Maria Chiara Gelmi

PRAME Expression in Uveal Melanoma: prognostic factor and target for Immunotherapy.

SUPPLEMENTARY TABLES:

Table S1: panel of 15 genes used for gene expression profiling (Onken, Worley et al. 2010)

Table S2. Proportion of solid cancers with PRAME expression and prognostic significance of PRAME expression.

Table S3. Proportion of haematological malignancies expressing PRAME and prognostic significance of PRAME expression.

Table S4 Distribution of clinical, histopathological, and genetic features in PRAME-positive and PRAME-negative UM (D3 UM patients from the LUMC cohort, total 24).

Table S5. Distribution of clinical, histopathological, and genetic features in PRAME-positive and PRAME-negative UM (M3 UM patients from the LUMC cohort, total 40).

Table S6. Distribution of clinical, histopathological, and genetic features in UM with low PRAME and high PRAME(D3 UM patients from the TCGA study, total 38).

Table S7. Distribution of clinical, histopathological, and genetic features in UM with low PRAME and high PRAME (M3 UM patients from the TCGA study, total 42).

Table S8: Distribution of BAP1, SF3B1 and EIF1AX mutation in UM with respect to PRAME expression in the TCGA cohort

Table S9: Distribution of EMT markers in PRAME positive and PRAME negative tumours in a cohort of 64 UM patients, Mann Whitney U test.

Table S10: Distribution of infiltrate markers in PRAME positive and PRAME negative tumours in a 24 D3 and 40 M3 UM patients, Mann Whitney U test.

Table S11: Top 20 differentially expressed genes in PRAME-positive UM vs PRAME-negative UM. Table S11a. Most upregulated genes in 29 PRAME-positive UM vs 35 PRAME-negative UM. Table S11b. Most downregulated genes in 29 PRAME-positive UM vs 35 PRAME-negative UM.

	Symbol	Gene name		
Differentially expressed	CDH1	E-cadherin		
	ECM1	Extracellular matrix protein 1		
	HTR2B	5-Hydroxytryptamine receptor 2B		
	RAB31	RAB31 (RAS oncogene family)		
	EIF1B	Eukaryotic translation initiation factor 1B		
	FXR1	Fragile X mental retardation, autosomal homolog 1		
	ID2	Inhibitor od DNA binding 2		
	LMCD1	LIM and cysteine-rich domains 1		
	LTA4H	Leukotriene A4 hydrolase		
	MTUS1	Microtubule-associated tumor suppressor 1		
	ROBO1	Roundabout, axon guidance receptor, 1		
	SATB1	SATB homeobox 1		
Control genes	MRPS21	Mitochondrial ribosomal protein S21		
	RBM23	RNA-binding motif protein 23		
	SAP130	Sin3A-associated protein , 130 kDa		

Table S1: panel of 15 genes used for gene expression profiling (Onken 2010)

Table S2. Proportion of so	lid cancers with PRA	AME expression and	prognostic significance of	PRAME expression.	
Tumour	Reference	Method	Nr of samples	Expression	Prognosis
Cutaneous melanoma	(Ikeda, Lethé et al. 1997)	RT-PCR	49	88%	
	(Lezcano, Jungbluth et al. 2018)	IHC	155 primary 100 metastatic	83% in primary tumour (90% excluding desmoplastic) 92% in metastatic	
NSCLC	(Ikeda, Lethé et al. 1997)	RT-PCR	26 adenocarcinomas 65 squamous	46% adenocarcinomas 78% squamous	
	(Bankovic, Stojsic et al. 2010)	AP-PCR	30	73%	
	(Thongprasert, Yang et al. 2016)	qRT-PCR	349: 195 adenocarcinoma 116 squamous	49%: 36% adenocarcinomas 80% squamous	
	(Pan, Su et al. 2017)	qRT-PCR	192: 121 adenocarcinoma 71 squamous	31% in adenocarcinomas 59% in squamous	No association with OS
Head and neck SCC	(Figueiredo, Mamede et al. 2006)	RT-PCR	33 tumours 15 lymph node tissue	42% of tumours 4/5 lymph node metastases	
	(Cuffel, Rivals et al. 2011)	RT-PCR	57	49%	No impact on survival
Salivary duct carcinoma	(Xu, Jungbluth et al. 2019)	IHC	40	82% (mostly cytoplasmic staining)	No impact on metastasis
Renal cell carcinoma	(Neumann, Engelsberg et al. 1998)	RT-PCR	39 (37 primary tumour, 2 metastases)	40% (predominantly clear cell carcinoma)	No correlation with TNM or tumour grade
Breast cancer	(Ikeda, Lethé et al. 1997)	RT-PCR	169	27%	
	(Epping, Hart et al. 2008)	Microarray	295	High PRAME in 33%: correlated with low differentiation and ER negative status	High PRAME expression correlated with shorter OS and shorter MFS
	(Doolan, Clynes et al. 2008)	RT-PCR	103	53%	PRAME + tumours have shorter DFS and OS; in the adjuvant chemotherapy group: shorter RFS

