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1 Theoretical details10

1.1 Proof of Lemma 111

Let Y ∼ Pois(λ) and Z be the parity of Y . Then Z ∼ Ber(1
2
(1− e−2λ)).12

Proof.

P (Zi = 1) =
∞∑
n=0

P (Yi = 2n+ 1) =
∞∑
n=0

e−λ λ2n+1

(2n+ 1)!
=

= e−λ1

2

(
∞∑
n=0

λn

n!
−

∞∑
n=0

(−λ)n

n!

)
=

e−λ

2

(
eλ − e−λ

)
=

1

2

(
1− e−2λ

)
.
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1.2 Proof of Theorem 114

Denote the Fisher information matrix for the estimation problem above by I ∈ R(n+1,n+1),15

where the first n indexes correspond to {λi}ni=1 and the last index (n + 1) corresponds to16

p. For clarity denote Ip,p
.
= In+1,n+1, Ii,p

.
= Ii,n+1, Ip,i

.
= In+1,i. Then:17

Ii,j = 0, Ii,i =
1

λi

+
4p2

e4λip − 1
, Ii,p = Ip,i =

4pλi

e4λip − 1
, Ip,p = 4

n∑
i=1

λ2
i

e4λip − 1
. (9)

Consequently, an unbiased estimator p̂ holds:18

E
[
(p− p̂)2

]
≥

[
4

n∑
i=1

λ2
i

e4λip − 1 + 4p2λi

]−1

. (10)
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If ∀i = 1..n : λi = λ, we can further simplify the expression:19

E
[
(p− p̂)2

]
≥ e4λp − 1 + 4p2λ

4nλ2
. (11)

Proof. We calculate the second derivative of the log-likelihood. Denote:

βi = −2λip+ jπZi, σ(t) =
et

1 + et
,

then the first derivatives are given by:20

∂l

∂λi

= −1 +
Xi

λi

+
(−2p) (−1)Zi exp (−2λip)

1 + (−1)Zi exp (−2λip)

= −1 +
Xi

λi

− 2pσ (−2λip+ jπZi)

= −1 +
Xi

λi

− 2pσ (βi) ,

(12)

and21

∂l

∂p
=

n∑
i=1

(−2λi) (−1)Zi exp (−2λip)

1 + (−1)Zi exp (−2λip)
= −2

n∑
i=1

λiσ (βi). (13)

The second derivatives are now given by:

∂2l

∂λiλj

= 0

∂2l

∂λi
2 = −Xi

λ2
i

− 2p (−2p)σ (βi) (1− σ (βi)) = −Xi

λ2
i

+ 4p2σ (βi) (1− σ (βi))

∂2l

∂λi∂p
= −2p (−2λi)σ (βi) (1− σ (βi))− 2σ (βi) = 4pλiσ (βi) (1− σ (βi))− 2σ (βi)

∂2l

∂p2
=

n∑
i=1

4λ2
iσ (βi) (1− σ (βi))
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The expectation of these are given by:

E [σ (βi)] =
1

2
(1 + exp (−2λip))

exp (−2λip)

1 + exp (−2λip)
+

1

2
(1− exp (−2λip))

(−1) · exp (−2λip)

1− exp (−2λip)
= 0

E
[
σ2 (βi)

]
=

1

2
(1 + exp (−2λip))

exp (−4λip)

(1 + exp (−2λip))
2 +

1

2
(1− exp (−2λip))

exp (−4λip)

(1− exp (−2λip))
2 =

=
1

2
exp (−4λip)

[
1

1 + exp (−2λip)
+

1

1− exp (−2λip)

]
=

1

e4λip − 1

E
[

∂2l

(∂λi)
2

]
= E

[
−Xi

λ2
i

+ 4p2σ (βi) (1− σ (βi))

]
= − 1

λi

− 4p2

e4λip − 1
= −Ii,i

E
[

∂2l

∂λi∂p

]
= E [4pλiσ (βi) (1− σ (βi))− 2σ (βi)] = − 4pλi

e4λip − 1
= −Ii,p

E
[

∂2l

(∂p)2

]
= E

[
n∑

i=1

4λ2
iσ (βi) (1− σ (βi))

]
= −

n∑
i=1

4λ2
i

e4λip − 1
= −Ip,p.

