Supplementary material 2 3 1 ### Supplementary methods - 4 Preparation of formalin-fixed, paraffin-embedded (FFPE) tissues - 5 Seven 10µm formalin-fixed, paraffin-embedded (FFPE) tissue slices were prepared for - 6 protein analysis, essentially as previously described¹⁻³. In short, paraffin was removed with - 7 xylene followed by rehydration with decreasing levels of ethanol/water and dried. The tissue - 8 was dissolved in lysis buffer (5% SDS, 50 mM triethylammonium bicarbonate [TEAB], pH - 9 8.5) and further processed using S-TrapTM micro spin columns (Protifi, Farmingdale, - Huntington, NY, USA) essentially as previously described^{1,2,4}. A total of 74 samples (*i.e.*, 34 - 11 nt-FL, 20 st-FL, and 20 tFL) were prepared and finally dissolved in 0.1% formic acid at a - 12 concentration of $0.5 \mu g/\mu L$. One μg of each sample was injected in triplicate, except for one - sample injected in duplicate due to limitations of sample amount. - 15 *LFQ nLC-MS/MS and database searches* - Mass spectrometry was performed using an Orbitrap Fusion Tribrid mass spectrometer - coupled to a Dionex Ultimate 3000 RSCL nano LC system (Thermo Fisher Scientific - 18 Instruments, Waltham, MA, USA) using the universal method with settings as previously - described^{1,4}. The 221 raw files were entered into MaxQuant version 1.6.6.0 (Max Planck - 20 Institute of Biochemistry, Martinsried, Germany: https://maxquant.net/maxquant/) for label- - 21 free quantification (LFQ) analysis⁵ using the UniProt *Homo sapiens* filtered and reviewed - database (www.uniprot.org, downloaded 19 March 2021). MaxQuant settings were as - previously described⁶. Further processing was performed in Perseus version 1.6.14.0 (Max - 24 Planck Institute of Biochemistry, Martinsried, Germany: https://maxquant.net/perseus/) for - 1 filtering and further statistical analysis⁷. The means of the Log₂ transformed LFQ values from - 2 each technical replicate were calculated for each protein in each sample. At least two unique - 3 peptides were required for identification. Proteins that were quantified in at least 70% of the - 4 samples in each group were included in the downstream analyses. The median technical - 5 coefficient of variation was calculated for each sample from proteins determined in triplicate. - 6 The mean value was 13.6% (Range 9.72%-20.3%). P-values were calculated by two-tailed t- - 7 test without further correction in order to not increase type 2 errors with the risk of - 8 overlooking putative predictive markers. - 10 Bioinformatic analysis - Bioinformatic analysis was performed using both the STRING database (string-db.org) and - with the use of QIAGEN IPA (QIAGEN Inc., https://digitalinsights.qiagen.com/IPA)8. For - each protein, the corresponding UniProt ID were submitted to the software tools. When more - than one UniProt protein ID were identified, only one representative, the first listed, was used - in the analysis. - The STRING analyses were performed based on the set of significantly differentially - expressed proteins (p<0.05) with at least 20% difference in fold change, and the - corresponding calculated fold-changes. Analyses were performed with input of UniProt IDs. - 19 For the nt-FL vs st-FL analysis, one UniProt ID was not recognized in the Cytoscape - 20 STRING software, resulting in a total of 241 proteins in the analysis. In the st-FL vs tFL - 21 analysis, two UniProt IDs was not recognized in the STRING software, resulting in a total of - 22 798 proteins included in the analyses. The database was assessed using the StringApp - (version 1.7.0) in Cytoscape (version 3.9.0)⁹⁻¹¹. The minimum required interaction score was - set to medium confidence, 0.4, with both functional and physical interactions included. For - 1 enrichment analysis, enriched terms were filtered to include only terms from UniProt - 2 Keywords, Gene Ontology (GO) Biological Processes, GO cellular components, GO - 3 molecular functions, Kyoto Encyclopedia of Genes and Genomes Pathways, Reactome - 4 Pathways, and STRING clusters. The false discovery rate was set to 5%. The option to - 5 remove redundant terms was enabled, and the redundancy cut-off was set to 0.50. - The IPA analyses were performed with the combined set of identified proteins and the - 7 corresponding calculated fold-changes. IPA recognized 2657 of the 2665 protein uploaded. - 8 Analysis was performed with significantly differentially expressed proteins using p<0.05. - 9 The IPA algorithms used are described by Krämer et al. Here, z-scores $\geq |2|$ are considered - statistically significant, and a positive z-score indicates