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ABSTRACT

Temperature affects the total amount, the time course, and the red/
far-red effectiveness ratio of light-dependent anthocyanin production in
Brassica oleracea L. seedlings. Some of the effects of temperature on
anthocyanin production in cabbage are in agreement with the predictions
of a model proposed by JK Wall and CB Johnson (1983 Planta 159:
387-397) for the effects of temperature on the state of phytochrome and
on the expression of phytochrome-mediated high irradiance responses,
but others are not. The lack of a complete agreement between experi-
mental results and model predictions might be due to factors related to
the experimental system used or to limitations of the model or both.

Light-dependent anthocyanin production in young seedlings
displays properties typical of HIR2 plant photomorphogenic
responses (8, 9). Phytochrome is involved in the photoregulation
of the HIR (9).

Several theoretical models of phytochrome dynamics (2-4, 7,
15, 19) have been developed to explain the HIR in terms of the
interaction between photochemical (photoconversion) and non-
photochemical (synthesis, destruction, dark reversion) reactions
of phytochrome. In the range of temperatures from 0 to 30°C,
phytochrome photoconversion is temperature-independent and
the dark reactions are temperature-dependent: for example, the
Qlo for phytochrome destruction is about 3 between 5 and 25C
(13). Recently, Wall et al. (20) have proposed a model for the
effect of temperature on the state of phytochrome under pro-
longed irradiation, and have suggested that, at low temperatures,
the HIR responses might show a reduced peak of action in the
FR region and that the establishment of the HIR peak of action
in the FR region might be considerably delayed and therefore
unlikely to be observed within the time scale of most physiolog-
ical experiments.
The purpose of this study was to test if the suggestions of Wall

et al. (20) are valid for anthocyanin production in cabbage
seedlings.

MATERIALS AND METHODS

Seeds ofcabbage (Brassica oleracea L., Burpee Red Acre) were
sown in Petri dishes on filter paper moistened with distilled H20.
For the continuous irradiation treatments (Fig. 1), the seedlings

were grown in darkness for 72 h at 14 or 25°C and then exposed
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to R or FR from 12 to 72 h at 14 or 25°C. For the cyclic light
treatments (Table I), seedlings were grown in darkness for 72 h
at 25°C and then exposed daily for 3 d to 8 or 16 h of R or FR
at constant or alternating temperatures, 14 and 25°C, during the
light and dark phases of the cycle. The R and FR sources used
for the light treatments have been described previously (10).
The pigments were extracted by shaking the seedlings for 48 h

at 4°C in acidic (1% HCI, w/v) methanol. The absorbance of the
extracts, clarified by filtration, was measured at 530 and 657 nm.
The formula A530 - 0.25 A657 was used to compensate for the
contribution of Chl and its degradation products to the absorp-
tion at 530 nm, as described previously (10). The values reported
in Figure 1 and Table I represent the means of 8 or 16 replicates
in two independent experiments; 16 replicates were used for the
treatments resulting in low anthocyanin production (A in light
- A in dark = 0.3 or less). The standard errors were about 3 to
5% of the values of the means.

RESULTS AND DISCUSSION

The results (Fig. 1; Table I) show that the value of the FR/R
effectiveness ratio increases with increasing duration of the light
treatments. This finding is in agreement with the prediction of
theoretical models for phytochrome action in the photoregula-
tion of the HIR (2-4, 15) and confirms previous experimental
results (8).
Under continuous light treatments (Fig. 1), the seedlings main-

tained at constant low temperature (Fig. 1D) produce consider-
ably less anthocyanin than those maintained under the other
temperature combinations. This is probably a consequence of
the fact that the growth of the seedlings is delayed at low
temperature and a longer time is required to reach system
competence for anthocyanin production. The differences in total
anthocyanin production among the four temperature combina-
tion treatments decrease with increasing duration of the light
treatments. The values of the FR/R effectiveness ratio are the
same for all temperature combinations in the 12 h light treat-
ments. For the 24 to 72 h light treatments, the value of the FR/
R effectiveness ratio is somewhat higher for the seedlings main-
tained at a constant low temperature (Fig. 1 D) than for all other
temperature combinations. For the 24 h irradiations, the lowest
value of the FR/R effectiveness ratio is found for the "72 h D at
25°C + 24 h L at 14°C" treatment (Fig. 1B). The effects of
temperature on the values of the FR/R effectiveness ratio are
not completely consistent with the predictions of the model by
Wall et al. (20), according to which the increase in the value of
the FR/R effectiveness ratio with increasing duration of the
continuous light treatments should be delayed at low tempera-
tures.
The experimental results that are consistent with the suggestion

of Wall et al. are those obtained with the cyclic treatments X
(Table I). The FR/R effectiveness ratio for anthocyanin produc-
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Table I. Effect of Temperature on AnthocYanin Production under Cyclic R and FR Light Treatments
Schedule of light treatments (times from sowing): treatment X: 3 d D at 25°C + 3 x (8 h L at 25 or 14°C +

