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Appendix A. Supporting Figures546

Appendix A.1. Intracluster normal and eFL in p111, label2547
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Figure A.7: The sign of PC1 loading roughly divides the VD classes in p111, label2. A threshold for the PC1 loading at zero
roughly separates NL and eFL labels by 34%/65% and 85%/14%, respectively, with NL labels strongly associated with negative
loadings. The optimal threshold (∼0.05) offers only subtle improvement. The right panel illustrates low fidelity changes in the
cluster median pV loop (blue) when modified by these negative (black, more associated with NL) and positive (green, eFL)
loadings. Note that this involves comprising 10-second properties (representing typically ∼3 breaths) to breathwise labels,
and some representation errors thus arise from summarizing binary VD labels distributionally over all breaths intersecting a
10-second analysis window.

Appendix A.2. Outlier individual cluster characterizations in the cohort segmentation548

Figure A.8: Outlier pV (left) and pressure waveform (right) characterizations from two-stage cohort LVS phenotyping, shown
in normalized form. Group categorizations associated with the largest 25 (of 27) outliers in Figure 6 which are distinct from
the main identified groups. PEEP is approximated in noramlized pressure waveforms and indicated by dashed lines. Some
outliers appear to be artifactual (from the data or estimation under stationarity). Others may be unique characterizations
corresponding to extreme cases of VD, effects of patient posture, or heterogeneous breaths occurring under uncommonly used
ventilator modes (e.g., spontaneous breathing present in 3.4% of breaths)
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Appendix A.3. Qualitiative equivalence of labels via tSNE & UMAP549

Methodological choices may bias the segmentation process of LVS descriptors. The feature dimensional550

reduction method used prior to DBSCAN labeling is strongly influential on the labeling process. Cluster551

labels are qualitatively the same in nearly all cases for under application of tSNE and UMAP (Figs. A.9552

and A.10). However, extracted characterizations for populous groupings may differ due to the geometries553

of embedded points. Characterization of tSNE-oriented labels appear to be more representative of realized554

breaths: tSNE projection of features tend to be more convex, which results in mean and median points lying555

closer to realized data. [[What i’m trying to say here: UMAP coordinates can be more asymmetric and less556

ball-like with tentacles, and loss of convexity means the ’center’ can lie farther from the actual features.]]

Figure A.9: Patient 101 clustering using tSNE (left) and UMAP (right) feature reduction stages. Identified phenotypes show
qualitatively similar evolution although the tSNE-based characterization are more representative due poor representation of
non-convex UMAP groupings by the component-wise median.

557
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Figure A.10: Patient 124 clustering, as above

Appendix B. Sample size vs. Sample description558

Broadly, waveform digitization transforms high-frequency temporal sampling of state processes into a559

lower-frequency, distributionally-descriptive form. This reduces the effective size of the problem while making560

it more dense. For a classification problem involving T samples of M -dimensional observations stored in561

an array D ∈ RT×M , methods involving kernel or covariance processes require then calculating a matrix of562

dimension M × (T ×T )×M in observation space or T × (M ×M)×T in sample space. Decreasing the order563

of T and increasing that of M by a factor α benefits computational efficiency by replacing D ∈ RT×M with564

D̃ ∈ R(T/α)×(αM). Specifically, calculating the observation covariance from D̃ requires α2 more storage but565

involves α−2 fewer calculations over the samples:[ wording bad:] (αM)×(αM) is calculated via α−1T×α−1T566

rather than T × T . Similarly, the summary sample space covariance of size (T/α) × (T/α) may be more567

dense than one built from un-summarized samples in T × T , but it may be machine representable for larger568

values of T . Computational effects are important as T >> M in most practical applications, and additional569

statistical benefits arise from increasing the size of M .570
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