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An Algorithmic Analysis of Study A: proofs

In this Section we provide rigorous mathematical proofs for various claims made in the
main text.

The best non-adaptive strategy

We now show that — given any distribution of gem values — at least one of the NC and
the OF strategies is optimal (in terms of its expected gain) in the set of non-adaptive
strategies.

Theorem 1. In a generic game, at least one of the NC and OF strategies is optimal in
the set of non-adaptive strategies.

Proof. First of all, we prove that the exists an optimal non-adaptive strategy that is
deterministic (i.e., non-randomized). Indeed, take an optimal non-adaptive strategy σ.
Since σ could be random, a run of σ will either avoids calling the oracle, or calls it in
the first round, or in the second round, . . . , or in round t. Let p∞ be the probability
that σ avoids calling the oracle and, for i = 1, . . . , t, let pi be the probability that σ
calls the oracle in round i. Then, if Ei is the expected gain conditioned on σ calling the
oracle in round i, and if E∞ is the expected gain conditioned on σ not calling the oracle,
we have that the expected gain of σ is

Eσ =
∑

i∈{1,2,...,t,∞}

(pi · Ei) .

Let i⋆ ∈ {1, . . . , t,∞} be such that Ei⋆ ≥ Ei for each i ∈ {1, . . . , t,∞}. Observe that
there might be multiple i⋆’s with this property. Then, the strategy that deterministically
calls the oracle in round i⋆ — or, if i⋆ = ∞, the NC strategy — has an expected gain of
Ei⋆ which, by Ei⋆ ≥ Ei for each i, and by p1, . . . , pt, p∞ being a probability distribution,
entails that Ei⋆ ≥ Eσ. Thus, we have created a deterministic non-adaptive strategy that
is no worse than the chosen (optimal) randomized non-adaptive strategy.

We then assume that there exists an optimal non-adaptive strategy in the set
S = {σ1, . . . , σt, σ∞} — i.e., the set that contains, for i ∈ {1, . . . , t}, the deterministic
strategy that calls the oracle in round i (σi), as well as the NC strategy (σ∞). Observe
that σ1 is the OF strategy.

Recall that, for i ∈ [n], we let Ei be the expected gain of the σi strategy, and we let
E∞ be the expected gain of σ∞. (Then, EOF = E1 and ENC = E∞). We now show that
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max(E1,E∞) ≥ Ei for each i ∈ {1, . . . , t,∞} — this will prove our main assertion. We
consider two cases:

• first, consider the strategy σi, for i ∈ {2, 3 . . . , t− c}. This strategy, in its first
i− 1 rounds, picks a uniform-at-random subset A of gems conditioned on
|A| = i− 1, and, in its last t− c− i+ 1 rounds picks t− c− i+ 1 gems of
maximum value (among the remaining ones). In particular, then, strategy σi picks
a subset of t− c gems; given that strategy σ1 picks a subset of t− c gems of
maximum total value out of the full set of gems, it must be that Ei ≤ E1. It
follows that, for each i ∈ {2, 3, . . . , t− c}, σi is no better than σ1.

• Now, consider the strategy σi, for i ∈ {t− c+ 1, t− c+ 2, . . . , t}. The strategy σi

is unable to collect any gem after its call to the oracle, since the oracle requires c
time units, and only t time units are available. Thus, σi will only collect i− 1
uniform-at-random gems. Recall that the strategy σ∞ collects t
uniform-at-random gems. Since i− 1 ≤ t− 1 < t, and since no gem has negative
value, it must hold that Ei ≤ E∞. Thus, for each i ∈ {t− c+ 1, t− c+ 2, . . . , t},
σi is no better than σ∞. If gems of negative value are present, this property might
fail to hold — e.g., if each gem has value −1, σ∞ has an expected gain of −t
whereas each other σi has an expected gain of at least −t+ 1 > −t.

It follows that (at least) one of σ1 and σ∞ (that is, of OF and NC) is an optimal
strategy of S and, as a consequence, it is an optimal non-adaptive strategy.