16 h D at 25 or 14°C); treatment Y: 3 d D at 35°C + 3 x (16 h L at 25 or 14°C + 8 h D at 25 or 14°C).
Temperature
during Light
(TL) and Dark
(TD) Period of Effectiveness
Cyclic Light (FR/R)
Treatment Anthocyanin

TL TD R FR

°C A530 ratio
X I. 25 25 (0.536) 0.426 0.455 1.07
X2. 25 14 (0.484) 0.709 0.696 0.98
X3. 14 25 (0.461) 0.746 0.561 0.75
X4. 14 14 (0.420) 0.628 0.508 0.81

Y1. 25 25 (0.541) 0.790 1.019 1.29
Y2. 25 14 (0.495) 0.835 1.080 1.29
Y3. 14 25 (0.498) 0.801 1.153 1.44
Y4. 14 14 (0.410) 0.605 0.862 1.42

a A for R and FR treatments corrected by subtraction of absorbance values of dark controls, given in
parentheses.

IRRADIATION TIME (h)

FiG. 1. Effect of temperature on anthocyanin production in cabbage
seedlings exposed to continuous irradiation. The absorbance values were
corrected by subtraction of the values of the dark controls, given in the
figure at the corresponding irradiation times.

tion in the seedlings exposed daily to 8 h irradiations is lower
when the temperature during irradiation is 14°C than when it is
25°C. However, in the seedlings exposed daily to 16 h irradia-
tions, the value of the FR/R effectiveness ratio is higher when
the temperature during irradiation is 14°C than when it is 25C.
In both cyclic light treatments, temperature differences during
the daily irradiation period are more important than temperature
differences during the daily dark period in determining the value
of the FR/R effectiveness ratio, especially under the 16 h L + 8
h D treatments.
The results show that there is an effect of temperature on light-

dependent, HIR anthocyanin production. However, the effect of
temperature on the values of the FR/R effectiveness ratio are
not completely consistent with the suggestions made by Wall et
al. (20). At least two groups of factors might be responsible for
the lack of a complete agreement between the predictions of the
model and our experimental results.

First, the model was developed using data for the phytochrome
system of mustard seedlings and our results have been obtained
in cabbage seedlings. Previous studies (1 1) have shown consid-
erable similarities for the effects of light on anthocyanin produc-
tion in mustard and cabbage seedling. However, the differences
observed in the state of the phytochrome system under contin-
uous irradiation at low and high temperature between two
batches of mustard seedlings (20) suggest that variations between
biological system might be an important factor for the lack of
complete agreement between model prediction and experimental
results.

Second, the model takes into consideration only the effects of
temperature on the state of phytochrome. The final expression
of the photoresponse is the results of a sequence of events in
which the state of phytochrome is only the first step. Differences
in temperature sensitivity of one or more of the biochemical
reactions (deamination of phenylalanine, hydroxylation of cin-
namic acid, etc.) involved in anthocyanin production might
modify the final expression ofthe response, independently of the
state of phytochrome. In addition, the model for the effects of
temperature on the state of the phytochrome system in vivo (20),
as well as other models for the mechanism of action of phyto-
chrome in the photoregulation of the HIR (2-4, 7, 15, 19) do
not take into account the light-dependent variations of phyto-
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chrome parameters. The rate of de novo phytochrome synthesis
decreases after exposure to light (14). Light produces changes in
the ratio between pools of phytochrome with different destruc-
tion kinetics (labile and stable phytochrome [6]), different im-
munochemical and spectral properties (etiolated and green phy-
tochrome [16, 18]), and different activity (bulk and active phy-
tochrome [5]). Perhaps, one of the reasons for the lack of a
complete agreement between theoretical models ofphytochrome
dynamics and experimentally observed results is that the models
do not take into account all the known variables. In addition,
and no less important, the values of some of the phytochrome
parameters (e.g. rates of destruction and dark-reversion) used in
the development of the models are based on the results of
spectrophotometric assays in vivo. It is known that spectropho-
tometric assays of phytochrome in vivo have low sensitivity and
are adversely affected by various factors (12). Immunological
techniques with a much higher sensitivity than that of the spec-
trophotometric assay are available to measure absolute amounts
ofphytochrome (12). Monoclonal antibodies with different affin-
ities toward Pr and Pfr are being developed (1, 17). The devel-
opment of satisfactory models for the action of phytochrome in
the photoregulation of the HIR requires both a larger base of
comparative data on the characteristics of the HIR and a better
understanding of the state of phytochrome in vivo obtained
through the use of assays more sensitive than the spectrophoto-
metric one.

In conclusion, temperature affects light-dependent anthocy-
anin production in cabbage seedlings, but it is difficult to deter-
mine if the effect is mainly a consequence of the effects of
temperature on the state of the phytochrome system.
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