By CRB, for an unbiased estimator:

E
[
(p− p̂)2

]
≥ [I−1]p,p =

1

Ip,p − Ip,iI
−1
i,i Ii,p

=

 n∑
i=1

4λ2
i

e4λip − 1
−

n∑
i=1

16p2λ2
i

[e4λip−1]
2

1
λi
+ 4p2

e4λip−1


−1

=

 n∑
i=1

4λ2
i

(
e4λip − 1

) (
1
λi
+ 4p2

e4λip−1

)
− 4p2

[e4λip − 1]2
(

1
λi
+ 4p2

e4λip−1

)
−1

=

[
4

n∑
i=1

λ2
i

e4λip − 1 + 4p2λi

]−1

22
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1.3 Proof of Proposition 123

Proof. Following Equations 12, 13, we compare the first order derivatives to 0:

∂l

∂λi

= −1 +
Xi

λi

− 2p̂
(−1)Zie−2λip̂(

1 + (−1)Zie−2λip̂
) = 0 ⇒ Xi = λ̂i + 2p̂λ̂i

(−1)Zie−2λ̂ip̂(
1 + (−1)Zie−2λ̂ip̂

)
∂l

∂p
= −

n∑
i=1

2λi
(−1)Zie−2λip̂(

1 + (−1)Zie−2λip̂
) = −

n∑
i=1

λi

p̂

[
−1 +

Xi

λi

]
=0 ⇒

n∑
i=1

λ̂i =
n∑

i=1

Xi.

Summing the first equation for every i and substituting the second equation results in the24

last part in Equation 6.25

1.4 Proof of Proposition 226

If Yi|Xi ∼ Bin(Xi, p), then:27

1. Yi ∼ Pois(λi · p), which justifies this approach.28

2. Zi|Xi ∼ Ber
(

1
2

(
1− (1− 2p)Xi

))
, so we can compute the likelihood of p without29

considering λi.30

3. The maximum likelihood estimate of p given Zi holds:31

n∑
i=1

Xi

1 + (−1)Zi (1− 2p)−Xi
= 0 (14)

and the maximum likelihood estimate of p given
n∑

i=1

Zi holds:32

n∑
i=1

(1− 2p̂)Xi = n− 2
n∑

i=1

Zi (15)
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Proof. Denote q ≡ 1− p. For item 1:

Pr(Yi = k) =
∞∑
n=k

Pr(Xi = n) · Pr(Bin(n, p) = k)

=
∞∑
n=k

λn
i · e−λi

n!
· Pr(

(
n

k

)
)pkqn−k

=
(λi · p)k · e−λip

k!

∞∑
n=k

λn−k
i · e−λiq

(n− k)!
· qn−k

=
(λi · p)k · e−λip

k!

∞∑
n=0

λn
i · e−λiq

n!
· qn =

(λi · p)k · e−λip

k!
.

Now moving on to item 2:

Pr(Zi = 1|Xi) = Pr(Yi is odd|Xi), Yi|Xi ∼ Bin(n = Xi, p)

(q + p)n = Σn
k=0

(
n

k

)
pkq(n−k) = P (Yi is even) + P (Yi is odd)

(q − p)n = Σn
k=0

(
n

k

)
(−p)kq(n−k) = P (Yi is even)− P (Yi is odd)

And summing up these two equations leads to:

P (Yi is even) =
1

2
((q + p)n + (q − p)n) =

1

2
(1 + (1− 2p)n) .

Subsequently, the likelihood of Zi is given by:

l(Z⃗; p) =
n∏

i=1

1

2

(
1 + (−1)Zi(1− 2p)Xi

)
L(Z⃗; p) =

n∑
i=1

log
(
1 + (−1)Zi(1− 2p)Xi

)
+ Const

Taking the derivative to 0:33

∂L

∂p
=

n∑
i=1

−2(−1)ZiXi(1− 2p)Xi−1

(1 + (−1)Zi(1− 2p)Xi)
=

n∑
i=1

−2Xi

((−1)Zi(1− 2p)1−Xi + 1− 2p)
= 0, (16)
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and division by −2
1−2p

yields the solution.34

Now, according to Le Cam’s theorem1 [1],
n∑

i=1

Zi ∼ Pois
(
λ =

n∑
i=1

1
2

(
1− (1− 2p)Xi

))
,

and the likelihood is therefore:

L

(
n∑

i=1

Zi = m|X⃗; p

)
= λm e−λ

m!
.