	(Naik, Thomas	RNASeq	1066 (TCGA)		High PRAME expression associated with
	et al. 2021)				shorter OS (also in subgroup with
					immune-unfavourable tumours)
Synovial sarcoma	(lura, Maekawa	IHC	108 for IHC	IHC: 86%	No correlation with survival
	et al. 2017)	qRT-PCR	20 for qRT-PCR	qRT-PCR: 100%	
	(Luk, van der	mRNA microarray	45	mRNA: 100%	
	Steen et al.	PRAME specific		FISH: 100% (85%	
	2018)	mRNA FISH		homogeneous)	
Myxoid and round cell	(lura, Kohashi	IHC	93 for IHC	IHC: 90%	Tumours with high PRAME expression
liposarcoma	et al. 2015)	Western blot	19 for WB	WB: 10/19	have shorter survival
		qRT-PCR	20 for qRT-PCR	qRT-PCR: 100%	
	(Hemminger,	IHC	37 for IHC	IHC: 100%	
	Toland et al.	qPCR	8 for qPCR	qPRC: 8/8 (6 high, 2 low)	
	2014)				
Osteosarcoma	(Toledo, Zago	RT-PCR	29	68%	
	et al. 2011)				
	(Tan, Zou et al.	IHC	69 for IHC	IHC: 73%	Strong PRAME expression correlated to
	2012)	RT-PCR	36 for RT-PCR	RT-PCR: higher PRAME	poor prognosis and predicted lung
				expression in tumour than	metastases
				muscle tissue	
	(Zou, Shen et	qRT-PCR	28	96%	
	al. 2012)				
Neuroblastoma	(Oberthuer,	RT-PCR	94	RT-PCR: 93%	RT-PCR and NB: PRAME expression
	Hero et al.	Northern blot		NB: higher score in advanced	correlated with worse survival (not
	2004)	qPCR		stage	significant)
				qPCR: 100%, higher in	qPCR: tumours with higher PRAME have
				advanced stage	worse EFS
Medulloblastoma	(Orlando, Miele	qRT-PCR	60 for RT-PCR	RT-PCR: 82% expression higher	Tumours with high PRAME have worse
	et al. 2018)	IHC	40 for IHC	than normal tissue	OS
				IHC: high PRAME expression	
Epithelial ovarian cancer	(Partheen,	Microarray	54 for microarray*		Lower PRAME expression in survivors
	Levan et al.	qPCR	20 for qPCR*		than in deceased cases
	2006)				
	(Partheen,	qPCR	19 for qPCR*		qPCR and WB: higher PRAME in
	Levan et al.	Western blot	43 for WB*		deceased cases than in survivors
	2008)	IHC	43 for IHC*		

					Kaplan-Meier: tumours with high
					PRAME have lower survival
	(Partheen,	qPCR	30 for qPCR ⁺		No difference in PRAME between
	Levan et al. 2009)	Western blot	98 for WB†		survivors and deceased cases
	(Zhang, Barger et al. 2016)	qRT-PCR TCGA data‡: microarray, RNAseq	119	qRT-PCR: 60% PRAME overexpression compared to normal tissue	TCGA: tumours with high PRAME (microarray) have better OS and PFS
Gastric cancer	(Baba, Kanda et al. 2020)	qRT-PCR	300	65% (correlated to differentiated phenotype)	 Higher PRAME in stage IV tumours with liver metastases. High PRAME expression predictive of liver recurrence. Tumours with high PRAME have lower OS and DFS.
Urothelial carcinoma	(Dyrskjot, Zieger et al. 2012)	qRT-PCR	350	20% (correlated to high stage and grade)	No influence on survival. Tumours with PRAME expression have worse response to chemotherapy
Hepatocellular carcinoma	(Zhu, Wang et al. 2018)	Western blot IHC qRT-PCR	96	PRAME upregulated in cancer compared to normal tissue (correlated to tumour size, stage and metastases)	Tumours with high PRAME have worse survival
	(Oyama, Kanki et al. 2017)	qRT-PCR	100	27% (correlated with higher stage and number of tumours)	Cases with PRAME + non-tumour tissue have shorter OS and DFS
Hepatocellular carcinoma	2012) (Zhu, Wang et al. 2018) (Oyama, Kanki et al. 2017)	Western blot IHC qRT-PCR qRT-PCR	96 100	PRAME upregulated in cancer compared to normal tissue (correlated to tumour size, stage and metastases) 27% (correlated with higher stage and number of tumours)	worse response to chemotherap Tumours with high PRAME have survival Cases with PRAME + non-tumou have shorter OS and DFS

NSCLC = Non small cell lung cancer, SCC = squamous cell carcinoma, ER = estrogen receptor, GEP = gene expression profiling, OS = overall survival, MFS = metastasis-free survival, DFS = disease-free survival, RFS = relapse-free survival, EFS = event-free survival

*= stage III serous papillary adenocarcinoma

+= stage III-IV serous papillary adenocarcinoma

‡= only high grade serous cancer

Table S3. Proportion of had	ematological maligna	ancies expressing PRAM	ME and prognostic signifi	cance of PRAME expression.	
Tumour	Paper	Method	Samples	Expression	Prognosis
Acute myelogenous leukaemia	(Van Baren, Chambost et al. 1998)	RT-PCR	108	35% (associated with t(8;21)*, t(15;17)*)	
	(Greiner, Ringhoffer et al. 2000)	RT-PCR	34	47% high, 12% low, 41% negative	
	(Matsushita, Ikeda et al. 2001)	Semiquantitative RT-PCR	35	49%	
	(Greiner, Schmitt et al. 2006)	cDNA microarray RT-PCR	116	Higher PRAME in t(8;21)* and t(15;17)*	Cases with high PRAME expression have better survival (not significant)
Childhood acute myelogenous leukaemia	(Steinbach, Hermann et al. 2002)	RT-PCR	50	62% (higher in t(8;21))*	Cases with high PRAME have higher OS and DFS, lower WBC count and blast percentage
Acute lymphoblastic leukaemia	(Van Baren, Chambost et al. 1998)	RT-PCR	90	15%	
	(Watari, Tojo et al. 2000)	RT-PCR		PRAME positivity in Ph- positive cases [†]	
	(Matsushita, Ikeda et al. 2001)	RT-PCR	14	64%	
Childhood acute lymphoblastic leukaemia	(Steinbach, Viehmann et al. 2002)	RT-PCR	50	42% overexpression	Cases with high PRAME have better survival (not significant), lower WBC count (not significant)
Chronic myelogenous leukaemia	(Watari, Tojo et al. 2000)	RT-PCR		PRAME positivity in blastic crisis	
	(Matsushita, Ikeda et al. 2001)	Semiquantitative RT-PCR	32	42%	
Chronic lymphoblastic leukaemia	(Proto-Siqueira, Falcão et al. 2003)	Semiquantitative RT-PCR	38	16%	
Mantle cell lymphoma	(Proto-Siqueira, Falcão et al. 2003)	Semiquantitative RT-PCR	16	44%	

