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Data sources

Graphs

We used year-1 HPRC graphs [6] built from 90 haplotypes with the Minigraph—Cactus pipeline [4].
The graphs can be downloaded from https://github.com/human-pangenomics/hpp_pangenome
_resources. Direct links for the specific graphs (version 1.0 or 1.1, default or frequency-filtered,
based on GRCh38 or CHM13) are the following:

v1.0 default (GRCh38): https://s3-us-west-2.amazonaws.com/human-pangenomics/pan
genomes/freeze/freezel/minigraph-cactus/hprc-vl.0-mc-grch38.gfa.gz

v1.0 frequency-filtered (GRCh38): https://s3-us-west-2.amazonaws.com/human-pangeno
mics/pangenomes/freeze/freezel/minigraph-cactus/filtered/hprc-v1.0-mc-grch3
8-minaf.0.1.gfa.gz

v1.0 default (CHM13): https://s3-us-west-2.amazonaws.com/human-pangenomics/pan
genomes/freeze/freezel/minigraph-cactus/hprc-v1l.0-mc-chml3.gfa.gz

v1.0 frequency-filtered (CHM13): https://s3-us-west-2.amazonaws.com/human-pangeno
mics/pangenomes/freeze/freezel/minigraph-cactus/filtered/hprc-vl.0-mc-chm13-m
inaf.0.1.gfa.gz

v1.1 default (GRCh38): https://s3-us-west-2.amazonaws.com/human-pangenomics/pan
genomes/freeze/freezel/minigraph-cactus/hprc-vl.1-mc-grch38/hprc-vl.1l-mc-grc
h38.gbz

v1.1 frequency-filtered (GRCh38): https://s3-us-west-2.amazonaws.com/human-pangeno
mics/pangenomes/freeze/freezel/minigraph-cactus/hprc-vl.1-mc-grch38/hprc-vi.
1-mc-grch38.d9.gbz

v1.1 default (CHM13): https://s3-us-west-2.amazonaws.com/human-pangenomics/pan
genomes/freeze/freezel/minigraph-cactus/hprc-vl.1-mc-chm13/hprc-vl.1-mc-chm13
.gbz

v1.1 frequency-filtered (CHM13): https://s3-us-west-2.amazonaws.com/human-pangeno
mics/pangenomes/freeze/freezel/minigraph-cactus/hprc-vl.1-mc-chm13/hprc-vl.
1-mc-chml3.d9.gbz
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1.2 Reads

We used Ilumina Novaseq, and Element sequencing data from the following links:

e Novaseq wgs pcr-free data: |gs://brain-genomics-public/research/sequencing/fastq/
novaseq/wgs_pcr_free

e Element wgs: |gs://brain-genomics-public/research/element/cloudbreak_wgs

1.3 Other data

For benchmarking small variants, we used Genome in a Bottle (GIAB) v4.2.1 GRCh38 benchmark
sets from the following links:

e HGOO1 benchmark: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/rele
ase/NA12878_HGOO1/NISTv4.2.1/GRCh38/

e HGO02 benchmark: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/rele
ase/AshkenazimTrio/HGO02_NA24385_son/NISTv4.2.1/

e HGO03 benchmark: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/rele
ase/AshkenazimTrio/HGO03_NA24149_father/NISTv4.2.1/GRCh38/

e HG004 benchmark: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/rele
ase/AshkenazimTrio/HGO04_NA24143_mother/NISTv4.2.1/GRCh38/

e HGO05 benchmark: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/rele
ase/ChineseTrio/HGO05_NA24631_son/NISTv4.2.1/GRCh38/

For benchmarking structural variants, we used Genome in a Bottle (GIAB) Tierl v0.6 confident
regions lifted to GRCh38 annotation as in [6], Challenging Medically Relevent Genes (CMRG) v1.0
and a whole genome BED file from [5| where centromeric regions were removed.

e HGO002 benchmark Tierl v0.6: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples
/giab/release/AshkenazimTrio/HG002_NA24385_son/NIST_SV_v0.6/

e HGO002 benchmark CMRG v1.0: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSampl
es/giab/release/AshkenazimTrio/HGO02_NA24385_son/CMRG_v1.00/GRCh38/StructuralV
ariant/

2 Selecting sampling parameters

We searched for good haplotype sampling parameters by iterating an early version of the vari-
ant calling pipeline with 30x NovaSeq reads for HG002. The graph we used was an unreleased
Minigraph—Cactus HPRC graph with some but not all of the improvements in the v1.1 graph. We
evaluated the results by comparing the F1 scores separately for indels and SNPs, with the frequency-
filtered graph as the baseline. See Supplementary Table[I]for the progression of the F1 scores. Unless
otherwise mentioned, all graphs with sampled haplotypes also include reference paths.

