

Supporting Information for

HEI10 is Subject to Phase Separation and Mediates RPA1a Degradation during Meiotic Interference-sensitive Crossover Formation Tianyi Wang, Hongkuan Wang, Qichao Lian, Qian Jia, Chenjiang You, Gregory P. Copenhaver*, Cong Wang*, and Yingxiang Wang*

Corresponding authors: Yingxiang Wang; Cong Wang; Gregory P. Copenhaver Email: <u>yx wang@fudan.edu.cn</u>; <u>wangc@scau.edu.cn</u>; <u>gcopenhaver@bio.unc.edu</u>

This PDF file includes: Figures S1 to S6 Tables S1 to S2

Other Supporting Information Files Dataset S1

Fig. S1. Characteristics and localization of the HEI10 protein

(A) Top, protein domain structure of HEI10. Middle, 3D structure of HEI10. Bottom, predictions of IDR (intrinsically disordered region), by PONDR (<u>www.pondr.com</u>).

(B) Localization of HEI10-YFP in tobacco nuclei by fluorescence microscopy after treated with MMS. The images of single nucleus in the right pane are enlarged regions in the yellow boxes. Bar= 50µm (left), 5µm (right).

(C) Coomassie staining of His-NusA-mRFP, His-NusA-mRFP-HEI10 and His-NusA-mRFP-HEI10^{S70F}. Asterisks indicate the fusion protein bands.

(D) The hydrogen bonding interactions of the residue 70 and adjacent α -helix predicted by ESMFold. The hydrogenbonding interactions are shown with red dotted lines. The Ser70 residue (yellow) can interact with Gln72, Ile73, Leu74 and Met75, and the Phe70 (purple) residue can only interact with Ile73 and Leu74. Α

Fig. S2. hei10^{S70F} exhibits meiotic defects similar to hei10-2 allele

(A) Diagrams showing genomic and protein structures of HEI10. Mutations of hei10-2 and hei10^{S70F} are marked above the gene structure.

(B) Multiple sequence alignment of HEI10 orthologs in plants using DNAMAN 7.0. Asterisk indicates the Ser70 site.

- (C) Siliques of Col-0 and *hei10^{S70F}*. Bar=1cm.
- (D) Open flowers of Col-0 and hei10^{S70F}. Bar=1mm.

(E) Alexander staining of Col-0 and *hei10^{S70F}* anthers. Bar=50µm.

(F) The centromere FISH of meiotic chromosomes at pachytene, diakinesis, metaphase I and tetrad stage in Col-0, hei10-2, hei10^{S70F} and hei10^{S70F}/hei10-2. Bar=5µm. Arrows indicate univalents at diakinesis and metaphase I.

(G) Immunostaining of HEI10 at pachytene and diakinesis in Col-0 and *hei10*^{S70F} with HEI10 antibody. Bar=5µm.

Fig. S3. Identification of HEI10 interacting proteins by IP-MS

(A) Detection of the HEI10 protein levels in HEI10 transgenic lines by anti-Flag antibody.

(B) Venn diagram for the identified proteins by IP-MS using the inflorescences of *Act7::HEI10-Flag* and *Act7::Flag*. The venn diagram is drawn by Venny 2.1 (<u>https://bioinfogp.cnb.csic.es/tools/venny/</u>).

(C) KEGG pathway enrichment of the 1,068 candidates identified in (B) is analyzed by Metascape (https://metascape.org).

Fig. S4. RPA1a can undergo phase separation independent of HEI10 in vivo

(A) Top, protein domain structure of RPA1a. Bottom, predictions of IDRs by PONDR.

(B) Immunostaining of tobacco nuclei that express RPA1a-Flag/Myc. Bar=5µm.

(C) Localization of RPA1a-GFP in tobacco nuclei by fluorescence microscopy. The images of single nucleus in the right pane are enlarged regions in the white boxes. Bar= 50 μ m (left), 5 μ m (right).

(D) Immunostaining of HEI10 in Col-0 and *rpa1a-1* at pachytene and diakinesis. Bar=5µm.

(E) Statistical analysis of the HEI10 foci at late pachytene in Col-0 and rpa1a-1 (two-tailed student's t-test).

Fig. S5. HEI10 has the ubiquitination E3 ligase activity

(A) Detection of ubiquitination levels of HEI10 and HEI10^{S70F} immunoprecipitated in tobacco cells by anti-Flag and anti-UBQ11 antibodies. GFP-flag is used as the negative control.

(B) Detection of ubiquitination levels of HEI10 and HEI10^{S70F} immunoprecipitated in *Arabidopsis* central inflorescence by anti-Flag and anti-UBQ11 antibodies. The Col-0 sample is used as negative control.