Non-Hodgkin lymphoma	(Van Baren,	RT-PCR	20	3/20	
	Chambost et al. 1998)				
	(Matsushita, Ikeda et al. 2001)	Semiquantitative RT-PCR	13	23%	
	(Mitsuhashi, Masuda et al. 2014)	IHC qRT-PCR	160 for IHC‡ 20 for qRT-PCR‡	IHC§: 68% 0, 11% 1+, 8% 2+, 13% 3+ qRT-PCR: correlated with IHC	Cases with 3+ staining have worse OS and PFS
	(Takata, Chong et al. 2022)	IHC RNA-Seq	347 for IHC‡ 322 for RNA-Seq‡	IHC: 30%	Cases with high PRAME mRNA expression have longer DSS
Hodgkin lymphoma	(Ercolak, Paydas et al. 2015)	IHC Real time PCR	82	IHC: 18% PCR: 10%	Cases with high PRAME by PCR have shorter DFS and OS
Multiple myeloma	(Van Baren, Chambost et al. 1998)	RT-PCR	9	2/9	
	(Pellat- Deceunynck, Mellerin et al. 2000)	RT-PCR	21	52%	
Myelodysplastic syndromes	(Huang, Wang et al. 2019)	RQ-PCR	1110	67% overexpression	Cases with overexpression have more blasts, worse cytogenetics, higher risk of AML evolution, worse OS and PFS
OS = overall survival, DFS	= disease-free surviva	al, PFS = progression-f	ree survival, DSS = disea	se-specific survival, WBC = white	blood cell, Ph = Philadelphia chromosome

*= subtype with good prognosis

+= subtype with bad prognosis

‡= diffuse large B cell lymphoma

§= IHC score: 0 if <25% positive cells, 1+ if 25-50% positive cells, 2+ if 50-75% positive cells, 3+ if >75% positive cells

|| = myelodysplastic syndromes with thrombocytopenia

	Patients, No. (%)§		
Feature	PRAME negative	PRAME positive	p value
	n=16 (67%)	n=8 (33%)	
Sex			
Male	10 (62%)	6 (75%)	0.67*
Female	6 (37%)	2 (25%)	
Age at enucleation	57.6 (13-82)	51.7 (34-73)	0.27‡
Median Follow up (months)	154.5 (10-219)	98 (17-176)	0.21‡
Largest Basal Diameter	11.3 (9-17)	15.1 (13-18)	0.001‡
Thickness	6.9 (2-11)	7.8 (2-12)	0.4‡
Mitotic count	6.1 (1-23)	5.6 (1-11)	0.93‡
Cell type			
Spindle	7 (44%)	6 (75%)	0.21*
Epithelioid-mixed	9 (56%)	2 (25%)	
Ciliary body involvement			
No	13 (81%)	6 (75%)	1.0*
Yes	3 (19%)	2 (25%)	
Extrascleral extension			
None/superficial	10 (62%)	2 (25%)	0.19*
Deep/total	6 (37%)	6 (75%)	
TNM stage			
I-IIB	14 (87%)	4 (50%)	0.13*
IIIA-IIIC	2 (12%)	4 (50%)	
Tumour pigmentation			
Light	15 (94%)	4 (50%)	0.028*
Dark	1 (6%)	4 (50%)	
8q status			
Normal	9 (60%)	1 (12%)	0.04+
Gain	5 (33%)	4 (50%)	
Amplification	1 (7%)	3 (37%)	
6p status			
Normal	6 (37%)	0 (0%)	0.07*
Gain	10 (62%)	8 (100%)	
BAP1 IHC expression			
Positive	12 (80%)	7 (100%)	0.52*
Negative	3 (20%)	0 (0%)	
*: Fisher's exact test			

Table S4. Distribution of clinical, histopathological, and genetic features in PRAME-positive and PRAME-negative UM (D3 UM patients from the LUMC cohort, total 24).

+: Likelihood ratio

‡: Mann Whitney U test

§: Percentages are rounded and may not total 100

||: Percentages were calculated excluding missing data

	Patients, No. (%) #		
Feature	PRAME negative	PRAME positive	<i>p</i> value
	n=19 (47.5%)	n=21 (52.5%)	
Sex			
Male	9 (47%)	8 (38%)	0.55*
Female	10 (53%)	13 (62%)	
Age at enucleation	63.1 (27-85)	64 (36-88)	0.95§
Median Follow up (months)	52 (9-178)	30 (2-145)	0.20§
Largest Basal Diameter	13.3 (8-20)	14.7 (9-30)	0.35§
Thickness	7.95 (3-12)	8.2 (2-12)	0.74§
Mitotic count	6.9 (1-33)	6.6 (0-20)	0.71§
Cell type			
Spindle	7 (37%)	2 (9%)	0.06+
Epithelioid-mixed	12 (63%)	19 (90%)	
Ciliary body involvement			
No	13 (68%)	7 (33%)	0.03*
Yes	6 (32%)	14 (67%)	
Extrascleral extension			
None/superficial	11 (58%)	12 (58%)	0.96*
Deep/total	8 (42%)	9 (42%)	_
TNM stage			
I-IIB	11 (65%)	7 (33%)	0.05*
IIIA-IIIC	6 (35%)	14 (67%)	_
Tumour pigmentation			
Light	13 (68%)	11 (55%)	0.39*
Dark	6 (32%)	9 (45%)	_
8q status			
Normal	1 (5%)	2 (9%)	0.01‡
Gain	11 (58%)	3 (14%)	
Amplification	7 (37%)	16 (76%)	—
6p status			
Normal	17 (89%)	20 (95%)	0.57†
Gain	2 (10%)	1 (5%)	—
BAP1 IHC expression			
BAP1 positive	12 (80%)	7 (100%)	0.68†
BAP1 negative	3 (20%)	0 (0%)	

Table S5. Distribution of clinical, histopathological, and genetic features in PRAME-positive and PRAME-negative UM (M3 UM patients from the LUMC cohort, total 40).