Now we look at the log-likelihood and take the derivative with respect to p to zero:

l

(
n∑

i=1

Zi = m|X⃗; p

)
= m log λ− λ+ Const

= m log

(
n∑

i=1

1

2

(
1− (1− 2p)Xi

))
−

n∑
i=1

1

2

(
1− (1− 2p)Xi

)
+ Const

∂l

∂p
= m

n∑
i=1

Xi(1− 2p)Xi−1

n∑
i=1

1
2

(
1− (1− 2p)Xi

) −
n∑

i=1

Xi(1− 2p)Xi−1

=

 m
n∑

i=1

1
2

(
1− (1− 2p)Xi

) − 1

 n∑
i=1

Xi(1− 2p)Xi−1 = 0

Leading to the solution:

n∑
i=1

(1− 2p̂)Xi = n− 2m = n− 2
n∑

i=1

Zi

35

1More precisely:
∞∑
k=0

|P (
n∑

i=1

Zi = k)− 1
k! (

n∑
i=1

1
2 (1− (1− 2p)Xi))ke

−
n∑

i=1

1
2 (1−(1−2p)Xi

| < 2
n∑

i=1

(
1
2 (1− (1− 2p)Xi)

)2 .
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1.5 Proof of Proposition 336

Let λi ∼ Γ(α, β), then the maximum a posteriori estimator of p holds:37

∂l

∂p
=

n∑
i=1

Xi + α

(−1)Zi

(
1 + 2p

β+1

)Xi+α

+ 1
= 0 (17)

Subsequently, estimated values for α, β can be substituted for a numerical estimator for p.38

Proof. We first compute the probability for each observation:

Pr (Xi = k, Yi is even) =

∫ ∞

0

P (λi = λ)P (Xi = k|λi = λ)P (Yi is even|λi = λ) dλ

=

∫ ∞

0

λα−1e−λβ βα

Γ (α)
e−λλ

k

k!

1

2

(
1 + e−2λp

)
dλ

=
βα

2k!Γ (α)

[∫ ∞

0

λα−1+ke−λ(β+1)dλ+

∫ ∞

0

λα−1+ke−λ(β+1+2p)dλ

]
=

βα

2k!Γ (α)

[ Γ (α + k)

(β + 1)α+k

∫ ∞

0

λα−1+ke−λ(β+1) (β + 1)α+k

Γ (α + k)
dλ︸ ︷︷ ︸

=1

+

Γ (α + k)

(β + 1 + 2p)α+k

∫ ∞

0

λα−1+ke−λ(β+1+2p) (β + 1 + 2p)α+k

Γ (α + k)
dλ︸ ︷︷ ︸

=1

]

=
βαΓ (α + k)

2k!Γ (α)

[
1

(β + 1)α+k
+

1

(β + 1 + 2p)α+k

]

=
Γ (α + k)

2k!Γ (α)

[(
β

β + 1

)α(
1

β + 1

)k

+

(
β

β + 1 + 2p

)α(
1

β + 1 + 2p

)k
]

Hence, the likelihood is given by:

L
(
X⃗, Z⃗; p, α, β

)
=

=
n∏

i=1

Γ (α + k)

2k!Γ (α)

[(
β

β + 1

)α(
1

β + 1

)Xi

+ (−1)Zi

(
β

β + 1 + 2p

)α(
1

β + 1 + 2p

)Xi

]
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and the log-likelihood:

l
(
X⃗, Z⃗; p, α, β

)
=

n∑
i=1

log
Γ (α +Xi)

Xi!Γ (α)
+αlogβ−(Xi+α) log(β+1)+log

[
1 + (−1)Zi

(
β + 1

β + 1 + 2p

)Xi+α
]

Now comparing the derivative with respect to p to zero:

∂l

∂p
=

n∑
i=1

− 2
β+1

(−1)Zi (Xi + α)
(
1 + 2p

β+1

)−Xi−α−1

1 + (−1)Zi

(
1 + 2p

β+1

)−Xi−α
= 0

39

2 Simulation details and additional experiments40

2.1 K2P and TN93 simulations41

We extracted the parameters of the rate matrix from Phylotree’s data and simulated a42

tree in the same total branch length as Phylotree, with branches short enough to contain43

an average of less than one base change along the sequence (the branches’ length was set44

as t = 1.5e − 05 when 1 is the total length of Phylotree’s branches). The rate matrix45

at each site was scaled by the observed substitution rate λi which is the total number of46

substitutions per site observed along Phylotree. For sites with λi = 0 we used instead47

λi = ϵ with ϵ chosen as explained in the following Supplementary subsection 2.2. Then,48

using the same rate matrix, we simulated sequences with a predefined distance p from the49

