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SI. SPIN LIFETIME: SPIN RELAXATION AND DEPHASING

Spin lifetime τs is calculated based on the method developed in Ref. 1. To define τs, we follow the time evolution
of the total spin observable Stot

i (t) and the excess spin observable δStot
i (t)

Stot
i (t) =Tr (si (t) ρ (t)) , (S1)

δStot
i (t) =Stot

i (t0)− Stot,eq
i , (S2)

where Stot
i (t) is the i-component of the total spin observable vector Stot (t); ρ (t) is the density matrix; si is spin Pauli

matrix in Blöch basis along direction i; “eq” corresponds to the final equilibrium state. The time evolution must start
at an initial state (at t = t0) with a net spin i.e. δρ(t0) = ρ(t0) − ρeq ̸= 0 such that δStot

i (t0) ̸= 0. We evolve the
density matrix through the quantum master equation given in Ref. 1 (Eq. 5 therein) for a long enough simulation
time, typically from ns to µs, until the evolution of δStot

i (t) can be reliably fitted by

δStot
i (t) =δStot

i (t0)exp

[
− t− t0

τs,i

]
× cos [Ω (t− t0) + ϕ] (S3)

to extract the spin lifetime, τs,i. Above, Ω is oscillation frequency due to energy splitting in general, which under

Bext ̸= 0 would have a magnitude of about µBB
extg̃, where g̃ is the weighted averaged g-factor defined in Eq. 10 in

the main text.
In Ref. 1, we have shown that it is suitable to generate the initial spin imbalance by applying a test magnetic field

at t = −∞, allowing the system to equilibrate with a net spin and then turning it off suddenly at t0.
Historically, two types of τs - spin relaxation time (or longitudinal time) T1 and ensemble spin dephasing time (or

transverse time) T ∗
2 were used to characterize the decay of spin ensemble or δStot (t)[2, 3]. Suppose the spins are

initially polarized along an external field Bext, if we examine δStot (t) ||Bext, τs is called T1; if examine δStot (t) ⊥ Bext,
τs is called T ∗

2 .
The measurement of T1 requires longitudinal Bext, which are taken small but large enough to polarize nuclear spins

and suppress their contribution to spin decay. At Bext = 0, experimental τs are usually regarded as T ∗
2 (Bext → 0)

for halide perovskites, because experimental τs (B
ext = 0) are much shorter than T1 but comparable to T ∗

2 at weak
transverse Bext. While our theoretical τs (B

ext = 0) without considering nuclear spins should be regarded as T1.
The ensemble spin dephasing rate 1/T ∗

2 consists of both reversible and irreversible parts. The reversible part may
be removed by the technique of spin echo. The irreversible part is called spin dephasing rate 1/T2, which must be
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smaller than 1/T ∗
2 . According to Ref. 3, T2 may be also defined using Eq. S3 without the need of spin echo but

instead of Stot
i (t), we need another quantity - the sum of individual spin amplitudes

Sindiv
i =

∑
k

∣∣∣∣∣∑
mn

si,kmnρknm (t)

∣∣∣∣∣ . (S4)

In the case of two Kramers degenerate bands, if we take z direction along Bext, then T1 describes the decay of the
occupation differences between two bands (the diagonal matrix element of one-particle density matrix ρ), while T2

and T ∗
2 describes the decay of the off-diagonal elements of ρ.

FIG. S1. Time evolution of Stot
z of pristine CsPbBr3 at 4 K under a transverse magnetic field of 1 Tesla nc = 1018 cm−3, after

the initial spin imbalance generated by a test magnetic field. “Calc.” denotes calculated Stot
z . “Fit” denotes fitted Stot

z using
Eq. S3.

In Fig. S1, we compare calculated Stot
z and fitted ones using Eq. S3 of pristine CsPbBr3 at 4 K under a transverse

magnetic field of 1 Tesla, after the initial spin imbalance generated by a test magnetic field. We find the fitted curve
matches the calculated one perfectly after 0.2 ns, which gives spin lifetime τs,i and the Larmor precession frequency
Ω through Eq. S3.

