGATGCTGCGGCAGTGGGCTGCGCAGTTCCTGCGAGGGG ACGG				
T15A	CCGT AGGGATGAAGCGGCAGTGGGCTTCGCAGTTCCTGCGAGGGG ACGG				
T28A	CCGT AGGGATGATGCGGCAGTGGGCATCGCAGTTCCTGCGAGGGG ACGG				
T15G and T28C	CCGT AGGGATGAGGCGGCAGTGGGCCCTCGCAGTTCCTGCGAGGGG ACGG				
T15C and T28G	CCGT AGGGATGACGCGGCAGTGGGCCGTCGCAGTTCCTGCGAGGGG ACGG				
T15G, T28C, A14T and T29A	CCGT AGGGATG <mark>TG</mark> GCGGCAGTGGGCCACGCAGTTCCTGCGAGGGG ACGG				
A43 del	CCGT AGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCG/del/GGGG ACGG				
A43G	CCGT AGGGATGATGCGGCAGTGG GCTTCGCAGTTCCTGCGGGGGGG ACGG				
A43C	CCGT AGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGCGGGG ACGG				
A43T	CCGT AGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGTGGGG ACGG				
G44 del	CCGT AGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGA/del/GGG ACGG				
G44A	CCGT AGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGAAGGG ACGG				
G44C	CCGT AGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGACGGG ACGG				
G44T	CCGT AGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGATGGG ACGG				

A7C	CCGT CGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGAGGGG ACGG
G8 del	CCGT A/del/GGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGAGGGG ACGG
G22C	CCGT AGGGATGATGCGGCACTGGGGCTTCGCAGTTCCTGCGAGGGG ACGG
G47T	CCGT AGGGATGATGCGGCAGTGGGCTTCGCAGTTCCTGCGAGGGT ACGG
Minimization: 4 nts P1, 3 nts P2, and loop TTC	CCGT AGGGATGATGCGGCAGTGGGCTTCGCTTCGCGAGGGG ACGG
Minimization: 4 nts P1, 2 nts P2, and loop TTC	CCGT AGGGATGATGCGGCAGTGGGCTTCGTTCCGAGGGG ACGG
Minimization: 4 nts P1 and P2 del - just loop TTC	CCGT AGGGATGATGCGGCAGTGGGCTTTTCAGGGG ACGG
Circular permutation (C.P.) crystallization construct	CTGCG AGGGGACTAAGTTCCTTAGTAGGGATGATGCGGCAGTGGGCTT CGCAG
C.P.: 4 nts P1 _{cp} , and loop TTC	CTGCG AGGGGACGGTTCCCGTAGGGATGATGCGGCAGTGGGCTT CGCAG
C.P.: 3 nts P1 _{cp} , and loop TTC	CTGCG AGGGG ACGTTCCGT AGGGATGATGCGGCAGTGGGCTT CGCAG
C.P.: 2 nts P1 _{cp} , and loop TTC	CTGCG AGGGGACTTCGTAGGGATGATGCGGCAGTGGGCTT CGCAG
C.P.: 1 nt P1 _{cp} , and loop TTC	CTGCG AGGGGATTCTAGGGATGATGCGGCAGTGGGCTT CGCAG
C.P.: P1 _{cp} del - just loop TTC	CTGCG AGGGGTTCAGGGATGATGCGGCAGTGGGCTT CGCAG
C.P.: P1 _{cp} del - just loop TC	CTGCG AGGGGTCAGGGATGATGCGGCAGTGGGCTT CGCAG
C.P.: P1 _{cp} del - just loop T	CTGCG AGGGGTAGGGATGATGCGGCAGTGGGCTT CGCAG
C.P.: P1 _{cp} and loop TTC del	CTGCG AGGGGAGGGATGATGCGGCAGTGGGCTT CGCAG
C.P. T15G, T28C, A14T and T29A: 4 nts P1 _{cp} , and loop TTC	CTGCG AGGGGACGGTTCCCGTAGGGATGTGGCGGCAGTGGGCCA CGCAG
C.P. T15G, T28C, A14T and T29A: 1 nt P1 _{cp} , and loop TTC	CTGCG AGGGGATTCTAGGGATG <mark>TG</mark> GCGGCAGTGGGC <mark>CA</mark> CGCAG
C.P. T15G, T28C, A14T and T29A: 4 nts $P2_{cp}$, and $P1_{cp}$ del - just loop T	CGCG AGGGGTAGGGATG <mark>TG</mark> GCGGCAGTGGGC <mark>CA</mark> CGCG
R-loop DNA Fwd with Lettuce C.P. T15>G, T28>C, A14>T and T29>A: 9 nts P2 _{cp} and P1 _{cp} del - just loop T (underlined)	CACTCCCAGAGTCGTGGCCGTAGGAAATCGCTTAAGATACACAGAATAT <u>CCTCAGTCGAGGGGTAGGGATGTGGCGGCAGTGGGCCACGACTGAGG</u> AATCTCTAGTCAAATTCCATCATCGTAGCGCTGAGGAATTTGGTGGACACTAGGA
R-loop DNA reverse complement	TCCTAGTGTCCACCAAATTCCTCAGCGCTACGATGATGGAATTTGACTAGAG ATTCCTCAGTCGTGGCCCACTGCCGCCACATCCCTACCCCTCGACTGAGGAT ATTCTGTGTATCTTAAGCGATTTCCTACGGCCACGACTCTGGGAGTG
R-loop Fwd primer	CACTCCCAGAGTCGTGGCCGTAGG
RNA used for R-loop formation	GGAAAUCGCUUAAGAUACACAGAAUAUCCUCAGUCGAGGGGUAGGGAUGUG GCGGCAGUGGGCCACGACUGAGGAAUCUCUAGUCAAAUUCCAUCAUCGU
RNA Lettuce w.t.	CUUAGUAGGGAUGAUGCGGCAGUGGGCUUCGCAGUUCCUGCGAGGGGGACUAAG