*: Pearson's χ^2 test

+: Fisher's exact test

‡: Likelihood ratio

§: Mann Whitney U test

||: Percentages are rounded and may not total 100

#: Percentages were calculated excluding missing data

	Patients, No. (%) #			
Feature	Low PRAME n=21 (55%)	High PRAME n=17 (45%)	p value	
Sex	()	()		
Male	12 (57%)	9 (53%)	0.80*	
Female	9 (43%)	8 (47%)	_	
Age at enucleation	62.57 (39-79)	52.82 (22-78)	0.05§	
Largest Basal Diameter	15.18 (8-25)	16.59 (11-21)	0.27§	
Thickness	10.21 (6-16)	10.40 (6-13)	0.72§	
Mitotic count				
0-5	20 (95%)	14 (82%)	0.045‡	
>5-10	0 (0%)	3 (18%)	_	
>11	1 (5%)	0 (0%)	_	
Cell type				
Spindle cell	18 (86%)	13 (76%)	0.68†	
Epithelioid-mixed cell	3 (14%)	4 (24%)	_	
Ciliary body involvement				
No	18 (86%)	13 (76%)	0.68†	
Yes	3 (14%)	4 (23%)	_	
Extrascleral extension				
None	21 (100%)	16 (94%)	0.48‡	
<5 mm	0 (0%)	1 (6%)		
>= 5 mm	0 (0%)	0 (0%)		
TNM stage				
I-IIB	14 (67%)	9 (53%)	0.39*	
IIIA-IIIC	7 (33%)	8 (47%)		
Tumour pigmentation				
Light	16 (76%)	7 (76%)	0.080‡	
Mixed	3 (14%)	7 (41%)	_	
Heavy	2 (10%)	3 (18%)		
8q status				
Normal	16 (76%)	2 (12%)	<0.001‡	
Gain	2 (9%)	11 (65%)	_	
Amplification	3 (14%)	4 (23%)		
6p status				
Normal	5 (24%)	0 (0%)	0.05†	
Gain	16 (76%)	17 (100%)		
BAP1 expression				
BAP1 high	20 (95%)	17 (100%)	1.00†	
BAP1 low	1 (5%)	0 (0%)		

Table S6. Distribution of clinical, histopathological, and genetic features in UM with low PRAME and high PRAME (D3 UM patients from the TCGA study, total 38).

*: Pearson's χ^2 test

+: Fisher's exact test

‡: Likelihood ratio

§: Mann Whitney U test

||: Percentages are rounded and may not total 100

#: Percentages were calculated excluding missing data

	Patients, No. (%) #		
Feature	Low PRAME n=19	High PRAME n=23	p value
	(45%)	(56%)	
Sex	· · ·	· ·	
Male	10 (53%)	14 (61%)	0.59*
Female	9 (47%)	9 (39%)	_
Age at enucleation	64.89 (41-86)	64.65 (46-86)	0.96§
Largest Basal Diameter	16.17 (12-25)	18.20 (12-25)	0.06§
Thickness	11.14 (7-15)	11.29 (4-16)	0.71‡
Mitotic count			
0-5	12 (63%)	17 (74%)	0.71†
>5-10	4 (21%)	4 (17%)	-
>11	3 (16%)	2 (9%)	
Cell type			
Spindle cell	8 (42%)	4 (17%)	0.08*
Epithelioid-mixed cell	11 (58%)	19 (83%)	
Ciliary body involvement			
No	10 (53%)	13 (54%)	0.80*
Yes	9 (47%)	10 (45%)	
Extrascleral extension			
None	19 (100%)	18 (77%)	0.04‡
<5 mm	0 (0%)	2 (9%)	_
>= 5 mm	0 (0%)	3 (14%)	
TNM stage			
I-IIB	7 (37%)	6 (23%)	0.45*
IIIA-IV	12 (63%)	17 (77%)	
Tumour pigmentation			
Light	12 (63%)	4 (17%)	0.007‡
Mixed	4 (21%)	13 (57%)	_
Heavy	3 (16%)	6 (26%)	
8q status			
Normal	3 (16%)	0 (0%)	0.007‡
Gain	9 (47%)	5 (18%)	_
Amplification	7 (37%)	18 (82%)	
6p status			
Normal	16 (84%)	14 (59%)	0.10*
Gain	3 (16%)	9 (41%)	
BAP1 expression			
BAP1 high	1 (5%)	2 (9%)	1.00+
BAP1 low	18 (95%)	21 (92%)	

Table S7. Distribution of clinical, histopathological, and genetic features in UM with low PRAME and high PRAME (M3 UM patients from the TCGA study, total 42).

*: Pearson's χ^2 test

+: Fisher's exact test

‡: Likelihood ratio

§: Mann Whitney U test

||: Percentages are rounded and may not total 100

#: Percentages were calculated excluding missing data

	Table S8:	Distribution of BAP1,	SF3B1 and EIF1AX m	nutation in UM with i	respect to PRAME ex	pression in the TCGA cohort
--	-----------	-----------------------	--------------------	-----------------------	---------------------	-----------------------------

		Total TCGA			TCGA – D3			TCGA – M3	
	DRAME-low		n value	PRAME-low		n value			n value
	FINAIVIE-10W	FIXAIVIL-IIIgII	pvalue	FINAIVIE-IOW	F NAME-INGI	pvalue	FIXAIVIE-IOW	F NAIVIE-IIIgh	pvalue
BSE mutation									
EIF1AX	8 (31%)	1 (3%)	0.002‡	8 (89%)	1 (7%)	< 0.001†	/	/	/
SF3B1	3 (12%)	13 (27%)		1 (11%)	13 (93%)		2 (12%)	0 (0%)	0.20†
BAP1	15 (58%)	20 (58%)	-	/	/	/	15 (88%)	20 (100%	-

‡Likelihood ratio

+Fisher's exact test

	PRAME negative	PRAME positive	p value
SNAI2 probe 1	8.25 (±0.6)	8.07 (±0.6)	0.36
SNAI2 probe 2	9.55 (±0.7)	9.41 (±0.6)	0.50
STAT3 probe 1	8.02 (±0.4)	8.02 (±0.4)	0.90
STAT3 probe 2	9.07 (±0.5)	9.03 (±0.5)	0.86
ZEB2	7.73 (±0.3)	7.59 (±0.2)	0.02
SOX10	11.95 (±0.4)	11.97 (±0.4)	0.89

Table S9: Distribution of EMT markers in PRAME positive and PRAME negative tumors in a cohort of 64 UM patients, Mann Whitney U test.