SII. COMPUTATIONAL DETAILS

The ground-state electronic structure, phonon, as well as electron-phonon and electron-impurity matrix elements
are firstly calculated using Density Functional Theory (DFT), with relatively coarse k and q meshes in the plane-wave
DFT code JDFTx[4]. We use Perdew–Burke–Ernzerhof exchange-correlation functional[5]. The structures are fully
optimized and the lattice constants are 8.237, 8.514 and 11.870 Å. The phonon calculations employ 2×2×1 supercells
through finite difference calculations. We use Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials[6]
with self-consistent spin-orbit coupling throughout, where we find convergence at a wavefunction kinetic energy cutoff
of 48 Ry.
The e-i matrix gi between state (k, n) and (k′, n′) is

gikn,k′n′ = ⟨kn|∆V i |k′n′⟩ , (S5)

∆V i =V i − V 0, (S6)

where V i is the potential of the impurity system and V 0 is the potential of the pristine system. V i is computed with
SOC using a 2×2×1 supercell with a neutral impurity. To speed up the supercell convergence, we used the potential
alignment method developed in Ref. 7.
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We then transform all quantities from plane wave basis to maximally localized Wannier function basis, and in-
terpolate them to substantially finer k and q meshes[8–10]. The Wannier interpolation approach fully accounts for
polar terms in the e-ph matrix elements and phonon dispersion relations, using the approach developed by Verdi
and Giustino[11]. The Born effective charges and electronic dielectric constants are calculated from open-source code
QuantumESPRESSO[12]. The e-e scattering matrix is computed using the same method given in Ref. 1 with the
macroscopic static dielectric constant about 36 computed from density functional perturbation theory (DFPT)[13] in
QuantumESPRESSO. The simulations of Born effective charge Z∗, high-frequency dielectric constant ε∞, and low-
frequency dielectric constant ε0 employ the commonly-used method developed in Ref. 13 based on Density-Functional
Perturbation Theory, implemented in QuantumESPRESSO. The fine k and q meshes are 48× 48× 32 for simulations
at 300 K and are finer at lower temperature, e.g., 180× 180× 120 for simulations at 4 K. The computation of e-i and
e-e matrix elements and the real-time dynamics simulations are done with the DMD code (Density-Matrix Dynam-
ics), interfaced with the JDFTx-code. The energy-conservation smearing parameter σ is chosen to be comparable or
smaller than kBT for each calculation.

SIII. THE BAND STRUCTURE AND PHONON DISPERSION

FIG. S2. (a) The band structure of CsPbBr3 from DFT calculation with PBE functional and spin-orbit coupling (red) and
from Wannierization (black), with the Fermi level being aligned to 0. (b) The band structure of CsPbBr3 from DFT calculation
with EV93PW91 functional. Phonon dispersion of CsPbBr3 (c) without and (d) with considering LO-TO splitting with PBE
functional. Our phonon dispersion is in good agreement with previous theoretical one reported in Ref. 14.

Figure S2a shows a direct band gap of CsPbBr3 at Γ, suggesting that spin relaxation is important at Γ where
carriers occupy first. The perfect overlap between the DFT band structure and Wannier band structure implies good
Wannierization quality. The band structure simulated using EV93PW91 functional is shown in Fig. S2b and gives a
larger band gap than PBE in Fig. S2a.
By comparing the phonon dispersion of CsPbBr3 at PBE without LO-TO splitting (Fig. S2c) to that with LO-TO

splitting (Fig. S2d), we found that the long-range dipole potential field strongly splits the optical modes near 14 meV
at Γ. This gives rise to ∼2 meV blueshift of the No. 57 optical mode within the 60 modes in total. The No. 57
(O57) and No. 58 (O58) optical modes were found to play significant roles in carrier relaxation. The corresponding
discussion can be found from section “Analysis of spin-phonon relaxation” in the main text.
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FIG. S3. Visualization of the CsPbBr3 phonon modes with LO-TO splitting. Phonon modes (a)-(b) O57 and (c)-(d) O58 when
q = (0.001, 0, 0) Bohr−1, (e)-(f) O57 and (g)-(h) O58 when q = (0, 0.001, 0) Bohr−1, and (i)-(j) O57 and (k)-(l) O58 when
q = (0, 0, 0.001) Bohr−1. The red arrows represent the phonon displacement vectors.

In terms of the symmetry, bulk CsPbBr3 belongs to Pnma space group (D16
2h). By visualizing the displacement

patterns as shown in Fig. S3, O57 and O58 phonon modes transform as B3g and B2g, respectively. And both of them
are Raman-active based on symmetry.