First we tried various combinations of k-mer scoring parameters while sampling 8 haplotypes.
After three rounds and 68 combinations (see Supplementary Table , we selected 0.9 as the multi-
plicative discount for homozygous k-mers, 0.05 as the additive adjustment for heterozygous k-mers,
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Graph Stage Haplotypes Indel F1 SNP F1

Frequency-filtered Baseline - 0.993805  0.997373
Sampled k-mer scoring (indels) 8 0.993961  0.997667
Sampled k-mer scoring (SNPs) 8 0.993935  0.997679
Sampled Number of haplotypes 4 0.994057  0.997779
Sampled Number of haplotypes 6 0.994048  0.997786
Sampled Diploid sampling 16 0.994327  0.997891
Sampled Diploid sampling 32 0.994336  0.997891

Supplementary Table 1: Progression of F1 scores in various stages of parameter search. For diploid sampling,
the number of haplotypes indicates the number of candidates.

Homozygous Heterozygous Absent Winner Indel SNP
{0.6,0.7,0.8 } {0.1,0.2,0.3 } {0.6,0.7,0.8 } (0.8,0.1,0.8)  0.993817 0.997532
{0.8,0.85,09} {0,0.0501} {0.8,0.8509} (0.9,0.050.8) 0.993961 0.997667
{0.85,0.9,095} {0,0.05,0.1} {0.75,0.8,0.85} (0.9,0.05,0.8) 0.993961 0.997667
Supplementary Table 2: Combinations of k-mer scoring parameters. For each round, we list the discounts for
homozygous k-mers, adjustments for heterozygous k-mers, scores for absent k-mers, the winning combination,
and the F1 scores for indels and SNPs with the winning parameters.

and 0.8 as the score for absent k-mers. The winning combination had the highest F1 score with
indels, while (0.95,0.05,0.85) would have been marginally better with SNPs.

Next we locked the k-mer scoring parameters and tried sampling n € {2,4,6,8,10,12,14, 16}
haplotypes. We found that n = 4 was the best choice for indels and n = 6 for SNPs. Again, the
differences between the F1 scores of the winning values were marginal.

Then we validated the parameter choices by sampling n € {4,6,8} haplotypes for HG003,
HGO004, and HG005 and compared the results to the frequency-filtered graph. We used 30x NovaSeq
reads for HG003 and HG004 and 20x, 30x, and 50x reads for HG005. In all cases, sampling either
4 or 6 haplotypes was the best choice.

Finally we tried diploid sampling from n € {4, 8,16,32} candidates for HG002. Sampling from
32 candidates was the best choice for indels, while n = 16 and n = 32 were equally good for SNPs.
We also tried sampling from 32 candidates without including reference paths, but the variant calling
performance was worse than with reference paths.

3 Graphs Properties

Graph Reference Nodes Edges Length Tips Top-Level Chains
v1.0 GRCh38 81751614 113258931 3287932785 10568 2534

v1.0 filtered GRCh38 60243196 72669397 3153421135 46019 2698

vl.1 GRCh38 80382908 111251520 3234968488 358 173

v1.1 filtered GRCh38 60118570 70105101 3132180138 358 173
Supplementary Table 3: Properties of the different graphs. Note that there are 12 single-node connected
components in the v1.1 graphs, corresponding to small unplaced contigs, which are not counted as "top-level"
chains in the vg software.



4 Calling small variants
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Supplementary Figure 1: Comparing the performance of the frequency-filtered v1.0 and v1.1 graphs and the
v1.1 full graph



HGO001-5 Benchmarks for Element Reads
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Supplementary Figure 2: Results using Element data. The left panel is comparing the number of errors for
different tools, giraffe/DV, BWA MEM/DV, and GATK. The right panel is comparing the results of different
graphs used in the giraffe/DV pipeline.

4.1 Command Line

The small variant analysis consist of two main parts before evaluation step.

4.1.1 Haplotype sampling and vg giraffe

We used vg giraffe WDL https://github.com/vgteam/vg_wdl/blob/master/workflows/gir
affe.wdl, and in order to create and use diploid graph in this workflow we used the following flags
in running the workflow.