that the pathway is predicted to be - activated, while a negative z-score indicates that the pathway is predicted to be inhibited. - 12 Missing z-scores indicate a pathway for which the z-score cannot be calculated. - 14 Immunohistochemical staining of selected proteins - 15 Selected proteins from the MS-based proteomics results were evaluated using - immunohistochemistry, namely caspase 3 (CASP3), induced myeloid leukemia cell - differentiation protein (MCL1), BCL-2-associated X protein (BAX), B-cell lymphoma-extra- - large (BCL-xL), and BCL2-like 13 (BCL-rambo). One nt-FL sample was excluded from the - analyses due to insufficient lymphoma material available (n=33). Staining was performed on - 20 4μm FFPE sections using the Ventana Benchmark Ultra automated staining system (Ventana - 21 Medical Systems, Oro Valley, Arizona). Slides were deparaffinized with EZ Prep (Ventana, - 950-102) followed by blocking of endogenous peroxidase activity using the OptiView DAB - 23 IHC Detection Kit (Ventana, 760-700)¹²⁻¹⁴. Heat induced epitope retrieval (HIER) was - performed by heating slides to 100°C in ULTRA Cell Conditioning Solution 1 (CC1, - Ventana, 950-224). After HIER, incubation with primary antibody was performed. For all - staining protocols see Supplemental Table S1. All antibodies were diluted in Tris-buffered - 2 antibody diluent (pH 7.2, 15mmol/L NaN3 and stabilizing protein, Dako, Santa Clara, - 3 California), followed by incubation at 37°C. Visualization was performed using the OptiView - 4 DAB IHC Detection Kit with nuclear counterstaining by hematoxylin. Sections of appendix, - 5 tonsil, liver, and pancreas were included on all slides as positive and negative controls. 7 ### Digital image analysis - 8 Stained slides were scanned at a magnification of x20 using the Hamamatsu Nanozoomer - 9 2.0HT scanner (Hamamatsu, Shizouka, Japan). Expression levels of CASP3, MCL1, BAX, - 10 BCL-xL, and BCL-rambo were quantified using Visiopharm Integrator system 2020.01 - 11 (Visiopharm A/S, Hoersholm, Denmark). As previously described¹²⁻¹⁴, areas for staining - quantification were defined by manual outlining of regions of interest (ROI) on each digitized - whole tissue section. Distinct areas of non-lymphoid tissue and technical artefacts were - excluded. Analysis protocol packages (APPs) were designed to quantify the expression levels - of each marker¹²⁻¹⁴. Staining quantification outputs were area fractions (AFs), defined as the - stained area normalized to the total area within the ROI. Intrafollicular regions were manually - outlined, guided by a consecutive parallel tissue section stained with PAX5 to identify B cell - areas in the biopsy¹²⁻¹⁴. For the intrafollicular quantification, one sample was excluded from - 19 the cohort due to the inability to define follicles based on the consecutive PAX5 staining - 20 (n=52; nt-FL, n=32 and st-FL, n=20). Expression levels of CASP3, MCL1, BAX, and BCL- - 21 xL were based on all positive staining, while expression levels of BCL-rambo were based on - 22 strong-intensity staining. - 5 Supplementary tables - **Table S1:** Immunohistochemistry staining protocols - **Table S2:** 2665 identified proteins from MS-based proteomics analysis - **Table S3:** 795 identified proteins comparing st-FL and nt-FL samples - **Table S4**: significantly differentially expressed proteins, nt-FL and st-FL - **Table S5:** 800 significantly differentially expressed proteins comparing tFL and st-FL - 11 samples - **Table S6:** 63 significantly differentially expressed proteins comparing st-FL and nt-FL - samples in high-risk group from *Analysis A* - **Table S7:** 68 significantly differentially expressed proteins comparing st-FL and nt-FL - samples in high-risk group from *Analysis B* - **Table S8:** Complete STRING pathway analysis comparing nt-FL and st-FL samples - **Table S9:** IPA pathway analysis comparing nt-FL and st-FL samples - **Table S10:** IPA diseases and function pathway analysis comparing st-FL and tFL samples - **Table S11:** STRING pathway analysis comparing st-FL and tFL samples - 20 Table S12: IPA pathway analysis comparing st-FL and tFL samples - **Table S13:** IPA diseases and function pathway analysis comparing st-FL and tFL samples # **Supplemental Table S1: immunohistochemistry staining protocols** | Target
protein | HIER incubation (min) | Primary antibody | Primary
antibody
dilution | Antibody incubation (min) | |-------------------|-----------------------|--|---------------------------------|---------------------------| | CASP3 | 64 | Polyclonal rabbit anti-human anti-
CASP3 (HPA00264, Sigma-Aldrich, St.