Observe that the expected gain of the NC strategy is equal to t times the average

gem value, ENC = E∞ = t ·
∑

i Xi

n . And, the expected gain of the OF strategy,
EOF = E1, is equal to the total value of the t− c gems of highest value.

These two observations, together with Theorem 1, make it possible to efficiently
compute the expected gain of the optimal non-adaptive strategy: an algorithm could
just return the largest of E1 and E∞.

The best adaptive strategy

We now give an algorithm, based on the well-known dynamic programming technique,
for computing an optimal adaptive strategy.

Let S be a multiset of gem values; imagine S to be the multiset of values of the gems
that are still on the map, after some number of moves. If, at some point in the past, the
participant has called the oracle, the optimal move for S is easy to compute: the
participant should collect one of the gems of highest value among those in S. Otherwise,
the participant should decide whether to call the oracle in the next move, or whether to
collect a uniform-at-random gem.

Let us define Ot,c,S to be the maximum expected gain that an adaptive strategy can
achieve (i) with t time units available, (ii) with an oracle cost of c, (iii) on a map
containing gems whose multiset of values is S.

Clearly if t ≤ 0, or if S = ∅, then Ot,c,S = 0: if there are no moves, or no gems,
available, then the participant cannot collect any gem, and ends up with a null total
gain. Otherwise, we have that

Ot,c,S = max
(
avgv∈S

(
v +Ot−1,c,S−{v}

)
, Tt−c(S)

)
,

where Tt−c(S) is the total value of the t− c gems in S of highest value, or the total
value of the gems in S if |S| < t− c (and, Tk(S) = 0 if k ≤ 0).

The recurrence chooses the best of the two options available to the participant:
either collect a uniform-at-random gem (and obtain the value v of that gem plus the
optimal gain that can be achieved with t− 1 units of time on a map with gem values
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S − {v}), or call the oracle (and obtain the total value Tt−c(S) of the t− c gems of
highest value in S). Clearly, the optimal strategy would select an option that results in
the largest expected value.

Thus, we have expressed the value of Ot,c,S for the base cases (S = ∅, or t ≤ 0), and
given a recurrence for the other cases. Unwinding the recurrence gives rise to a dynamic
program that computes the maximum expected gain achievable by an adaptive strategy.

It is easy to observe that, for a set of n gems, this dynamic program runs in time
O(n · 2n). In fact, if there are only k distinct gem values v1, . . . , vk, and if the generic

value vi is shared by gi gems, we have that n =
∑k

i=1 gi and that the dynamic program
can also be implemented to run in time O(k · nk) — that is, if there are constantly
many distinct gem values, the runtime becomes polynomial.

The Adaptivity Gap

We have already argued that there exist settings where non-adaptivity makes the
participant achieve no more than 96% of the optimal gain achievable by adaptive
strategies. In this section we show that the gap can be larger: there are settings where
non-adaptive users can collect no more than 91.73% of the optimal gain.

Let ϕ = 1+
√
5

2 ≈ 1.61803 . . . be the Golden ratio, and recall that 1
ϕ = ϕ− 1. We

define a Golden ratio-based game which will allow us to give a stronger bound on the
adaptivity gap:

Definition 2 (Golden Game). For a large enough n, let the map be composed of
g1 = n− 1 gems of value v1 = 1, and g2 = 1 gem of value v2 = n

ϕ ; the player has

t =
⌈
n
ϕ

⌉
time units available, and calling the oracle requires c =

⌈(
2
ϕ − 1

)
· n

⌉
time

units.

In particular, observe that v2 and t are approximately equal to 0.61803 . . . · n, and
that c ≈ 0.23606 . . . · n.

We begin our analysis by computing the expected gain of the two extremal
non-adaptive strategies on this game.

Lemma 3. Both the NC, and the OF, strategies induce an expected gain of n±O(1) on
the game of Definition 2.

Proof. The NC strategy captures the gem of value v2 with probability t
n , and captures

either t− 1, or t, gems of value v1: its expected gain is then

t

n
· v2 + (t±O(1)) · v1 =

⌈
n
ϕ

⌉
n

· n
ϕ
+

n

ϕ
· 1±O(1) =

n

ϕ2
+

n

ϕ
±O(1)

=
n · (ϕ− 1)

ϕ
+

n

ϕ
±O(1) =

n · ϕ
ϕ

±O(1) = n±O(1).