FIG. S4. (a) Electronic projected density of states (DOS) and (b) phonon projected density of states of CsPbBr3.

SIV. THE BENCHMARK OF ORBITAL ANGULAR MOMENTUM L IMPLEMENTATION

To verify our implementation of orbital angular momentum, we did benchmark calculations of single-band orbital
angular momentum and g-factor of A and B excitons of monolayer MoS2. We find that our results (Table S1) are in
good agreement with previous theoretical and experimental results[15–17].
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This work Theory 1 Theory 2 Exp. 1

Lz,K,v−1 4.09 3.72 3.94

Lz,K,v−1 4.30 3.93 4.10

Lz,K,c 2.06 2.09 1.98

Lz,K,c+1 1.84 1.87 1.76

gA -4.48 -3.68 -4.24 -4.6

gB -4.50 -3.70 -4.36 -4.3

TABLE S1. The benchmark of orbital angular momentum and g factors of monolayer MoS2. Lz,K,n is the single-band orbital
angular momentum along z direction of band n at high-symmetry k-pointK, which is the diagonal element of Lz,K matrix. v and
c denote the highest valence and lowest conduction bands respectively. gA and gB are g-factor of A and B excitons respectively.
The theoretical gA and gB shown here are computed without considering excitonic effects and gA = 2 (LK,c+1 − LK,v) and
gB = 2 (LK,c − LK,v−1) (see Ref. 15). Theory 1 and 2 are theoretical results from Ref. 15 and 16 respectively. Exp. 1 are
experimental data from Ref. 17.

SV. Vxc-DEPENDENCE OF g-FACTOR AND ANOTHER g-FACTOR DEFINITION

FIG. S5. The k-dependent g-factor g̃k for magnetic fields along [110] direction (Eq. 8 and 9 in Method Section of the main
text) computed using different exchange-correlation functionals (Vxc) at k-points around the band edges. Each data point
corresponds to a k point. The functional EV93PW91 uses the Engel–Vosko exchange functional[18] and the correlation part of
PW91 GGA functional. The SCAN or “strongly constrained and appropriately normed” functional is a meta-GGA functional
developed by Sun et al.[19]

The accurate prediction of g-factor requires accurate electronic structure as inputs, therefore we examine g-factors
using DFT states from different exchange-correlation functionals (Vxc). In Fig. S5, we show k-dependent g-factor
g̃k calculated using three different Vxc - PBE, SCAN and EV93PW91. PBE as a GGA functional and SCAN as a
meta-GGA functional were commonly employed in the DFT calculations. EV93PW91 was known to improve band
gap values compared with local or semi-local functionals[20]. We found that EV93PW91 predicted a better band
gap of about 1.42 eV (see the EV93PW91 band structure in Fig. S2(b)), compared with the PBE one with a band
gap of 1.03 eV in Fig. S2(a), and the SCAN one with a value of 1.18 eV (the experimental one is at 2.36 eV[21]).
EV93PW91 predicted the electron effective mass of about 0.27me, improved over PBE at 0.22me and SCAN at 0.24me

respectively, against the experimental one at 0.26me[14].
From Fig. S5, we find that for all Vxc, the calculated electron g̃k are larger than hole g̃k and the sums of electron and

hole g̃k range from 1.85 to 2.4, in agreement with experiments[22, 23]. More importantly, for all Vxc, g̃k of electrons
and holes decrease and increase with state energy respectively, the fluctuation of g̃k increases with the state energy
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and the g-factor fluctuation amplitudes ∆g̃ are of the same order of magnitude.
However, both electron and hole g̃k are found sensitive to Vxc.; in particular, the signs of hole g̃k are different

among different Vxc. Overall, we find that the magnitudes of g-factors predicted by EV93PW91 are in the best
agreement with experiments. EV93PW91 predicts electron g-factor ∼1.8 and hole ∼0.5 at Γ respectively, close to
experimental data[23] (1.69-2.06 for electrons and 0.65-0.85 for holes). On the other hand, both PBE[5] and SCAN[19]
functionals overestimate electron g-factor and underestimate hole g-factor compared with experimental values[22, 23].
Furthermore, the anisotropy of hole g-factor along three crystal directions is found greater than that of electron, in
agreement with experiments[23]. With EV93PW91, the theoretical anisotropy ratio P of electron and hole g-factors
at Γ are 6% and 15% respectively, in reasonable agreement with experiments (10% for e and 13% for h)[23], where
P = |gmax−gmin|/|gmax+gmin| with gmax (gmin) the maximum (minimum) value of g-factors among three directions.
The strong Vxc-dependence of g-factors indicate that accurate electronic structure is important for quantitative