Louis, Missouri, USA) | 1:750 | 32 | | MCL1 | 92 | Polyclonal rabbit anti-human anti-MCL1 (HPA008455, Sigma-Aldrich) | 1:300 | 32 | | BCL-xL | 92 | Monoclonal rabbit anti-human anti-BCL-xL (ab32370, Abcam, Cambridge, UK) | 1:1000 | 32 | | BCL-rambo | 64 | Polyclonal rabbit anti-human anti-BCL-rambo (16612-1-AP, ProteinTech, Rosemont, Illinois, USA) | 1:700 | 32 | | BAX | 64 | Monocloncal mouse anti-human anti-BAX (60267-1-Ig, ProteinTech) | 1:2500 | 32 | # Supplementary Table S4: significantly differentially expressed proteins, nt-FL and st-FL | Fold change | | C | Post de la companya d | |---------------|------------------|----------------------|--| | (st-FL/nt-FL) | p-value | Gene name | Protein name | | Upregulated | | | | | 2.5 | 0.038 | MPO | Myeloperoxidase | | 2.1 | 0.025 | RNASE3 | Eosinophil cationic protein | | 2.0 | 0.014 | FABP3 | Fatty acid-binding protein, heart | | 1.9 | 0.003 | MPG | DNA-3-methyladenine glycosylase | | 1.7
1.6 | $0.041 \\ 0.010$ | NTPCR
DBI | Cancer-related nucleoside-triphosphatase Acyl-CoA-binding protein | | 1.6 | 0.010 | SNRPC | U1 small nuclear ribonucleoprotein C | | 1.6 | 0.016 | HN1 | Hematological and neurological expressed 1 protein | | 1.5 | 0.010 | PAX5 | Paired box protein Pax-5 | | 1.5 | 0.020 | MCL1 | Induced myeloid leukemia cell differentiation protein Mcl-1 | | 1.5 | 0.031 | EXOSC6 | Exosome complex component MTR3 | | 1.5 | 0.013 | SRSF3 | Serine/arginine-rich splicing factor 3 | | 1.5 | 0.040 | RABIF | Guanine nucleotide exchange factor MSS4 | | 1.5 | 0.005 | CDC26 | Anaphase-promoting complex subunit CDC26 | | 1.5 | 0.028 | LYZ | Lysozyme C | | 1.5 | 0.003 | SARNP | SAP domain-containing ribonucleoprotein | | 1.5 | 0.049 | TRMT61A | tRNA (adenine(58)-N(1))-methyltransferase catalytic subunit TRMT61A | | 1.5 | 0.017 | CCAR1 | Cell division cycle and apoptosis regulator protein 1 | | 1.5
1.5 | 0.009 | ALYREF
NUP35 | THO complex subunit 4 | | 1.5 | $0.014 \\ 0.010$ | PSME3 | Nucleoporin NUP53 Proteasome activator complex subunit 3 | | 1.3 | 0.010 | ARL2 | ADP-ribosylation factor-like protein 2 | | 1.4 | 0.019 | BAK1 | Bcl-2 homologous antagonist/killer | | 1.4 | 0.019 | LYPLAL1 | Lysophospholipase-like protein 1 | | 1.4 | 0.010 | SRSF1 | Serine/arginine-rich splicing factor 1 | | 1.4 | 0.002 | TRPT1 | tRNA 2-phosphotransferase 1 | | 1.4 | 0.011 | SRA1 | Steroid receptor RNA activator 1 | | 1.4 | 0.027 | PABPC4 | Polyadenylate-binding protein 4 | | 1.4 | 0.014 | ISG20 | Interferon-stimulated gene 20 kDa protein | | 1.4 | 0.012 | CHERP | Calcium homeostasis endoplasmic reticulum protein | | 1.4 | 0.007 | KPNA2 | Importin subunit alpha-1 | | 1.4 | 0.001 | SRSF10 | Serine/arginine-rich splicing factor 10 | | 1.4
1.4 | $0.007 \\ 0.025$ | SAE1
MMP0 | SUMO-activating enzyme subunit 1 | | 1.4 | 0.023 | <i>MMP9</i>
SNRPB | Matrix metalloproteinase-9 Small nuclear ribonucleoprotein-associated proteins B and B | | 1.4 | 0.006 | PLD3 | Phospholipase D3 | | 1.4 | 0.012 | RMDN3 | Regulator of microtubule dynamics protein 3 | | 1.4 | 0.007 | BAX | Apoptosis regulator BAX | | 1.4 | 0.010 | NPEPL1 | Probable aminopeptidase NPEPL1 | | 1.4 | 0.029 | NDUFS8 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial | | 1.4 | 0.026 | CDK6 | Cyclin-dependent kinase 6 | | 1.4 | 0.023 | BCS1L | Mitochondrial chaperone BCS1 | | 1.4 | 0.028 | SNRPG | Small nuclear ribonucleoprotein G | | 1.4 | 0.024 | SRSF2 | Serine/arginine-rich splicing factor 2 | | 1.4 | 0.045 | DR1 | Protein Dr1 | | 1.4
1.4 | 0.044
0.025 | FUCA1
SEC23B | Tissue alpha-L-fucosidase Protein transport protein Sec23B | | 1.4 | 0.023 | ACOT7 | Cytosolic acyl coenzyme A thioester hydrolase | | 1.4 | 0.040 | CIRBP | Cold-inducible RNA-binding protein | | 1.4 | 0.008 | MTMR14 | Myotubularin-related protein 14 | | 1.4 | 0.019 | HTRA2 | Serine protease HTRA2, mitochondrial | | 1.4 | 0.036 | NDUFS3 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial | | 1.4 | 0.002 | TBC1D13 | TBC1 domain family member 13 | | 1.4 | 0.044 | CSTF2 | Cleavage stimulation factor subunit 2 | | 1.4 | 0.002 | SNRPD1 | Small nuclear ribonucleoprotein Sm D1 | | 1.4 | 0.010 | NAA40 | N-alpha-acetyltransferase 40 | | 1.4 | 0.043 | COX5A | Cytochrome c oxidase subunit 5A, mitochondrial | | 1.4 | 0.005 | ATXN10 | Ataxin-10 | | 1.3 | 0.015 | LEMD2 | LEM domain-containing protein 2 | | 1.3 | $0.004 \\ 0.006$ | FBXO22 | F-box only protein 22