The OF strategy, instead, captures the gem of value v2 and t− c− 1 gems of value v1,
with probability 1. Its total gain is then

v2 + (t− c− 1) · v1 =
n

ϕ
+

(
n

ϕ
−
(
2

ϕ
− 1

)
· n

)
· 1±O(1)

=
n

ϕ
+

(
1− 1

ϕ

)
· n±O(1) = n±O(1).

We can now bound the expected gain of optimal non-adaptive strategies.
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Corollary 4. The expected gain of optimal non-adaptive strategies for the game of
Definition 2 is n±O(1).

Proof. Apply Theorem 1 and Lemma 3.

We now show that there exists an adaptive strategy with an expected gain of
1.09016 . . . · n — roughly, 9% more than the expected gain of optimal non-adaptive
strategies.

Theorem 5. There exists an adaptive strategy for the game of Definition 2 with
expected gain (5 · ϕ− 7) · n±O(1).

Proof. Consider the following adaptive strategy: in the first phase of the game, the
participant captures t− c− 1 uniform-at-random gems. If the participant captures the
high-value gem (i.e., that of value v2) during the first phase, the participant will keep
capturing uniform-at-random gems for the remainder of the game. Otherwise, right
after the end of the first phase, the participant will (i) call the oracle, and (ii) capture
the high-value gem, just before the game ends.

Observe that the behavior of the participant is determined by the event ξ = “the
high-value gem is captured during the first phase”. The probability of ξ is equal to
t−c−1

n (i.e., the probability of drawing a red ball in t− c− 1 draws without replacement
from an urn containing one red ball, and n− 1 blue balls). If ξ happens, the participant
captures the gem of value v2, and t− 1 gems of value v1; if ξ does not happen, the
participant captures the gem of value v2, and t− c− 1 gems of value v1. Thus, the
expected gain of the participant is equal to

Pr[ξ] · (v2 + (t− 1) · v1) + (1− Pr[ξ]) · (v2 + (t− c− 1) · v1)

= v2 +
(t− 1) · (t− c− 1)

n
· v1 +

(n− t+ c+ 2) · (t− c− 1)

n
· v1

= v2 +
t− c− 1

n
· v1 · ((t− 1) + (n− t+ c+ 2))

= v2 +
(t− c− 1) · (n+ c+ 1)

n
· v1

=
n

ϕ
+

(
n
ϕ −

(
2
ϕ − 1

)
· n

)
·
(
n+

(
2
ϕ − 1

)
· n

)
±O(n)

n

=
n

ϕ
+

n2 ·
(
− 1

ϕ + 1
)
· 2
ϕ ±O(n)

n

=
n

ϕ
+ n ·

(
1− 1

ϕ

)
· 2
ϕ
±O(1) =

n

ϕ
+ n · (2− ϕ) · 2

ϕ
±O(1)

=
n

ϕ
+ n ·

(
4

ϕ
− 2

)
±O(1) =

(
5

ϕ
− 2

)
· n±O(1) = (5 · ϕ− 7) · n±O(1).

The final result of this section readily follows from the above bounds.

Corollary 6. There exist games with n gems such that non-adaptive strategies can get
no more than a fraction of

2

53/2 − 9
+O

(
1

n

)
≈ 0.91728 . . .

of the optimal (adaptive) strategy’s expected gain.
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Proof. We apply Corollary 4 and Theorem 5, to conclude that the game of Definition 2
has a ratio between the expected gain of its best non-adaptive strategy, and the
expected gain of its best adaptive strategy, not larger than

n+O(1)

(5 · ϕ− 7) · n−O(1)
=

1

5 · ϕ− 7
+O

(
1

n

)
=

1

5 ·
√
5+1
2 − 7

+O

(
1

n

)
=

2

53/2 + 5− 14
+O

(
1

n

)
=

2

53/2 − 9
+O

(
1

n

)
.
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