1 HAPLOTYPE_SAMPLING = true
2 IN_DIPLOID = true

We used this workflow to create the Diploid graph (best resulting graph) for the reads, and to map
the reads to the Diploid graph. We are using vg 1.49.0 for doing these analysis.
4.1.2 DeepVariant

After having the mapped reads as a .bam file we used the following command to run DeepVariant:

1 docker run\
2 google/deepvariant:1.5.0 \

3 /opt/deepvariant/bin/run_deepvariant \

4 --model_type=WGS \

5 --ref=<path_to_reference_file> \

6 --reads=<path_to_bam_file> \

7 --output_vcf=<path-to-output>.vcf.gz \

8 --output_gvcf=<path-to-output>.g.vcf.gz \
9 --num_shards=<n_of_threads> \

10 --make_examples_extra_args= \

11 "min_mapping_quality=1,keep_legacy_allele_counter_behavior=true,normalize_reads=true"


https://github.com/vgteam/vg_wdl/blob/master/workflows/giraffe.wdl
https://github.com/vgteam/vg_wdl/blob/master/workflows/giraffe.wdl

As seen in the command, we used deepvariant:1.5.0 for our analysis. This step generates .vcf.gz file
that is ready for evaluation.

4.1.3 Evaluation using Hap.py

We used hap.py:v0.3.12 for our evaluation analysis using the following command:

1 docker run \

2 jmcdani20/hap.py:v0.3.12 /opt/hap.py/bin/hap.py \
3 <path_to_truth_set.vcf.gz> \

4 <path_to_deepvariant_output>.vcf.gz \

5 -f <path_to_truth_set.bed> \

6 -r <path_to_reference_file> \

7 -0 <path_to_happy_output_directory>/happy.output \
8 --engine=vcfeval \

9 --pass-only

5 Genotyping structural variants

For genotyping structural variants (SVs), we used two tools vg call v1.49.0 3] and PanGenie v2.5.0
[1] not only to compare the two but also to validate the robustness of the various rounds of evaluation
for the different graphs and call sets we tested for. The main distinction between the two lies in
the model adopted to detect SVs. In fact, vg call leverages information from reads alignment
performed with Giraffe |7] for then augmenting the output file and, finally, calling SVs according
to the reads’ coverage derived from Giraffe; a more in-depth explanation of the entire process is
available in the respective papers |7, [3]. PanGenie adopts an HMM to infer the best possible
combination of haplotype paths within the pangenome graph imputed from the short reads’ dataset
for the sample in question. The resulting genome inference, in VCF format, has to be converted
into biallelic sites for the subsequent evaluation to work best; more details on how to run PanGenie
can be found on the GitHub page for the tool (PanGenie git) as well as in the corresponding paper
[1].

In both cases, the output VCF for the HG002 sample was later evaluated with truvari v3.5.0
[2] exact parametrization, as in [6], optimized for benchmarking using pangenome graphs. This was
done consistently across all series of experiments with pangenomes and personalized graphs, truth
sets from the GIAB and the T2T consortium and with or without BED regions.

5.1 Command line

These are the commands to generate viable VCF files with vg call and PanGenie, respectively.
Next, truvari was used for SVs evaluation.

5.1.1 vg call

After reads mapping with vg giraffe, the vg call workflow includes two additional steps:

1 # outputs an agumented pack file
2 vg pack -x <graph>.gbz -g HGOO2.gam -Q 5 -t <n_of_threads> -o HGOO2.pack
3 # calls variants for the sample
4 vg call <graph>.gbz -k HG002.pack -S GRCh38 -t <n_of_threads> -z >
— HGO002_vgcall.vct


https://github.com/eblerjana/pangenie

5.1.2 PanGenie

Conversely, PanGenie requires filtering and decomposition of the graph VCF as shown below:

1 # generates the graph VCF <f not done already
2 vg deconstruct -P GRCh38 -a <graph>.gbz -t <n_of_threads> > HGOO2_graph.vcf
3 # normalizes the VCF and decomposes large SNARLs
4 vcfbub -1 0 -a 100000 -i pangenie_ready.vcf.gz | vcfwave -I 10000 -t
— <n_of_threads> -n > decomposed_and_filtered.vcf

However, to ensure the former steps can be executed properly it is necessary to remove haploid
sequences form the graph VCF (e.g. CHM13) and artificially make each sample a diploid, phased
field in the VCF file; this second operation is not needed when using the v1.1 diploid graph.