ADP-ribosylation factor-like protein 1 | | 1.3 | 0.000 | ARL1 | ADI -Hoosyiation factor-like protein i | | 1.3 | 1.2 | 0.022 | TUDALC | Tabalia dala 10 dala | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|----------|-----------------------------------------------| | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | 1.3 | < 0.001 | YBX3 | | | 1.3 | 1.3 | 0.035 | SLC39A11 | Zinc transporter ZIP11 | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 0.042 HSPBI Heat shock protein beta-1 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | 1.3 | | | | | 1.3 | 1.3 | 0.005 | MPST | | | 1.3 | 1.3 | 0.011 | UBE2K | Ubiquitin-conjugating enzyme E2 K | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 | | | | | | 1.3 0.022 ASPSCRI Tether containing UBX domain for GLUT4 1.3 0.024 TBCA Tubulin-specific chaperone A 1.3 0.048 CASP3 Caspase-3 1.3 0.014 PSMG2 Proteasome assembly chaperone 2 1.3 0.014 PSMG2 Proteasome assembly chaperone 2 1.3 0.014 PSMG2 Proteasome assembly chaperone 2 1.3 0.001 SF1 Splicing factor 1 1.3 0.004 CBFB Core-binding factor subunit beta 1.3 0.004 CBFB Core-binding factor subunit beta 1.3 0.0018 HNIL Hematological and neurological expressed 1-like protein 1.3 0.008 MRPS23 28S ribosomal protein S23, mitochondrial 1.3 0.006 BCL2LI Bcl-2-like protein 1 1.3 0.006 BCL2LI Bcl-2-like protein 1 1.3 0.001 GDD5 Programmed cell death protein 8 homolog 1.3 0.047 ZZ3H18 Zinc finger CCCH domain-containing protein 18 | | | | | | 1.3 0.048 TBCA Tubulin-specific chaperone A 1.3 0.048 CASP3 Caspase-3 1.3 0.022 SRSF11 Serine/arginine-rich splicing factor 11 1.3 0.014 PSMG2 Proteasome assembly chaperone 2 1.3 0.019 DCK Deoxycytidine kinase 1.3 0.004 CBFB Core-binding factor subunit beta 1.3 0.018 HNIL Hematological and neurological expressed 1-like protein 1.3 0.018 HNIL Hematological and neurological expressed 1-like protein 1.3 0.018 MRPS23 28S ribosomal protein S23, mitochondrial 1.3 0.006 BCL2L1 Bcl-2-like protein 1 1.3 0.006 BCL2L1 Bcl-2-like protein 1 1.3 0.015 GIDB Glucose-induced degradation protein 8 homolog 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal pr | | | | | | 1.3 0.014 PSMG2 Proteasome assembly chaperone 2 1.3 0.019 DCK Deoxycytidine kinase 1.3 0.021 SF1 Splicing factor 1 1.3 0.004 CBFB Core-binding factor subunit beta 1.3 0.018 HN1L Hematological and neurological expressed 1-like protein 1.3 0.036 MRPS23 28S ribosomal protein S23, mitochondrial 1.3 0.008 TRA2B Transformer-2 protein homolog beta 1.3 0.006 BCL2L1 Bcl-2-like protein 1 1.3 0.015 GID8 Glucose-induced degradation protein 8 homolog 1.3 0.015 GID8 Glucose-induced degradation protein 8 homolog 1.3 0.015 GID8 Glucose-induced degradation protein 8 homolog 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.2 0.001 CCDC124 | 1.3 | | | | | 1.3 0.014 PSMG2 Proteasome assembly chaperone 2 1.3 0.019 DCK Deoxycytidine kinase 1.3 0.004 CBFB Core-binding factor subunit beta 1.3 0.018 HNIL Hematological and neurological expressed 1-like protein 1.3 0.036 MRPS23 28S ribosomal protein S23, mitochondrial 1.3 0.006 BCL2L1 Bel-2-like protein I momolog beta 1.3 0.005 GIDBS Glucose-induced degradation protein 8 homolog 1.3 0.015 GIDS Glucose-induced degradation protein 8 homolog 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.013 TIPRL TIPA1-like protein 1.2 0.038 | 1.3 | 0.048 | CASP3 | | | 1.3 0.021 SFI Splicing factor I 1.3 0.004 CBFB Core-binding factor subunit beta 1.3 0.0018 HNIL Hematological and neurological expressed 1-like protein 1.3 0.036 MRPS23 28S ribosomal protein S23, mitochondrial 1.3 0.008 TRA2B Transformer-2 protein homolog beta 1.3 0.006 BCL2L1 Bel-2-like protein 1 1.3 0.0015 GID8 Glucose-induced degradation protein 8 homolog 1.3 0.020 PDCD5 Programmed cell death protein 5 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.013 TIPRL TIP41-like protein 1.2 0.013 TIPRL TIP41-like protein 50 1.2 0.014 IMDR77 Methylosome prot | 1.3 | 0.022 | SRSF11 | | | 1.3 0.0021 SFI Splicing factor 1 1.3 0.004 CBFB Core-binding factor subunit beta 1.3 0.018 HNIL Hematological and neurological expressed 1-like protein 1.3 0.036 MRPS23 28S ribosomal protein