	C	Disomy 3 (24)	Monosomy 3 (40)			
	PRAME negative	PRAME positive	р	PRAME negative	PRAME positive	Ρ
CD3	6.85 (±1.3)	6.86 (±0.4)	0.13	6.90 (±0.8)	7.64 (±1.2)	0.01
CD4	6.54 (±0.4)	6.73 (±0.3)	0.01	6.60 (±0.2)	6.77 (±0.3)	0.10
CD8A	6.95 (±1.6)	6.90 (±0.6)	0.22	6.98 (±1.0)	7.88 (±1.3)	0.02
CD68	10.06 (±0.9)	11.18 (±1.0)	0.01	10.80 (±0.6)	11.32 (±0.8)	0.04
HLA-A pr 1	10.62 (±0.7)	11.02 (±0.8)	0.14	11.74 (±0.7)	12.05 (±0.7)	0.005
HLA-A pr 2	13.22 (±0.8)	13.31 (±0.7)	0.33	13.97 (±0.6)	14.40 (±0.4)	0.006
HLA-B	10.31 (±1.7)	9.88 (±1.2)	0.58	11.53 (±1.4)	12.49 (±1.2)	0.02

Table S10: Distribution of infiltrate markers in PRAME positive and PRAME negative tumors in a 24 D3 and 40 M3 UM patients, Mann Whitney U test.

Table S11a. Most upregulated genes in 29 PRAME-positive UM vs 35 PRAME-negative UM										
Symbol	logFC	AveExpr	t	P.Value	adj.P.Val	В	Gene name	Location	Role in cancer	Role in UM
PUF60	0.625558	11.582971	5.719239	3.006E-07	0.00097149	6.424361	Binding Splicing Factor 60	8q24.3		
DGAT1	0.637533	8.1651707	5.255655	1.791E-06	0.00289424	4.822221	Diacylglycerol O- Acyltransferase 1	8q24.3	High expression correlated with poor survival in gastric cancer; high expression protects cancer cells from oxidative damage and improves FA storage (Cheng 2020, He 2021, Wilcock 2022)	
NAPRT1	0.786418	9.5010336	5.162251	2.551E-06	0.00374742	4.504817	Nicotinate Phosphoribosyltransferase	8q24.3	Deficiency makes cancer cells more susceptible to treatment with NAPMT inhibitors with nicotinic acid (Watson 2009, Cerna 2012, Shames 2013)	
SLC52A2	0.748486	9.3376813	5.049801	3.894E-06	0.00479878	4.125463	Solute Carrier Family 52 Member 2	8q24.3	Upregulated, linked to a worse survival and increase in T cell exhaustion markers and M2 macrophages (Zhang 2022)	Upregulated, linked to a worse survival and increase in T cell exhaustion markers and M2 macrophages (Zhang 2022)
СЕВРВ	0.65662	10.522645	5.032253	4.158E-06	0.00479878	4.066551	CCAAT Enhancer Binding Protein Beta	20q13.13	Upregulated in breast cancer compared to normal tissue (Matherne 2023)	
OPLAH	0.6464	8.5489751	4.815561	9.289E-06	0.00819323	3.345868	5-Oxoprolinase, ATP- Hydrolysing	8q24.3		
EPHX1	0.638304	8.0740934	4.798138	9.903E-06	0.00819323	3.288493	Epoxide Hydrolase 1	1q42.12	Associated with ncreased recurrence rate and a worse prognosis in AML (Cheng 2019).	
DNASE1L3	0.706244	7.5942977	4.384255	4.401E-05	0.01687724	1.953754	Deoxyribonuclease 1 Like 3	3p14.3	Down-regulated in several types of cancer,	

									but correlated with	
									immune infiltration	
									(Deng 2021).	
MGAT1	0.620343	10.553904	4.359655	4.8E-05	0.01723484	1.876258	Alpha-1,3-Mannosyl-	5q35.3	increases progression	
							Glycoprotein 2-Beta-N-		and invasiveness of	
							Acetylglucosaminyl-		cervical cancer, prostate	
							transferase		cancer and	
									coll lines (Zavareh 2012	
									$\Delta k_{iv} = 2018$	
	1 //033///	10 779708	1 298809	5 944E-05	0.0188526	1 68553	Apolipoprotein C1	19013 32	Highly expressed in	
A OCI	1.405544	10.775700	4.230003	5.5442 05	0.0100520	1.00555	Apolipopioteni ei	10410.02	several types of cancers	
									(e.g. colorectal cancer.	
									gastric cancer and renal	
									cell carcinoma),	
									associated with a worse	
									prognosis (Ren 2019, Yi	
									2019, Cui 2020).	
LY6E	0.683731	11.853244	4.112825	0.0001132	0.02257851	1.111359	Lymphocyte Antigen 6	8q24.3	Overexpressed, linked to	
							Family Member E		a worse prpognosis in	
									several cancer types, acts	
									through TGF-β and PTEN-	
									PI3K/AKT pathways	
									(Upadhyay 2019,	
									AlHossiny 2016, Yeom	
DARD10	0.601261	9 9007201	4 021011	0.0001406	0.02402675	0.962105		8a24.2	2016) Dromotos coll	Increased in LIM
PARPIO	0.091201	8.8007201	4.051011	0.0001496	0.02402075	0.805195	Polymerase Family	0y24.5	proliferation in vitro and	samples: PARP inhibitor
							Member 10		tumour formation <i>in vivo</i>	increases the efficacy of
							Member 10		from Hel a cells	dacarbazin treatment
									(Schleicher 2018)	on UM PDX and cell
										lines (Koning 2019).
CD68	0.827099	10.836711	3.963273	0.0001881	0.0260977	0.659866	CD68 Molecule	17p13.1	High CD68 correlated	Higher number of
									with an adverse	CD68+ macrophages
									prognosis in	correlated with worse
									glioblastoma, kidney	prognosis and higher in
									renal clear cell	M3 than D3 UM
									carcinoma, lower-grade	(Makitie 2001,
									glioma, liver	Bronkhorst 2011)
									hepatocellular	