comparison of g-factor with experiments. Therefore, to reliably predict the g-factor values, we may need to employ
a higher level of theory, such as the GW approximation[16, 24], to improve the electronic structure description and
lessen such dependence on the choice of DFT Vxc. On the other hand, T ∗

2 only depends on ∆g̃, which are less sensitive
to Vxc, e.g., ∆g̃ by the SCAN functional[19] is ∼80% of that by PBE. Moreover, the trends of g-factors and ∆g̃ versus
electronic energies are the same for different Vxc. Therefore, we expect that different Vxc predict similar magnitudes
of T ∗

2 and the same trends of T ∗
2 versus external conditions.

Below, we provide a more generate definition of g-factor and its fluctuation amplitude, which is more appropriate
when spin directions (at different k) are not parallel to the direction of the applied Bext, and materials are highly
anisotropic.
Generally speaking, except at some high-symmetry k-points, L and L + g0S may not be proportional to S. Since

under finite Bext, the expectation value vectors of L + g0S must be parallel to Bext (in the first-order perturbation
level), spin expectation value vectors may not be parallel to Bext. Therefore, it is helpful to define a vector of Larmor
precession frequency whose magnitude is equal to the energy splitting,

−→
Ω k

(
Bext

)
=∆Ek

(
Bext

)
Ŝexp
kh

(
B̂ext

)
, (S7)

Ŝexp
k,h

(
B̂ext

)
=
−→
S exp

k,h

(
B̂ext

)
/
∣∣∣−→S exp

k,h

(
B̂ext

)∣∣∣ , (S8)

where
−→
S exp

kh

(
B̂ext

)
is the spin expectation value vector.

With the distribution of
−→
Ω k, we can define a g-factor vector and a more appropriate g-factor fluctuation amplitude

for spin dephasing.

With
−→
Ω k, we can define a g-factor vector (with CS→J defined in the main text) as

−→g Ω
k

(
B̂ext

)
=CS→J

−→
Ω k (B

ext)

µBBext
. (S9)

With −→g Ω
k (x̂), −→g Ω

k (ŷ) and −→g Ω
k (ẑ), we will obtain a g-factor tensor.

A more appropriate definition of g-factor fluctuation amplitude for spin dephasing requires the detailed knowledge

of
−→
Ω k. Suppose the total excited or excess spin δStot is perpendicular to Bext, i.e., δStot ⊥ B̂ext, then without

considering the EY spin relaxation, τs will be mainly determined by ∆Ω⊥δStot - the fluctuation amplitude of
−→
Ω⊥δStot ,

which is the component of
−→
Ω perpendicular to δStot.[2, 25] Suppose the unit vectors ê1, ê2 and ê3 orthogonal among

each other, then similar to Eq. 11 in the main text, we can define ∆Ω⊥ê1 as

∆Ω⊥ê1 =

√
(∆Ωê2)

2
+ (∆Ωê3)

2
, (S10)

∆Ωê =

√√√√∑
k (−f ′

k)
∣∣Ωk,ê − Ωê

∣∣2∑
k (−f ′

k)
, (S11)

Ωê =

∑
k (−f ′

k) Ωk,ê∑
k (−f ′

k)
, (S12)

where Ωê is the ê component of
−→
Ω. As δStot is approximated rotating about B̂ext,

−→
Ω⊥δStot changes with time.