S23, mitochondrial 1.3 0.008 TRA2B Transformer-2 protein homolog beta 1.3 0.006 BCL2L1 Bcl-2-like protein 1 1.3 0.005 GIDB Glucose-induced degradation protein 8 homolog 1.3 0.020 PDCD5 Programmed cell death protein 5 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 MPIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.013 TIPRL TIP41-like protein 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.048 IF727 Intraflagel | | | | | | 1.3 0.004 CBFB Core-binding factor subunit beta 1.3 0.018 HNIL Hematological and neurological expressed 1-like protein 1.3 0.036 MRPS23 28S ribosomal protein S23, mitochondrial 1.3 0.008 TRA2B Transformer-2 protein homolog beta 1.3 0.006 BCL2L1 Bel-2-like protein 1 1.3 0.015 GID8 Glucose-induced degradation protein 8 homolog 1.3 0.020 PDCD5 Programmed cell death protein 5 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 MRPL5 39S ribosomal protein L55, mitochondrial 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.001 TIPRL TIP41-like protein 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.048 IFT27 | | | | | | 1.3 0.018 HNIL Hematological and neurological expressed 1-like protein 1.3 0.036 MRPS23 288 ribosomal protein S23, mitochondrial 1.3 0.006 BCL2L1 Bcl-2-like protein 1 1.3 0.0015 GID8 Glucose-induced degradation protein 8 homolog 1.3 0.020 PDCD5 Programmed cell death protein 5 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 18 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.033 RNASEH2A Ribonuclease H2 subunit A 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.0 | | | | | | 1.3 0.036 MRPS23 28S ribosomal protein S23, mitochondrial 1.3 0.008 TRA2B Transformer-2 protein homolog beta 1.3 0.006 BCL2L1 Bcl-2-like protein l 1.3 0.015 GID8 Glucose-induced degradation protein 8 homolog 1.3 0.020 PDCD5 Programmed cell death protein 5 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.001 TIPRL TIP41-like protein 1.2 0.013 TIPRL TIP41-like protein 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family | | | | | | 1.3 0.006 BCL2LI Bcl-2-like protein l 1.3 0.006 BCL2LI Bcl-2-like protein l 1.3 0.015 GID8 Glucose-induced degradation protein 8 homolog 1.3 0.020 PDCD5 Programmed cell death protein 5 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.013 TIPRL TIP41-like protein 1.2 0.013 TIPRL Ribonuclease H2 subunit A 1.2 0.013 RNASEH2A Ribonuclease H2 subunit A 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat | | | | | | 1.3 0.006 BCL2L1 Bcl-2-like protein 1 1.3 0.015 GID8 Glucose-induced degradation protein 8 homolog 1.3 0.020 PDCD5 Programmed cell death protein 5 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.013 TIPRL TIP41-like protein 1.2 0.013 RNASEH2A Ribonuclease H2 subunit A 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA | | | | | | 1.3 0.015 GID8 Glucose-induced degradation protein 8 homolog 1.3 0.020 PDCD5 Programmed cell death protein 5 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.013 TIPRL TIP41-like protein 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.011 WDR77 Methylosome protein 50 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.031 | | | | | | 1.3 0.020 PDCD5 Programmed cell death protein 5 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.013 TIPRL TIP41-like protein 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.011 WDR77 Methylosome protein 50 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 | | | | | | 1.3 0.047 ZC3H18 Zinc finger CCCH domain-containing protein 18 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.013 TIPRL TIP41-like protein 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.011 WDR77 Methylosome protein 50 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.041 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.3 0.043 MRPL55 39S ribosomal protein L55, mitochondrial 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.013 TIPRL TIP41-like protein 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.011 WDR77 Methylosome protein 50 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 | | | | | | 1.3 0.043 APIP Methylthioribulose-1-phosphate dehydratase 1.2 0.001 CCDC124 Coiled-coil domain-containing protein 124 1.2 0.013 TIPRL TIP41-like protein 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.011 