* Custom synthesized by IDT.

REFERENCES

- Lin, C. H. & Patel, D. J. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. *Chemistry & Biology* 4, 817-832, doi:https://doi.org/10.1016/S1074-5521(97)90115-0 (1997).
- 2 Robertson, S. A., Harada, K., Frankel, A. D. & Wemmer, D. E. Structure determination and binding kinetics of a DNA aptamer–argininamide complex. *Biochemistry* **39**, 946-954, doi:10.1021/bi9915061 (2000).
- 3 Xu, G. *et al.* Structure-guided post-SELEX optimization of an ochratoxin A aptamer. *Nucleic Acids Res.* **47**, 5963-5972, doi:10.1093/nar/gkz336 (2019).
- 4 Xu, G. *et al.* Structural insights into the mechanism of high-affinity binding of Ochratoxin A by a DNA aptamer. *J. Am. Chem. Soc.* **144**, 7731-7740, doi:10.1021/jacs.2c00478 (2022).
- 5 Ponce-Salvatierra, A., Wawrzyniak-Turek, K., Steuerwald, U., Höbartner, C. & Pena, V. Crystal structure of a DNA catalyst. *Nature* **529**, 231-234, doi:10.1038/nature16471 (2016).
- Liu, H. *et al.* Crystal structure of an RNA-cleaving DNAzyme. *Nat. Commun.* 8, 2006, doi:10.1038/s41467-017-02203-x (2017).
- Fernandez-Millan, P., Autour, A., Ennifar, E., Westhof, E. & Ryckelynck, M. Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI. *RNA* 23, 1788-1795, doi:10.1261/rna.063008.117 (2017).

8 Li, S., Olson, W. K. & Lu, X.-J. Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. *Nucleic Acids Res.* 47, W26-W34, doi:10.1093/nar/gkz394 (2019).