Suppose the unit vectors êa and êb satisfy êa ⊥ êb, êa ⊥ B̂ext and êb ⊥ B̂ext, we can define an effective fluctuation
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FIG. S6. Spin lifetime τs of CsPbBr3 electrons due to both e-ph and e-e scatterings calculated as a function of T at different
electron densities ne compared with experimental data. The data points are the same as those in Fig. 1a in the main text but
here we use log-scale for both y- and x-axes to highlight low-T region. The meanings of Exp. A, B, C and D are the same as
in Fig. 1a in the main text.

amplitude of
−→
Ω (Bext) as

∆Ω
(
Bext

)
=

√
(∆Ω⊥êa)

2
+ (∆Ω⊥êb)

2

2

=

√(
∆Ω

B̂ext

)2
+

1

2
(∆Ωêa)

2
+

1

2
(∆Ωêb)

2
. (S13)

With ∆Ω (Bext), we can define a T and µc dependent effective fluctuation amplitude of g-factor under Bext,

∆gΩ
(
B̂ext

)
=
∆Ω(Bext)

µBBext
. (S14)

For CsPbBr3, we find Eq. S14 predicts quite similar values to those by Eq. 11 in the main text (differences are not
greater than 10%).
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SVI. SPIN RELAXATION TIMES

FIG. S7. (a) Electron and (b) hole τs of pristine CsPbBr3 as a function of T at different carrier density nc including both
electron-phonon and electron-electron scatterings. The brown triangle lines represent τs without electron-electron (w/o e-e)
scatterings.

FIG. S8. (a) Electron and (b) hole τs of pristine CsPbBr3 along x, y and z Cartesian directions with carrier density nc = 1018

cm−3 as a function of temperature.

In Fig. S8, we show electron and hole τs of pristine CsPbBr3 along x, y and z directions and we find both of them
are nearly isotropic.
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FIG. S9. Spin lifetime τs of (a) electrons and (b) holes in CsPbBr3 calculated with and without neutral impurities at density
of 1018 cm−3 compared with experiments. Here carrier density nc is at 1018 cm−3. VPb denotes Pb vacancy; PbBr and PbCs

denote Pb substitution of Br or Cs atoms; Pbi denotes an extra Pb atom at an interstitial site.

Fig. S9 shows the effects of impurity scattering on τs at Bext = 0 as a function of T , with four representative
Pb-related defects/impurities (see the results of other impurities below in Fig. S10). We found that even with a
high impurity density ni=1018 cm−3, which is within the experimental range of 1014∼1020cm−3[26–28], impurity
effects are negligible at T ⩾20 K. At lower T , however the presence of impurities reduces τs, consistent with EY
mechanism, and leads to a weaker T -dependence of τs (as the e-i scattering is T -independent). Moreover, we found
that the contribution of e-i scatterings depends on the specific chemical composition of impurity, and the same defect
affects differently for the electron and hole τs (Fig. S9). Overall, we emphasize that the quantitative description of
impurity effect requires explicit atomistic simulations of impurities, given the large variation among them. They are
only important at relatively low temperature T <20 K, with relatively high ni (e.g., >1018 cm−3).

FIG. S10. Electron τs of CsPbBr3 with different types of point defects/impurities. Both electron carrier density ne and impurity
density ni are 10

18 cm−3. (a) With neutral Cs-derived impurities, where VCs denotes Cs vacancy; CsBr denotes Cs substitution
of Br; CsPb denotes Cs substitution of Pb; Csi denotes interstitial Cs doping. (b) With neutral Pb-derived impurities. (c) With
neutral Br-derived impurities.

From Fig. S10, we find that the impurity effects are sensitive to the atomistic details of impurities, but all impurities
studied here cannot affect τs at T ⩾20 K if impurity density ni is not extremely high (e.g. < 1018 cm−3).
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FIG. S11. (a) Electron τs of CsPbBr3 from real-time dynamics including all of the electron-phonon (e-ph), electron-electron (e-e)
and electron-impurity (e-i) scatterings (black line), and that evaluated by using the equation 1/τs = 1/τe−ph

s +1/τe−e
s +1/τe−i

s .
(b) Electron τs of CsPbBr3 due to each of the e-ph, e-e and e-i scatterings. Both electron carrier density ne and impurity
density ni are 1018 cm−3. Impurity VPb is considered in the e-i scattering.