WDR77 Methylosome protein 50 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.043 NUP214 Nuclear pore complex protein 2-like | | | | | | 1.2 0.013 TIPRL TIP41-like protein 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.011 WDR77 Methylosome protein 50 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | 1.3 | 0.043 | APIP | Methylthioribulose-1-phosphate dehydratase | | 1.2 0.038 RNASEH2A Ribonuclease H2 subunit A 1.2 0.011 WDR77 Methylosome protein 50 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.2 0.011 WDR77 Methylosome protein 50 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.2 0.048 IFT27 Intraflagellar transport protein 27 homolog 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.2 0.033 BAG2 BAG family molecular chaperone regulator 2 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.2 0.035 PELP1 Proline-, glutamic acid- and leucine-rich protein 1 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.2 0.024 HSPA14 Heat shock 70 kDa protein 14 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.2 0.023 NUDT21 Cleavage and polyadenylation specificity factor subunit 5 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.2 0.033 ARL3 ADP-ribosylation factor-like protein 3 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.2 0.041 THOC6 THO complex subunit 6 homolog 1.2 0.044 PHYKPL 5-phosphohydroxy-L-lysine phospho-lyase 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.20.044PHYKPL5-phosphohydroxy-L-lysine phospho-lyase1.20.031ADRM1Proteasomal ubiquitin receptor ADRM11.20.026MAT2BMethionine adenosyltransferase 2 subunit beta1.20.045OVCA2Ovarian cancer-associated gene 2 protein1.20.043NUP214Nuclear pore complex protein Nup2141.20.011UBAP2LUbiquitin-associated protein 2-like | | | | | | 1.2 0.031 ADRM1 Proteasomal ubiquitin receptor ADRM1 1.2 0.026 MAT2B Methionine adenosyltransferase 2 subunit beta 1.2 0.045 OVCA2 Ovarian cancer-associated gene 2 protein 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.20.026MAT2BMethionine adenosyltransferase 2 subunit beta1.20.045OVCA2Ovarian cancer-associated gene 2 protein1.20.043NUP214Nuclear pore complex protein Nup2141.20.011UBAP2LUbiquitin-associated protein 2-like | | | | | | 1.2 0.043 NUP214 Nuclear pore complex protein Nup214 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | 1.2 | 0.026 | | Methionine adenosyltransferase 2 subunit beta | | 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like | | | | | | 1.2 0.011 UBAP2L Ubiquitin-associated protein 2-like 1.2 0.034 KPNA3 Importin subunit alpha-4 | | | | | | 1.2 U.U54 KPNA5 Importin subunit alpha-4 | | | | | | | 1.2 | 0.034 | KPNA3 | importin subunit alpha-4 | | 1.2 | 0.011 | PFDN2 | Prefoldin subunit 2 | |---------------|------------------|-------------------|--------------------------------------------------------------------| | 1.2 | 0.017 | PAAF1 | Proteasomal ATPase-associated factor 1 | | 1.2 | 0.029 | COASY | Bifunctional coenzyme A synthase | | 1.2 | 0.029 | PPAT | Amidophosibosyltransferase | | 1.2 | 0.037 | SNAP29 | Synaptosomal-associated protein 29 | | 1.2 | 0.017 | DTYMK | Thymidylate kinase | | 1.2 | 0.011 | CHMP2A | Charged multivesicular body protein 2a | | 1.2 | 0.039 | NECAP1 | Adaptin ear-binding coat-associated protein 1 | | 1.2 | 0.002 | G3BP1 | Ras GTPase-activating protein-binding protein 1 | | 1.2 | 0.041 | BTF3 | Transcription factor BTF3 | | Downregulated | | | | | 0.4 | 0.005 | <i>IQGAP2</i> | Ras GTPase-activating-like protein IQGAP2 | | 0.5 | 0.004 | UGGT1 | UDP-glucose:glycoprotein glucosyltransferase 1 | | 0.5 | 0.001 | DOCK11 | Dedicator of cytokinesis protein 11 | | 0.5 | < 0.001 | ACTB | Actin, cytoplasmic 1 | | 0.5 | 0.029 | AP2A2 | AP-2 complex subunit alpha-2 | | 0.6 | 0.011 | AKAP13 | A-kinase anchor protein 13 | | 0.6 | < 0.001 | MAP2K1 | Dual specificity mitogen-activated protein kinase kinase 1 | | 0.6 | 0.040 | RBM25 | RNA-binding protein 25 | | 0.6 | 0.018 | EHD3 | EH domain-containing protein 3 | | 0.6 | 0.014 | STT3B | Dolichyl-diphosphooligosaccharid-protein glycosyltransferase STT3B | | 0.6 | 0.027 | PLXNB2 | Plexin-B2 | | 0.7 | 0.026 | CKAP5 | Cytoskeleton-associated protein 5 | | 0.7 | 0.013 | FLNB | Filamin-B | | 0.7 | 0.028 | KTN1 | Kinectin | | 0.7 | 0.039 | IGHG1 | Ig gamma-1 chain C region | | 0.7