RSRS and assessed p using our methods.50

2.2 Phylogenetic tree simulations51

The rate parameter for sites with no transitions along the tree is denoted as ϵ, and we esti-52

mate it using the following simulation-based method. To generate λ⃗, we use the following53

9



equation:54

minD = sup
x

|F (X⃗mtDNA)− F (X⃗)| s.t. λi =

XmtDNA,i XmtDNA,i ̸= 0

ϵ XmtDNA,i = 0
(18)

The value of ϵ is chosen to minimize the Kolmogorov–Smirnov statistic. Figure S1 shows55

a simulation of D(ϵ), with the mean of 1,000 runs for each ϵ value. The minimum value of56

D is obtained for ϵ = 0.0913 (marked in red).57

To make the simulated data closer to the real data, we also model transversions. We58

estimate the transversion rate per site in the same manner as the transition rate, using the59

Kolmogorov–Smirnov statistic to account for sites with no transversions. This results in60

ϵtransversion = 0.0149. To determine the nucleotide at a given site, we sample whether an61

odd number of transversions have occurred. If so, a random nucleotide is sampled from the62

two available transversion options. The resulting sequence is then input into BEAST2, but63

our methods still use only the sites without observed transversions. Finally, the analysis is64

limited to the gene regions in the genome (11,341 sites).65

2.3 BEAST2 run parameters66

The sequences used in this work were aligned using mafft [2], and the 11.3 kb of protein-67

coding genes were extracted and used for the analysis. The analysis followed the approach68

described in [3], where the best fitting clock and tree model for the tree were identified69

using path sampling with the model selection package in BEAST2 [4, 5, 6]. Each model70

test was run with 40 path steps, a chain length of 25 million iterations, an alpha parameter71

of 0.3, a pre-burn-in of 75,000 iterations, and an 80% burn-in of the entire chain. The72

mutation rate was set to 1.57 x 10E-8 and a normal distribution (mean: mutation rate,73

sigma: 1.E-10) was used for a strict clock model [7]. The TN93 substitution model [8] was74
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Figure S1: Kolmogorov–Smirnov statistic as a function of ϵ.
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Figure S1. We performed 1,000 runs for each value of epsilon. The minimal D(ϵ) is marked red

and equals ϵ = 0.0913.

used for all models. The tree was calibrated with carbon dating data from ancient humans75

and Neanderthals, where available [9, 7, 10], and modern samples were set to a date of76

0. All simulations were run with 4 gamma rate categories, 10,000,000 iterations, and a77

pre-burn-in of 1,000,000 iterations.78
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Figure S2: Comparison of estimators applied on a simulated long branch without a

fixed tree topology for BEAST2.
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Figure S2. Comparison of our methods with BEAST2 estimator using simulated data. The right

plot shows a zoom-in view of the left plot, focusing on values of p between 0 and 20%. Each

point in the plot represents the average of 5 runs, while the shaded regions indicate the range of

estimations obtained. BEAST2 is not using a fixed tree topology here.
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Figure S3: Estimation errors for various BEAST2 estimators compared to Method 2.

−25

−20

−15

−10

0.5 1 5 10 20
True p [%]

Lo
g 

(S
qu

ar
ed

 E
rr

or
)

BEAST2 (A)
BEAST2 (B)

BEAST2 (C)
M2

Figure S3. Box-plot of the log squared estimation errors of the different BEAST2 simulations

for selected values of p, expressed as a percentage of the total length of Phylotree’s edges (outliers

are marked with ∗). The simulations were run 5 times for each value of p. BEAST2 (A): BEAST2

simulation with no fixed tree topology. BEAST2 (B): BEAST2 simulation with a fixed tree

topology. BEAST2 (C): BEAST2 simulation with a fixed tree topology and 50 additional human

sequences. M2: Method 2 which obtained the lowest squared error in our simulations. We

performed a one-sided paired Wilcoxon signed rank test on every pair of simulation variations,

correcting for multiple comparisons using the Bonferroni correction. Our results show no significant

improvement in the squared error between the various BEAST2 simulations. However, when

comparing to Method 2 the test shows that Method 2 has the lowest squared error.
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Figure S4: Comparison of estimators applied on a simulated long branch with two

ti/tv ratios
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Figure S4. Box-plot of the log squared estimation errors of our methods for different fixed ti/tv

ratios for selected values of p, expressed as a percentage of the total length of Phylotree’s edges

(outliers are marked with ∗). The simulations were run 1, 000 times for each value of p. For all

methods, a lower ti/tv ratio does not change the expectation of the estimator.
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