(C) Tube2 IP detects the enrichment of ubiquitin-modified HEI10 proteins in tobacco cells. GFP-flag is used as the negative control.

Fig. S6. Interaction of HEI10 with Class I CO proteins and prediction of meiotic recombination factors' IDRs

(A) Interaction of HEI10 with RPA1a, ZIP4, MSH5 and MLH3 in yeast two-hybrid assay. The initial concentration is "OD₆₀₀≈0.5", spotted on DDO (synthetic dropout media lacking leucine and tryptophan) and QDO (synthetic dropout media lacking leucine, tryptophan, histidine and adenine) for 5 days.

(B) Prediction of IDRs for other meiotic recombination factors by PONDR.

	Description	Sum PEP Score		
identified gene		Rep1	Rep2	Average
AT4G01370	ATMPK4	6.976	75.69	41.333
	Protein			
	phosphatase 2A			
AT5G03470	regulatory B			
	subunit family			
	protein	3.116	73.783	38.4495
	CDC2, CDC2A,			
	CDC2AAT,			
AT3C48750	CDK2, CDKA1,			
A13G48750	CDKA;1, CELL			
	DIVISION			
	CONTROL 2	23.655	45.75	34.7025
AT2G47980	SCC3	3.362	43.982	23.672
AT1G75950	ASK1/SKP1/UIP1	11.96	29.697	20.8285
AT3G12280	ATRBR1	5.126	19.186	12.156
AT2G27170	SMC3	2.72	18.261	10.4905
AT5G22010	ATRFC1	9.668	5.088	7.378
AT3G54670	ATSMC1	4.931	9.571	7.251
AT2G06510	ATRPA1A	5.252	8.99	7.121
AT5G19400	SMG7	2.586	3.84	3.213

Table S1. List of meiotic genes identified by IP-MS of HEI10

Table S2. List of primers used in this study

J ··· ····						
35S/Act7-HEI10-Flag-	GAGCTCGGTACCCGGGGATCCATGAGATGCAACG					
BamHI-F	GIGII					
35S/Act7-HEI10-Flag-Sall-R	GATCCAAGGGCGAATTGGTCGACTAGCGTGAACAG CTGAGGG					
35S-RPA1a-Flag-Kpnl-F	CGGGGGACGAGCTCGGTACCATGCCGGTGAGTTT GACTCC					
35S-RPA1a-Flag-BamHl-R	TGGTCGACTCTAGAGGATCCCCTTACGAGCAAATC AAGCA					
35S-RPA1a-Myc-Sacl-F	AGAACACGGGGGACGAGCTCATGCCGGTGAGTTT GACTCC					
35S-RPA1a-Myc-Sall-R	ATGAGCTTTTGCTCGTCGACCCTTACGAGCAAATCA AGCA					
35S-RPA1a-GFP-Kpnl-F	CGGGGGACGAGCTCGGTACCATGCCGGTGAGTTT GACTCC					
35S-RPA1a-GFP-BamHI-R	ATGTCGACTCTAGAGGATCCCCTTACGAGCAAATCA AGCA					
35S-GFP-Flag-BamHl-F	AGCTCGGTACCCGGGGATCCATGGTGAGCAAGGG CGAGGA					
35S-GFP-Flag-Sall-R	CCAAGGGCGAATTGGTCGACCTTGTACAGCTCGTC CATGCC					
35S-ZIP4-GFP-Kpnl-F	CGGGGGACGAGCTCGGTACCATGAGAATCGCCGA GATCAC					
35S-ZIP4-GFP-BamHI-R	ATGTCGACTCTAGAGGATCCAGCAGAAGAAACTTT GGTCT					
35S-MSH5-GFP-Kpnl-F	CGGGGGACGAGCTCGGTACCATGGAGGAAATGGA					
35S-MSH5-GFP-BamHI-R	ATGTCGACTCTAGAGGATCCGGAAGTGAAGATATCT					
35S-MLH3-GFP-Kpnl-F	CGGGGGACGAGCTCGGTACCATGAAGACGATCAA					
35S-MLH3-GFP-BamHI-R	ATGTCGACTCTAGAGGATCCACTTTTAGCGTTGTCT AAGC					
35S-FANCD2-GFP-Kpnl-F	CGGGGGACGAGCTCGGTACCATGGTGTTTCTCTCT CGCAA					
35S-FANCD2-GFP-BamHl- R	ATGTCGACTCTAGAGGATCCAGGTGTCAATGGAAG					
35S-MUS81-GFP-Kpnl-F	CGGGGGACGAGCTCGGTACCATGGATGACGAGAG ACGGGT					
35S-MUS81-GFP-BamHI-R	ATGTCGACTCTAGAGGATCCTTCACCCCAAACTAAC TTGA					
35S-RMI1-GFP-Kpnl-F	CGGGGGACGAGCTCGGTACCATGCGTAGACGGCG CCTGCA					