0.7 | 0.005 | ADD1 | Alpha-adducin | | 0.7 | 0.025 | ACAP2
NIPSNAP1 | Arf-GAP coiled-coil, ANK repeat and PH domain-containing protein 2 | | 0.7 | 0.020
0.043 | GLG1 | Protein NipSnap homolog 1
Golgi apparatus protein 1 | | 0.7 | 0.043 | SBF1 | Myotubularin-related protein 5 | | 0.7 | 0.048 | LMAN1 | Protein ERGIC-53 | | 0.7 | 0.002 | SRP54 | Signal recognition particle 54 kDa protein | | 0.7 | 0.027 | ADD3 | Gamma-adducin | | 0.7 | 0.004 | HMHA1 | Minor histocompatibility protein HA-1 | | 0.7 | 0.033 | SERPINC1 | Antithrombin-III | | 0.7 | 0.014 | SLC1A5 | Neutral amino acid transporter B(0) | | 0.7 | 0.016 | PALD1 | Paladin | | 0.7 | 0.010 | RPN2 | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 2 | | 0.7 | 0.026 | PDIA4 | Protein disulfide-isomerase A4 | | 0.7 | 0.047 | ATP2B1 | Plasma membrane calcium-transporting ATPase 1 | | 0.7 | 0.009 | ABCE1 | ATP-binding cassette sub-family E member 1 | | 0.7 | 0.046 | RPS6KA3 | Ribosomal protein S6 kinase alpha-3 | | 0.7 | 0.005 | CD81 | CD81 antigen | | 0.7 | 0.011 | CTTN | Src substrate cortactin | | 0.7 | 0.027 | PIK3AP1 | Phosphoinositide 3-kinase adapter protein 1 | | 0.7 | 0.011 | PACS1 | Phosphofurin acidic cluster sorting protein 1 | | 0.7 | 0.036 | OSBPL8 | Oxysterol-binding protein-related protein 8 | | 0.7 | 0.016 | SEPT7 | Septin-7 | | 0.7 | 0.005 | ELMO1 | Engulfment and cell motility protein 1 | | 0.7
0.7 | 0.001 | GNPDA2 | Glucosamine-6-phosphate isomerase 2 Ethylmalonyl-CoA decarboxylase | | 0.7 | $0.002 \\ 0.030$ | ECHDC1
ITGB1 | Integrin beta-1 | | 0.7 | 0.030 | NT5C2 | Cytosolic purine 5-nucleotidase | | 0.7 | 0.040 | PDCD4 | Programmed cell death protein 4 | | 0.7 | 0.003 | CD2AP | CD2-associated protein | | 0.7 | 0.012 | HERC4 | Probable E3 ubiquitin-protein ligase HERC4 | | 0.7 | 0.038 | ITGAL | Integrin alpha-L | | 0.7 | 0.008 | GCLC | Glutamatecysteine ligase catalytic subunit | | 0.7 | 0.018 | TES | Testin | | 0.7 | 0.014 | BRK1 | Protein BRICK1 | | 0.7 | 0.049 | MAGED2 | Melanoma-associated antigen D2 | | 0.7 | 0.023 | SLC48A1 | Heme transporter HRG1 | | 0.7 | 0.025 | NCKAP1L | Nck-associated protein 1-like | | 0.8 | 0.042 | AP1M1 | AP-1 complex subunit mu-1 | | 0.8 | 0.012 | CDK5RAP3 | CDK5 regulatory subunit-associated protein 3 | | | | · | | | 0.8 | 0.015 | PIK3R4 | Phosphoinositide 3-kinase regulatory subunit 4 | |-----|-------|---------------|---| | 0.8 | 0.020 | DCTN4 | Dynactin subunit 4 | | 0.8 | 0.026 | SRPR | Signal recognition particle receptor subunit alpha | | 0.8 | 0.043 | GGT5 | Gamma-glutamyltransferase 5 | | 0.8 | 0.018 | DGKA | Diacylglycerol kinase alpha | | 0.8 | 0.029 | ATP2A3 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 | | 0.8 | 0.038 | TRIM25 | E3 ubiquitin/ISG15 ligase TRIM25 | | 0.8 | 0.032 | OAS2 | 2-5-oligoadenylate synthase 2 | | 0.8 | 0.026 | BCAP31 | B-cell receptor-associated protein 31 | | 0.8 | 0.034 | PIP4K2A | Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha | | 0.8 | 0.013 | METAP2 | Methionine aminopeptidase 2 | | 0.8 | 0.003 | HSPA1A | Heat shock 70 kDa protein 1A | | 0.8 | 0.007 | MSN | Moesin | | 0.8 | 0.035 | SRP72 | Signal recognition particle subunit SRP72 | | 0.8 | 0.034 | VASP | Vasodilator-stimulated phosphoprotein | | 0.8 | 0.040 | LANCL1 | LanC-like protein 1 | | 0.8 | 0.038 | FKBP2 | Peptidyl-prolyl cis-trans isomerase FKBP2 | | 0.8 | 0.001 | CCNY | Cyclin-Y | | 0.8 | 0.011 | ABCF3 | ATP-binding cassette sub-family F member 3 | | 0.8 | 0.002 | PDIA3 | Protein disulfide-isomerase A3 | | 0.8 | 0.016 | LMAN2 | Vesicular integral-membrane protein VIP36 | | 0.8 | 0.034 | SPG11 | Spatacsin | | 0.8 | 0.030 | CYB5B | Cytochrome b5 type B | | 0.8 | 0.011 | DENND2D | DENN domain-containing protein 2D | | 0.8 | 0.044 | DNAJB11 | DnaJ homolog subfamily B member 11 | | 0.8 | 0.006 | NRAS | GTPase NRas | | 0.8 | 0.005 | DRG2 | Developmentally-regulated GTP-binding protein 2 | | 0.8 | 0.006 | TSG101 | Tumor susceptibility gene 101 protein | | 0.8 | 0.021 | KDSR | 3-ketodihydrosphingosine reductase | | 0.8 | 0.006 | TMED10 | Transmembrane emp24 domain-containing protein 10 | | 0.8 | 0.020 | RPN1 | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 1 | | 0.8 | 0.007 | GEMIN5 | Gem-associated