Fig. S11(a) shows that the total τs decreases when the scatterings are stronger (higher temperature and adding
e-i scattering), indicating that EY mechanism is the major mechanism of bulk CsPbBr3 (in absence of external B
field). Furthermore, τs evaluated by using the equation 1/τs = 1/τe−ph

s + 1/τe−e
s + 1/τe−i

s is nearly the same as
that from the real-time dynamics simulation including all the scatterings. In this circumstance, we can separate the
causes of spin relaxation into e-ph, e-e, and e-i scatterings as shown in Fig. S11(b). τs due to e-e scattering is the
longest compared to those due to e-ph and e-i scatterings, so that it can be ignored. At T > 10K, the e-ph scattering
is the strongest scattering channel because the excitation of phonons is considerable, as a result, τs due to the e-ph
scattering is the shortest. When T = 4K, there are less phonons excited, so that with a high impurity density ni,
the e-i scattering dominates spin relaxation. τe−i

s is weakly temperature-dependent. This weak dependence is due to
temperature broadening effects and the temperature dependence of the chemical potential with a fixed carrier density.

SVII. CARRIER AND SPIN TRANSPORT PROPERTIES IN LOW DENSITY LIMIT

We calculate the electron mobility µe and the hole mobility µh by solving the linearized Boltzmann equation in
relaxation-time approximation[29–32],

µe(h),i =
e

ne(h)V Nk

∑
k,n∈CB(VB)

df

dϵ
|ϵ=µF

v2kn,iτm,kn, (S15)

where i = x, y, z for three dimensional systems. Nk is the number of k points. V is the unit cell volume. ne and
nh are electron and hole density respectively. CB and VB denote conduction and valence bands, respectively. f is
Fermi-Dirac function. µF is the chemical potential. v is the band velocity. τm is the momentum relaxation time.
Using the Matthiessen’s rule, we have

τ−1
m,kn =

(
τ e−ph
m,kn

)−1

+
(
τ e−i
m,kn

)−1

+
(
τ e−e
m,kn

)−1

, (S16)
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where τ e−ph
m , τ e−i

m and τ e−e
m,kn are the electron-phonon, electron-impurity and electron-electron momentum relaxation

times, respectively, which read[1, 29–32]

(
τ cm,kn

)−1
=

1

Nk

∑
k′n′

(τ ckn→k′n′)
−1

(1− cosθk′n′kn) , (S17)

(
τ e−ph
kn→k′n′

)−1

=
2π

ℏ
∑
λ±

|gk
′−k,λ

k′n′,kn|
2 (nk′−k,λ + 0.5∓ (0.5− fk′n′)) δ (ϵk′n′ − ϵkn ∓ ℏωk′−k,λ) , (S18)

(
τ e−i
kn→k′n′

)−1
=niV

2π

ℏ
|gik′n′,kn|2δ (ϵk′n′ − ϵkn) , (S19)

(
τ e−e
kn→k′n′

)−1
=
2π

ℏ
∑

k3n3k4n4



|gkn,k3n3,k′n′,k4n4
|2δk+k3−k′−k4

×

 f eq
k′n′f

eq
k4n4

(
1− f eq

k3n3

)
+

(1− f eq
k′n′) f

eq
k3n3

(
1− f eq

k4n4

)


×δ (ϵkn + ϵk3n3 − ϵk′n′ − ϵk4n4)


(S20)

cosθk′n′kn =
−→v k′n′ · −→v kn

|−→v k′n′ ||−→v kn|
, (S21)

where c represents e − e, e − ph, or e − e; gk
′−k,λ

k′n′,kn is the e-ph matrix element between state (k′, n′) and state (k, n)

with phonon mode λ; and gik′n′,kn is the e-i matrix element defined in Eq. S5 and computed with DFT supercells with
neutral impurities. nk′−k,λ is the phonon occupation number. gk1n1,k3n3,k2n2,k4n4 is the e-e matrix element defined in
Eq. A6 in Ref. 1. f eq

kn is the equilibrium occupation of electronic state (k, n).

We compute spin diffusion length ls for z-direction spin transport and spin polarization using the relation[25]
ls =

√
Dτs, where D is diffusion coefficient. D can be estimated using the general form of Einstein relation[33]

D = µcnc/
dnc

dµF,c
, where µc is the free-carrier mobility, µF,c is the chemical potential, and nc is the carrier density.

FIG. S12. Calculated mobility µc (a) and spin diffusion length ls (b) of electrons of pristine CsPbBr3 in low density limit as a
function of temperature. “expt.” denotes experimental data from Ref. [34].

