iScience, Volume 27

Supplemental information

Villin headpiece unfolding upon binding

to boridene mediated

by the "anchoring-perturbation" mechanism

Yuqi Luo, Zonglin Gu, Weihua Liao, Yiwen Huang, Jose Manuel Perez-Aguilar, Yanbo Luo, and Longzhen Chen

Figure S1. The final conformations of HP35 binding to boridene nanosheet at 2000 ns in three parallel simulations of sys-3. Related to Figure 1.

Figure S2. Simulation of an individual HP35 in absence of boridene. (a) Original (red) and final (blue) conformations of HP35 during a 2000-ns simulation. (b) RMSD of HP35 during the simulation. Related to Figure 1.

Figure S3. RMSD of HP35 versus boridene in three simulations of sys-1. Related to Figure 2.

Figure S4. RMSD of HP35 versus boridene in three simulations of sys-2. Related to Figure 2.

Figure S5. RMSD of HP35 versus boridene in three simulations of sys-3. Related to Figure 2.

Figure S6. Snapshots of HP35 on boridene at four time points in the first simulation of sys-1. Related to Figure 2.

Figure S7. Binding kinetics of HP35 to boridene nanosheet in the second trajectory of sys-1 simulations. (a) Atom contact number of HP35 to boridene. (b) Interaction energies, including van der Waals (vdW) and Coulomb (Coul) energies, between HP35 and boridene. (c) Hydrogen bond (H-bond) number and Q value evolutions of HP35. (d) Root-mean-square displacement (RMSD) of HP35. Related to Figure 2.

Figure S8. Binding kinetics of HP35 to boridene nanosheet in the third trajectory of sys-1 simulations. (a) Atom contact number of HP35 to boridene. (b) Interaction energies, including van der Waals (vdW) and Coulomb (Coul) energies, between HP35 and boridene. (c) Hydrogen bond (H-bond) number and Q value evolutions of HP35. (d) Root-mean-square displacement (RMSD) of HP35. Related to Figure 2.

Figure S9. Binding kinetics of HP35 to boridene nanosheet in the first trajectory of sys-2 simulations. (a) Atom contact number of HP35 to boridene. (b) Interaction energies, including van der Waals (vdW) and Coulomb (Coul) energies, between HP35 and boridene. (c) Hydrogen bond (H-bond) number and Q value evolutions of HP35. (d) Root-mean-square displacement (RMSD) of HP35. Related to Figure 2.

Figure S10. Binding kinetics of HP35 to boridene nanosheet in the second trajectory of sys-2 simulations. (a) Atom contact number of HP35 to boridene. (b) Interaction energies, including van der Waals (vdW) and Coulomb (Coul) energies, between HP35 and boridene. (c) Hydrogen bond (H-bond) number and Q value evolutions of HP35. (d) Root-mean-square displacement (RMSD) of HP35. Related to Figure 2.

Figure S11. Binding kinetics of HP35 to boridene nanosheet in the third trajectory of sys-2 simulations. (a) Atom contact number of HP35 to boridene. (b) Interaction energies, including van der Waals (vdW) and Coulomb (Coul) energies, between HP35 and boridene. (c) Hydrogen bond (H-bond) number and Q value evolutions of HP35. (d) Root-mean-square displacement (RMSD) of HP35. Related to Figure 2.

Figure S12. Binding kinetics of HP35 to boridene nanosheet in the first trajectory of sys-3 simulations. (a) Atom contact number of HP35 to boridene. (b) Interaction energies, including van der Waals (vdW) and Coulomb (Coul) energies, between HP35 and boridene. (c) Hydrogen bond (H-bond) number and Q value evolutions of HP35. (d) Root-mean-square displacement (RMSD) of HP35. Related to Figure 2.

Figure S13. Binding kinetics of HP35 to boridene nanosheet in the second trajectory of sys-3 simulations. (a) Atom contact number of HP35 to boridene. (b) Interaction energies, including van der Waals (vdW) and Coulomb (Coul) energies, between HP35 and boridene. (c) Hydrogen bond (H-bond) number and Q value evolutions of HP35. (d) Root-mean-square displacement (RMSD) of HP35. Related to Figure 2.