protein 5 | | 0.8 | 0.031 | DSCR3 | Down syndrome critical region protein 3 | | 0.8 | 0.003 | ADH5 | Alcohol dehydrogenase class-3 | | 0.8 | 0.029 | NGLY1 | Peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase | | 0.8 | 0.025 | SMYD5 | SET and MYND domain-containing protein 5 | | 0.8 | 0.008 | EPN1 | Epsin-1 | | 0.8 | 0.029 | PRKCSH | Glucosidase 2 subunit beta | | 0.8 | 0.038 | TOR1A | Torsin-1A | | 0.8 | 0.019 | CUL5 | Cullin-5 | | 0.8 | 0.015 | SEPT6 | Septin-6 | | 0.8 | 0.041 | GLTP | Glycolipid transfer protein | | 0.8 | 0.011 | NCK1 | Cytoplasmic protein NCK1 | | 0.8 | 0.023 | PPIB | Peptidyl-prolyl cis-trans isomerase B | | 0.8 | 0.031 | TFAM | Transcription factor A, mitochondrial | | 0.8 | 0.023 | PTPN11 | Tyrosine-protein phosphatase non-receptor type 11 | | 0.8 | 0.028 | <i>IQGAP1</i> | Ras GTPase-activating-like protein IQGAP1 | | 0.8 | 0.020 | SEPT9 | Septin-9 | | 0.8 | 0.046 | PAK2 | Serine/threonine-protein kinase PAK 2;PAK-2p27;PAK-2p34 | | | | | | #### 1 Supplementary figures ### 2 Figure S1: Unsupervised clustering based on all identified proteins - 3 (A) Principal component analysis based on all 2665 identified proteins comparing st-FL and - 4 nt-FL samples. Abbreviations: nt-FL, non-transforming FL; PC, principal component; st-FL, - 5 subsequently-transforming FL. 6 #### 7 Figure S2: Re-analysis of high-risk patients from *Analysis A* and *Analysis B* - 8 (A) 3D PCA based on differentially expressed proteins at p<0.05 comparing nt-FL and st-FL - 9 from the high-risk group identified in *Analysis A*. (B) Hierarchal clustering with input of - differentially expressed proteins at p<0.05 identified in the high-risk group in *Analysis A*. (C) - 3D PCA based on differentially expressed proteins at p<0.01 comparing nt-FL and st-FL - from the high-risk group identified in *Analysis B*. (D) Hierarchal clustering based on - differentially expressed proteins at p<0.01 identified in the high-risk group in *Analysis B*. - Abbreviations: nt-FL, non-transforming samples; PC, principal component; st-FL, - subsequently-transforming samples. 16 17 #### **Supplementary references** - Holst JM, Enemark MB, Pedersen MB, et al. Proteomic Profiling Differentiates Lymphoma Patients with and without Concurrent Myeloproliferative Neoplasia. *Cancers (Basel)*. 2021;13(21). - Honoré B. Proteomic Protocols for Differential Protein Expression Analyses. *Methods Mol Biol.* 2020;2110:47-58. - Ludvigsen M, Thorlacius-Ussing L, Vorum H, et al. Proteomic Characterization of Colorectal Cancer Cells versus Normal-Derived Colon Mucosa Cells: Approaching Identification of Novel Diagnostic Protein Biomarkers in Colorectal Cancer. *Int J Mol Sci.* 2020;21(10). - Cehofski LJ, Kojima K, Terao N, et al. Aqueous Fibronectin Correlates With Severity of Macular Edema and Visual Acuity in Patients With Branch Retinal Vein Occlusion: A Proteome Study. *Invest Ophthalmol Vis Sci.* 2020;61(14):6. - Tyanova S, TemuT, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. *Nat Protoc.* 2016;11(12):2301-2319. - Christakopoulos C, Cehofski LJ, Christensen SR, Vorum H, Honoré B. Proteomics reveals a set of highly enriched proteins in epiretinal membrane compared with inner limiting membrane. Exp Eye Res. 2019;186:107722. - Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat Methods.* 2016;13(9):731-740. - 6 8. Krämer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. *Bioinformatics*. 2014;30(4):523-530. - 9. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. *J Proteome Res.* 2019;18(2):623-632. - Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-d613. - 13 11. Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-d612. - Beck Enemark M, Monrad I, Madsen C, et al. PD-1 Expression in Pre-Treatment Follicular Lymphoma Predicts the Risk of Subsequent High-Grade Transformation. *Onco Targets Ther*. 2021;14:481-489. - Enemark MB, Hybel TE, Madsen C, et al. Tumor-Tissue Expression of the Hyaluronic Acid Receptor RHAMM Predicts Histological Transformation in Follicular Lymphoma Patients. Cancers (Basel). 2022;14(5). - Hybel TE, Vase M, Maksten EF, et al. Intratumoral expression of CD38 in patients with posttransplant lymphoproliferative disorder. *Acta Oncol.* 2021:1-6. # Figure S1 Figure S2