Fig. S12 shows calculated mobility µc and spin diffusion length ls of electrons of pristine CsPbBr3 in low density
limit (here nc is taken as 1014 cm−3), which set the upper bounds of µc and ls. Considering that there are no
impurities and the e-e scattering is not active in low density limit, only the e-ph scattering contributes here. From
Fig. S12a and b, we find that both µc and ls increase fast with decreasing T and can reach very high values at low T ,
e.g., ls can be as long as hundreds of µm at 4 K.
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SVIII. MAGNETIC-FIELD EFFECTS ON τs

FIG. S13. The effects of transverse magnetic fields (perpendicular to spin direction) on electron τs of pristine CsPbBr3 under
B ≤1 Tesla. Different solid lines denote τs at different electron carrier density. The estimated experimental carrier density is
around 1018cm−3 (corresponding to the black line here). The orange empty diamond denotes the experimental values, with
dashed line as their linearly fitted values.

From Fig. S13, we find that the calculated τ−1
s (Bext) is proportional to (Bext)

2
at low Bext (details in SI Fig. S13)

following the DP mechanism.

FIG. S14. τ−1
s as a function of Bext at 4 K at different ne considering the e-i scattering with 1017 cm−3 VPb neutral impurities.

By comparing Fig. 5c in the main text and Fig. S14d, we conclude that introducing more scattering such as
adding impurities, weakens the Bext-dependence (τ−1

s increases slower with Bext). The explanation is as follows.
More scatterings lead to smaller τp (thus smaller τp∆Ω, (τ∆Ω

s )−1 closer to strong scattering limit in regime (ii),

dominated by DP mechanism
(
τDP
s

)−1
). The latter is often much smaller than FID rate

(
τFIDs

)−1
in regime (i)

(the weak scattering limit). Meanwhile, more impurity scatterings give large zero-B-field rate
(
τ0s
)−1

. Together,

increasing external scatterings, leading to an increase of
(
τ0s
)−1

and a decrease of
(
τ∆Ω
s

)−1
, finally weakens the

Bext-dependence of τ−1
s (Bext). From Fig. S14d, we find that with relatively strong impurity scattering (e.g, with

1017 cm−3 VPb neutral impurities), the Bext-dependence of τs is in disagreement with experiments, indicating that
impurity scattering is probably weaker in those experiments.
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Holes Electrons

Relevant isotope 207Pb 79Br and 81Br

Number of relevant nuclei in unitcell 4 12

Nulcear spin I 1/2 3/2

Abundance α 22.1% Totally 100%

Hyperfine constant A (µeV) ∼25 ∼1.75

Unit-cell volume Vu (nm3) 0.833

C loc (nm3/ns2, main-text Eq. 31) ∼530 ∼180

Localization radii (nm) 2.5-14 (Ref. 35–38)

T ∗
2,loc (ns) 0.35-4.6 0.6-8.0

TABLE S2. Parameters used to estimate emsemble spin dephasing time of localized carriers T ∗
2,loc of orthorhombic CsPbBr3

due to nuclear spin fluctuation. We consider the Fermi contact contribution to hyperfine coupling, which was assumed to be
the most important contribution in Refs. 22, 39, 40 for CsPbBr3 and GaAs. For the Fermi contact contribution, s orbital is
relevant since its wavefunction is considerable at the positions of the nuclei, while p and d orbitals are irrelevant. Considering
that s orbitals of Pb and Br contribute considerably to Bloch functions of holes and electrons respectively, 207Pb and 79/81Br
with non-zero I are relevant isotopes to hyperfine coupling for holes and electrons respectively. According to Eq. 27 in the
main text, A ∝ 1/Vu, A of orthorhombic CsPbBr3 is approximately 1/4 of A of cubic CsPbBr3, considering that their Bloch
functions at the band edge are similar (e.g., their hole Bloch functions are both s-orbital-like) and Vu of orthorhombic CsPbBr3
is about 4 times of that of cubic CsPbBr3.

SIX. THE C-PPR(T) MEASUREMENTS

FIG. S15. Transient circularly-polarized photoinduced reflection in CsPbBr3 single crystal excited at 405 nm measured at 4K
on the (001) facet with B along [010] orientation. (a) B=0 mT and (b) B=400 mT. The spin lifetime in (a) is measured
after the ‘coherence artefact’ seen at t=0. The spin lifetime in (b) is measured from the decay of the quantum beatings of the
photocarriers.
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