									carcinoma, lung squamous cell carcinoma, thyroid carcinoma, and thymoma and a favorable prognosis in kidney chromophobe. (Zhang 2022)	
PTP4A3	0.818955	8.4462143	3.953231	0.0001945	0.02641256	0.62989	Protein Tyrosine Phosphatase 4A3	8q24.3	Upregulated in several cancer types, correlated to prognosis in ccRCC, papillary renal cancer and breast cancer (Den Hollander 2016, Song 2021)	Increased in UM cases with early metastases; it increased cell migration of UM cell lines <i>in vitro</i> and invasiveness <i>in vivo</i> (Laurent 2011). It interacts with MMP-14 and CRPM2 (Maacha 2016, Duciel 2019).

Table S11b. Most downregulated genes in 29 PRAME-positive UM vs 35 PRAME-negative UM											
Symbol	logFC	AveExpr	t	P.Value	adj.P.Val	В	Gene name	Location	Role in cancer	Role in UM	
RPL13P5	-0.96596	9.942009	-6.14222	5.695E-08	0.00046004	7.916899	Ribosomal Protein L13 Pseudogene 5	12p13.31	Negatively correlated with HER2 in a comparison of HER2 breast cancer with normal tissue (Yang 2016).		
CSNK2A2	-0.64941	9.0176943	-4.79164	1.014E-05	0.00819323	3.267104	Casein Kinase 2 Alpha 2	16q21	Different expression patterns and different roles in different cancers (Strum 2022)	Downregulated in UM cells compared to normal uveal melanocytes; lower in class 2 UM than in class 1 UM (Onken 2006, Bergeron 2012)	
ID2	-0.74846	8.5848253	-4.25107	7.021E-05	0.0199025	1.536875	Inhibitor Of DNA Binding 2	2p25.1	Overexpressed in colon and pancreatic	Downregulated in class 2 UM compared to	

									cancer; its downregulation promotes aggressiveness and invasion in breast, prostate and bladder cancer (Roschger 2017, Mao 2021)	class 1 UM; its downregulation can simulate a class 2 phenotype in UM cell lines <i>in vitro</i> and <i>in vivo</i> (Onken 2006)
SLCO4A1- AS1	-0.95988	10.055974	-4.1953	8.521E-05	0.02117138	1.3643	SLCO4A1 Antisense RNA 1	20q13.33	Promotes tumour progression in colorectal cancer and pancreatic cancer (Zhang 2022, Zhang 2022, Wu 2021)	Downregulated in UM with a high inflammatory infiltrate (Zhou 2022).
RPL21P28	-0.6364	11.044889	-4.03589	0.0001472	0.02402675	0.877925	Ribosomal Protein L21 Pseudogene 28	1q32.3		
EFCAB1	-0.8422	6.9796114	-3.89938	0.000233	0.02851422	0.469917	Calaxin	8q11.21	Downregulated in lung adenocarcinoma compared to normal lung tissue (Yang 2022)	Lower in metastatic UM compared to non- metastatic UM (Fagone 2017).

Baba, H., M. Kanda, K. Sawaki, S. Umeda, T. Miwa, D. Shimizu, C. Tanaka, D. Kobayashi, M. Fujiwara, Y. Kodera and T. Fujii (2020). "PRAME as a Potential Biomarker for Liver Metastasis of Gastric Cancer." <u>Ann Surg Oncol</u> **27**(6): 2071-2080.

Bankovic, J., J. Stojsic, D. Jovanovic, T. Andjelkovic, V. Milinkovic, S. Ruzdijic and N. Tanic (2010). "Identification of genes associated with non-small-cell lung cancer promotion and progression." Lung Cancer **67**(2): 151-159.

Cuffel, C., J. P. Rivals, Y. Zaugg, S. Salvi, W. Seelentag, D. E. Speiser, D. Lienard, P. Monnier, P. Romero, L. Bron and D. Rimoldi (2011). "Pattern and clinical significance of cancer-testis gene expression in head and neck squamous cell carcinoma." Int J Cancer **128**(11): 2625-2634.

Doolan, P., M. Clynes, S. Kennedy, J. P. Mehta, J. Crown and L. O'Driscoll (2008). "Prevalence and prognostic and predictive relevance of PRAME in breast cancer." <u>Breast Cancer Res Treat</u> **109**(2): 359-365.

Dyrskjot, L., K. Zieger, T. Kissow Lildal, T. Reinert, O. Gruselle, T. Coche, M. Borre and T. F. Orntoft (2012). "Expression of MAGE-A3, NY-ESO-1, LAGE-1 and PRAME in urothelial carcinoma." <u>Br J Cancer</u> **107**(1): 116-122.

Epping, M. T., A. A. Hart, A. M. Glas, O. Krijgsman and R. Bernards (2008). "PRAME expression and clinical outcome of breast cancer." <u>Br J Cancer</u> **99**(3): 398-403.

Ercolak, V., S. Paydas, E. Bagir, M. Ergin, G. Seydaoglu, H. Celik, B. Yavu, K. Tanriverdi, M. Gunaldi, C. U. Afsar and B. B. Duman (2015). "PRAME Expression and Its Clinical Relevance in Hodgkin's Lymphoma." <u>Acta Haematol</u> **134**(4): 199-207.

Figueiredo, D. L., R. C. Mamede, R. Proto-Siqueira, L. Neder, W. A. Silva, Jr. and M. A. Zago (2006). "Expression of cancer testis antigens in head and neck squamous cell carcinomas." <u>Head Neck</u> **28**(7): 614-619.

Greiner, J., M. Ringhoffer, O. Simikopinko, A. Szmaragowska, S. Huebsch, U. Maurer, L. Bergmann and M. Schmitt (2000). "Simultaneous expression of different immunogenic antigens in acute myeloid leukemia." <u>Experimental Hematology</u> **28**.