Figure S14. Binding kinetics of HP35 to boridene nanosheet in the third trajectory of sys-3 simulations. (a) Atom contact number of HP35 to boridene. (b) Interaction energies, including van der Waals (vdW) and Coulomb (Coul) energies, between HP35 and boridene. (c) Hydrogen bond (H-bond) number and Q value evolutions of HP35. (d) Root-mean-square displacement (RMSD) of HP35. Related to Figure 2.

Figure S15. Unwinding region of HP35 in the first trajectory of sys-2 simulation. Red: Initial

HP35 structure; Blue: final HP35 structure. Green dashed circle indicates the local unwinding region.

Figure S16. Snapshots showing the unfolding of HP35 on boridene in the first trajectory of sys-2 simulations. Related to Figure 2.

Figure S17. Unfolding of HP35 in an additional simulation of sys-1. (a) Hydrogen bond (H-bond) number and Q value evolutions of HP35. (b) Root-mean-square displacement (RMSD) of HP35.

(c) Three typical snapshots showing the unfolding process. Related to Figure 2.

Figure S18. Initial conformations. In these three conformations, the HP35 rotates for 0° (a), 180° (b) and 270° (c) aiming at achieving the different initial structure, wherein HP35 faces to boridene with different surfaces. Related to STAR Methods.

	box size (nm³)	water number	Na⁺ number	Cl ⁻ number
sys-1	3.5×4.2×6	2372	8	10
sys-2	3.5×4.2×6	2377	8	10
sys-3	3.5×4.2×6	2465	8	10

Table S1. Simulation details of each system. Related to STAR Methods.

Table S2. Force field parameters of boridene. Related to STAR Methods.

	σ (nm)	ε (kJ/mol)	charge (e)		
molybdenum	0.415	0.7	0.405		
boron	0.24	0.5	-0.27		

Table S3. C)ptim	nized	coordinate	es of boric	dene seg	ment. R	elated to	STAR	Methoo	ds.	
CRYST1	5.	176	8.964	17.697	89.39	90.31	90.00 P	1		1	
ATOM	1	B1	MOL X	2	2.839	1.995	8.210	1.00	0.01		В
ATOM	2	B2	MOL X	2	1.972	0.494	8.206	1.00	0.01		В
ATOM	3	B3	MOL X	2	2.824	7.978	8.214	1.00	0.01		В

ATOM	4	B4	MOL X	2	1.958	6.477	8.210	1.00	0.01	В
ATOM	5	B5	MOL X	2	0.251	6.477	8.210	1.00	0.01	В
ATOM	6	B6	MOL X	2	4.560	4.976	8.207	1.00	0.01	В
ATOM	7	B7	MOL X	2	0.236	3.496	8.214	1.00	0.01	В
ATOM	8	B8	MOL X	2	2.824	4.976	8.206	1.00	0.01	В
ATOM	9	B9	MOL X	2	1.973	3.496	8.212	1.00	0.01	В
ATOM	10	B10	MOL X	2	0.237	0.494	8.205	1.00	0.01	В
ATOM	11	B11	MOL X	2	4.560	7.978	8.212	1.00	0.01	В
ATOM	12	B12	2 MOL X	2	4.546	1.994	8.210	1.00	0.01	В
ATOM	13	Mo1	MOL X	2	3.692	6.466	9.653	1.00	0.01	MO
ATOM	14	Mo2	MOL X	2	1.104	2.007	6.766	1.00	0.01	MO
ATOM	15	Mo3	MOL X	2	3.692	3.494	9.616	1.00	0.01	MO
ATOM	16	Mo4	MOL X	2	1.104	4.978	6.804	1.00	0.01	MO
ATOM	17	Mo5	MOL X	2	1.104	1.984	9.653	1.00	0.01	MO
ATOM	18	Mo6	MOL X	2	3.692	6.488	6.766	1.00	0.01	MO
ATOM	19	Mo7	MOL X	2	1.104	7.976	9.615	1.00	0.01	MO
ATOM	20	Mo8	MOL X	2	3.692	0.495	6.803	1.00	0.01	MO
END										