1 # removes CHM13 from the graph VCF

2 cut --complement -d$'\t' -f10 HGOO2_graph.vcf > HGOO2_no_chml3.vcf

3 # splits recombinant haplotypes

4 awk -F '\t' '/~#/ {print;next;} {0FS="\t"; gsub("[[]1","\t",$10)}1"
— HGO002_no_chml13.vcf > HGOO2_pangenie-spl.vct

5 # duplicates recombinant haplotypes and adds them at the end of the VCF file
— (example for the 4 haplotypes graph)

6 awk -F '\t' '/~#/ {print;next;} {0FS="\t"; print $0, $10 "\t" $11 "\t" $12 "\t"
— $13}' HGOO2_pangenie-spl.vcf > HGOO2_pangenie-dup.vct

7 # reorganizes columns for each diploid pair to be a perfect copy of each other
— (example for the 4 haplotypes graph)

s awk -F '\t' '/~#/ {print;next;} {0FS="\t"; print $1, $2, $3, $4, $5, $6, $7,
- $8, %9, $10, $14, $11, $15, $12, $16, $13, $17}' HGOO2_pangenie-dup.vcf >
— HGO02_input-phased.vct

o # phases the VCF

10 awk -F '\t' '/~#/ {print;next;} {0FS="\t";for(i=j=10; i < NF; i+=2) {$j =
o  $i"["$(i+1); j++} NF=j-1}1' HGOO2_input-phased.vcf > pangenie_ready.vcf

11 # renames each recombinant sample for PanGenie to interpret the actual number
— of samples in the VCF

12 vim pangenie_ready.vcf #manually edit the column headers to match the number of
— columns in file

Afterwards, PanGenie can be run in pipeline mode, passing through Snakemake, so that the
resulting VCF file has a structure compatible with the script for biallelic conversion. This entails
having a working CONDA version (Anaconda Software Distribution. Computer software. Vers.
3-23.3.1. Anaconda, Mar. 2023. Web.) with Mamba installed (version used 1.2.0) which is manda-
tory to run Snakemake (version used 7.30.1). Both PanGenie and Snakemake have to be placed
in a separate CONDA environment and upon installing and building the tool, at this location
path/to/pangenie/pipelines/run-from-callset, it will be present a config.yaml file to be filled in with
relevant information. Once done, PanGenie can be run after activating the Snakemake environment
and invoking the following from the folder where the config.yaml is saved:

1 # runs PanGenie
2 snakemake --cores <n_of_threads>


https://github.com/mamba-org/mamba
https://github.com/snakemake/snakemake

In general, the config.yaml file will ask for a graph VCF generated as previously described, a
reference file (GRCh38 in this case), the reads dataset for the sample in question (HG002 in this
set of analyses), the paths to the binaries for the tool and an output directory. Chromosomes’
name must be identical both in the reference and in the graph VCF for the genome inference to be
performed correctly; it is good practice to leave the reference untouched and change the name of
chromosomes in the VCF file with this single command line:

1 # renames chromosomes in VCF (based on a GRCh38 graph)
2 sed -i 's/GRCh38#0#//' decomposed_and_filtered.vcf

Further details on how to run PanGenie can be found on the |GitHub page of the tool, where
there are also specifications on how to carry out the biallelic conversion with an ad-hoc Python
script. To be noted, PanGenie output will be stored in a folder at the location path/to/output/di-
rectory/genotypes; this is the VCF file benefiting from biallelic conversion before evaluation.

5.1.3 Variants evaluation

At last, variants evaluation is done running truvari like so:

1 # SVs evaluation

2 truvari bench -b <truth_set>.vcf.gz -c <compare>.vcf.gz -f
— <path_to_reference_file> --includebed <path_to_bed_file> -0 0.0 -r 1000 -p
—~ 0.0 -P 0.3 -C 1000 -s 50 -S 15 --sizemax 100000 --multimatch --no-ref c -o
— <output_directory>

where the option for including a BED file can be toggled on or off whether or not the analysis
conducted was using it; other parameters were left the same as [6] to attain the best performance
when benchmarking against pangenome graphs.

Strategy Task Runtime
PanGenie-GRCh38 filtering and decomposition 5117
PanGenie-GRCh38 genome inference 5112
vg call-GRCh38  pack file 4365
vg call-GRCh38  calling variants 2741

Supplementary Table 4: Runtime comparisons for both PanGenie and vg call on the v1.1 diploid graph.


https://github.com/eblerjana/pangenie
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Supplementary Figure 3: Runtimes divided by tasks for the PanGenie and vg call v1.1 diploid graph

structural variants evaluation.

Filtering and decomposition is required to effectively run the PanGenie

genome inference task, whereas a pack file needs to be generated before preforming variant calling with vg
call. Reads alignment time by vg giraffe functional to variant calling by vg call not shown.
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