333-RIVIII-GFP-Bampi-R	AACTG
Primers for Yeast Two Hyb	rid
AD-RPA1a-F	GTACCAGATTACGCTCATATGATGCCGGTGAGTTTG ACTCC
AD-RPA1a-R	CAGCTCGAGCTCGATGGATCCTTACCTTACGAGCA AATCAAGCATGT
BD-RPA1a-F	TCAGAGGAGGACCTGCATATGATGCCGGTGAGTTT GACTCC
BD-RPA1a-R	CCGCTGCAGGTCGACGGATCCTTACCTTACGAGCA AATCAAGCATGT
AD-HEI10-F	GTACCAGATTACGCTCATATGATGAGATGCAACGCG TG
AD-HEI10-R	CAGCTCGAGCTCGATGGATCCCTATAGCGTGAACA GCTGAGG
BD-HEI10-F	TCAGAGGAGGACCTGCATATGATGAGATGCAACGC GTG
BD-HEI10-R	CCGCTGCAGGTCGACGGATCCCTATAGCGTGAACA GCTGAGG
AD-ZIP4-F	TACCAGATTACGCTCATATGATGAGAATCGCCGAGA TCAC
AD-ZIP4-R	AGCTCGAGCTCGATGGATCCAGCAGAAGAAACTTT GGTCT
BD-ZIP4-F	CAGAGGAGGACCTGCATATGATGAGAATCGCCGAG ATCAC
BD-ZIP4-R	CGCTGCAGGTCGACGGATCCAGCAGAAGAAACTTT GGTCT
BD-MLH3-F	CAGAGGAGGACCTGCATATGATGAAGACGATCAAG CCCTT
BD-MLH3-R	CGCTGCAGGTCGACGGATCCACTTTTAGCGTTGTC TAAGC
AD-MLH3-F	TACCAGATTACGCTCATATGATGAAGACGATCAAGC CCTT
AD-MLH3-R	AGCTCGAGCTCGATGGATCCACTTTTAGCGTTGTCT AAGC
AD-MSH5-F	TACCAGATTACGCTCATATGATGGAGGAAATGGAAG ACAC
AD-MSH5-R	AGCTCGAGCTCGATGGATCCGGAAGTGAAGATATC TTGAA

His-Sumo-HEI10-F	ACAGAGAACAGATTGGTGGATCCATGAGATGCAAC
	GCGTG
His-Sumo-HEI10-R	GCGGCCGCAAGCTTGTCGACTAGCGTGAACAGCT

	GAGG
GST-RPA1a-F	ATCTGGTTCCGCGTGGATCCATGCCGGTGAGTTTG
	ACTCC
GST-RPA1a-R	GATGCGGCCGCTCGAGTCGACTTACCTTACGAGCA
	AATCAAGC
His-Sumo-RPA1a-F	ACAGAGAACAGATTGGTGGATCCATGCCGGTGAGT
	TTGACTCC
His-Sumo-RPA1a-R	GCGGCCGCAAGCTTGTCGACCCTTACGAGCAAATC
	AAGCAT
His-NusA-mRFP-F	TCCTCTTTCAGGGACCCGGGATGGCCTCCTCCGA
	GGACGT
His-NusA-mRFP-R	TAGGTTAATTAAGCCTCGAGGGCGCCGGTGGAGTG
	GCGGC
mRFP-linker-HEI10-F	GGTCCGTCTGGACCGAGCGGCCCGTCAGGTCCGA
	GTATGAGATGCAACGCGTGTTG
mRFP-linker-HEI10-R	ACTCGGACCTGACGGGCCGCTCGGTCCAGACGGA
	CCGGCGCCGGTGGAGTGGCGGC
His-NusA-mRFP-HEI10-R	TAGGTTAATTAAGCCTCGAGTAGCGTGAACAGCTGA
	GGGC

Primers for genotyping mutant alleles

hei10-2-LP	GCAAGGAGTTCCCAGAGATG	
hei10-2-RP	CCAAGAACCCGACTTTTTCTC	
rpa1a-1-LP	GCCAGGAGAGGTATCGTTTC	
rpa1a-1-RP	TCGACCTTGGTATGGATTGAG	
LBb1.3	ATTTTGCCGATTTCGGAAC	