Greiner, J., M. Schmitt, L. Li, K. Giannopoulos, K. Bosch, A. Schmitt, K. Dohner, R. F. Schlenk, J. R. Pollack, H. Dohner and L. Bullinger (2006). "Expression of tumor-associated antigens in acute myeloid leukemia: Implications for specific immunotherapeutic approaches." <u>Blood</u> **108**(13): 4109-4117.

Hemminger, J. A., A. E. Toland, T. J. Scharschmidt, J. L. Mayerson, D. C. Guttridge and O. H. Iwenofu (2014). "Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma." <u>Mod Pathol</u> **27**(9): 1238-1245.

Huang, Q. S., J. Z. Wang, Y. Z. Qin, Q. Z. Zeng, Q. Jiang, H. Jiang, J. Lu, H. X. Liu, Y. Liu, J. B. Wang, L. Su, H. Y. Zhang, Z. L. Li, S. J. Gao, B. Huang, Y. Y. Liu, Y. R. Liu, L. P. Xu, X. J. Huang and X. H. Zhang (2019). "Overexpression of WT1 and PRAME predicts poor outcomes of patients with myelodysplastic syndromes with thrombocytopenia." <u>Blood Adv</u> **3**(21): 3406-3418.

Ikeda, H., B. Lethé, F. Lehmann, N. Van Baren, J.-F. Baurain, C. De Smet, H. Chambost, M. Vitale, A. Moretta, T. Boon and P. G. Coulie (1997).

"Characterization of an Antigen That Is Recognized on a Melanoma Showing Partial HLA Loss by CTL Expressing an NK Inhibitory Receptor." Immunity 6: 199-208.

Iura, K., K. Kohashi, Y. Hotokebuchi, T. Ishii, A. Maekawa, Y. Yamada, H. Yamamoto, Y. Iwamoto and Y. Oda (2015). "Cancer-testis antigens PRAME and NY-ESO-1 correlate with tumour grade and poor prognosis in myxoid liposarcoma." J Pathol Clin Res 1(3): 144-159.

Iura, K., A. Maekawa, K. Kohashi, T. Ishii, H. Bekki, H. Otsuka, Y. Yamada, H. Yamamoto, K. Harimaya, Y. Iwamoto and Y. Oda (2017). "Cancer-testis antigen expression in synovial sarcoma: NY-ESO-1, PRAME, MAGEA4, and MAGEA1." <u>Hum Pathol</u> **61**: 130-139.

Lezcano, C., A. A. Jungbluth, K. S. Nehal, T. J. Hollmann and K. J. Busam (2018). "PRAME Expression in Melanocytic Tumors." <u>Am J Surg Pathol</u> **42**(11): 1456-1465.

Luk, S. J., D. M. van der Steen, R. S. Hagedoorn, E. S. Jordanova, M. W. Schilham, J. V. Bovee, A. H. Cleven, J. F. Falkenburg, K. Szuhai and M. H. Heemskerk (2018). "PRAME and HLA Class I expression patterns make synovial sarcoma a suitable target for PRAME specific T-cell receptor gene therapy." Oncoimmunology **7**(12): e1507600.

Matsushita, M., H. Ikeda, M. Kizaki, S. Okamoto, M. Ogasawara, Y. Ikeda and Y. Kawakami (2001). "Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia." <u>British Journal of Haematology</u> **112**: 916-926.

Mitsuhashi, K., A. Masuda, Y. H. Wang, M. Shiseki and T. Motoji (2014). "Prognostic significance of PRAME expression based on immunohistochemistry for diffuse large B-cell lymphoma patients treated with R-CHOP therapy." Int J Hematol **100**(1): 88-95.

Naik, A., R. Thomas, G. Al-Khadairi, R. Bacha, W. Hendrickx and J. Decock (2021). "Cancer testis antigen PRAME: An anti-cancer target with immunomodulatory potential." <u>J Cell Mol Med</u> **25**(22): 10376-10388.

Neumann, E., A. Engelsberg, J. Decker, S. Stoerkel, E. Jaeger, C. Huber and B. Seliger (1998). "Heterogeneous Expression of the Tumor-associated Antigens RAGE-1, FRAME, and Glycoprotein 75 in Human Renal Cell Carcinoma: Candidates for T-Cell-based Immunotherapies?" <u>Cancer Research</u> **58**: 4090-4095. Oberthuer, A., B. Hero, R. Spitz, F. Berthold and M. Fischer (2004). "The Tumor-Associated Antigen PRAME Is Universally Expressed in High-Stage Neuroblastoma and Associated with Poor Outcome." <u>Clin Cancer Res</u> **10**: 4307-4313.

Onken, M. D., L. A. Worley, M. D. Tuscan and J. W. Harbour (2010). "An accurate, clinically feasible multi-gene expression assay for predicting metastasis in uveal melanoma." J Mol Diagn **12**(4): 461-468.

Orlando, D., E. Miele, B. De Angelis, M. Guercio, I. Boffa, M. Sinibaldi, A. Po, I. Caruana, L. Abballe, A. Carai, S. Caruso, A. Camera, A. Moseley, R. S. Hagedoorn, M. H. M. Heemskerk, F. Giangaspero, A. Mastronuzzi, E. Ferretti, F. Locatelli and C. Quintarelli (2018). "Adoptive Immunotherapy Using PRAME-Specific T Cells in Medulloblastoma." <u>Cancer Res</u> **78**(12): 3337-3349.

Oyama, K., K. Kanki, H. Shimizu, Y. Kono, J. Azumi, K. Toriguchi, E. Hatano and G. Shiota (2017). "Impact of Preferentially Expressed Antigen of Melanoma on the Prognosis of Hepatocellular Carcinoma." <u>Gastrointest Tumors</u> **3**(3-4): 128-135.

Pan, S. H., K. Y. Su, B. Spiessens, N. Kusuma, N. F. Delahaye, O. Gruselle, A. Myo, A. de Creus, J. Louahed, G. C. Chang, S. L. Yu and P. C. Yang (2017). "Gene expression of MAGE-A3 and PRAME tumor antigens and EGFR mutational status in Taiwanese non-small cell lung cancer patients." <u>Asia Pac J Clin Oncol</u> **13**(5): e212-e223.

Partheen, K., K. Levan, L. Osterberg, I. Claesson, G. Fallenius, K. Sundfeldt and G. Horvath (2008). "Four potential biomarkers as prognostic factors in stage III serous ovarian adenocarcinomas." Int J Cancer **123**(9): 2130-2137.

Partheen, K., K. Levan, L. Osterberg, I. Claesson, K. Sundfeldt and G. Horvath (2009). "External validation suggests Integrin beta 3 as prognostic biomarker in serous ovarian adenocarcinomas." <u>BMC Cancer</u> **9**: 336.

Partheen, K., K. Levan, L. Osterberg and G. Horvath (2006). "Expression analysis of stage III serous ovarian adenocarcinoma distinguishes a sub-group of survivors." <u>Eur J Cancer</u> **42**(16): 2846-2854.

Pellat-Deceunynck, C., M.-P. Mellerin, N. Labarriére, G. Jego, A. Moreau-Aubry, J.-L. Harousseau, F. Jotereau and R. Bataille (2000). "The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells." <u>Eur. J. Immunol.</u> **30**: 803-809.

Proto-Siqueira, R., R. P. Falcão, C. A. de Souza, S. J. Ismael and M. A. Zago (2003). "The expression of PRAME in chronic lymphoproliferative disorders." Leukemia Research **27**(5): 393-396.

Steinbach, D., J. Hermann, S. Viehmann, F. Zintl and B. Gruhn (2002). "Clinical implications of PRAME gene expression in childhood acute myeloid leukemia." <u>Cancer Genetics and Cytogenetics</u> **133**: 118-123.

Steinbach, D., S. Viehmann, F. Zintl and B. Gruhn (2002). "PRAME gene expression in childhood acute lymphoblastic leukemia." <u>Cancer Genetics and</u> <u>Cytogenetics</u> **138**: 89-91.

Takata, K., L. C. Chong, D. Ennishi, T. Aoki, M. Y. Li, A. Thakur, S. Healy, E. Vigano, T. Dao, D. Kwon, G. Duns, J. S. Nielsen, S. Ben-Neriah, E. Tse, S. S. Hung, M. Boyle, S. S. Mun, C. M. Bourne, B. Woolcock, A. Telenius, M. Kishida, S. Rai, A. W. Zhang, A. Bashashati, S. Saberi, G. D'Antonio, B. H. Nelson, S. P. Shah, P. A. Hoodless, A. M. Melnick, R. D. Gascoyne, J. M. Connors, D. A. Scheinberg, W. Beguelin, D. W. Scott and C. Steidl (2022). "Tumor-associated antigen PRAME exhibits dualistic functions that are targetable in diffuse large B cell lymphoma." J Clin Invest **132**(10).

Tan, P., C. Zou, B. Yong, J. Han, L. Zhang, Q. Su, J. Yin, J. Wang, G. Huang, T. Peng and J. Shen (2012). "Expression and prognostic relevance of PRAME in primary osteosarcoma." <u>Biochem Biophys Res Commun</u> **419**(4): 801-808.

Thongprasert, S., P. C. Yang, J. S. Lee, R. Soo, O. Gruselle, A. Myo, J. Louahed, F. F. Lehmann, V. G. Brichard and T. Coche (2016). "The prevalence of expression of MAGE-A3 and PRAME tumor antigens in East and South East Asian non-small cell lung cancer patients." <u>Lung Cancer</u> **101**: 137-144. Toledo, S. R., M. A. Zago, I. D. Oliveira, R. Proto-Siqueira, O. K. Okamoto, P. Severino, R. Z. Vêncio, F. T. Gamba, W. A. Silva, C. A. Moreira-Filho, C. A. Torre, M. T. Alves, R. J. Garcia-Filho, A. J. Simpson and A. S. Petrilli (2011). "Insights on PRAME and osteosarcoma by means of gene expression profiling." <u>J Orthop Sci</u> **16**(4): 458-466.

Van Baren, N., H. Chambost, A. Ferrant, L. Michaux, H. Ikeda, I. Millard, D. Olive, T. Boon and P. G. Coulie (1998). "PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells." <u>British Journal of Haematology</u> **102**: 1376-1379. Watari, K., A. Tojo, T. Nagamura-Inoue, F. Nagamura, A. Takeshita, T. Fukushima, T. Motoji, K. Tani and S. Asano (2000). "Identification of a melanoma antigen, PRAME, as a BCR/ABL-inducible gene." <u>FEBS Letters</u> **466**: 367-371.

Xu, B., A. A. Jungbluth, D. Frosina, B. Alzumaili, N. Aleynick, E. Slodkowska, K. Higgins, A. Ho, L. Morris, R. Ghossein and N. Katabi (2019). "The immune microenvironment and expression of PD-L1, PD-1, PRAME and MHC I in salivary duct carcinoma." <u>Histopathology</u> **75**(5): 672-682.

Zhang, W., C. J. Barger, K. H. Eng, D. Klinkebiel, P. A. Link, A. Omilian, W. Bshara, K. Odunsi and A. R. Karpf (2016). "PRAME expression and promoter hypomethylation in epithelial ovarian cancer." <u>Oncotarget</u> **7**(9).

Zhu, H., J. Wang, J. Yin, B. Lu, Q. Yang, Y. Wan and C. Jia (2018). "Downregulation of PRAME Suppresses Proliferation and Promotes Apoptosis in Hepatocellular Carcinoma Through the Activation of P53 Mediated Pathway." <u>Cell Physiol Biochem</u> **45**(3): 1121-1135.

Zou, C., J. Shen, Q. Tang, Z. Yang, J. Yin, Z. Li, X. Xie, G. Huang, D. Lev and J. Wang (2012). "Cancer-testis antigens expressed in osteosarcoma identified by gene microarray correlate with a poor patient prognosis." <u>Cancer</u> **118**(7): 1845-1855.