1 Supplementary figure with grayscale single panels, Supplementary Figures,

- 2 Supplementary tables, and their Legends
- 3
- 4 Supplementary Figures 5, 6, and 7 with grayscale single panels
- 5 Fig 5
- a House mouse spermatozoa Tubulin POC1B

7 Fig 6

ai Bt Testes	aii Sg	RS	ES	aiii Sg CETN1	RS	ES	aiv Sg POC1B-	RS	ES
Sg		ĩ	ж	¥.,	î	·	ab2	18	ŧ
	POC5			POC1B- ab1	-		FAM161A		
R		1	₩.		ę	≬ € 1	1	1	*
ES	Merge C1	- PC	PC	Merge	PC	PC	Merge C1	PC	PC
Lu	8 <u>µm</u>	DC			DC		C2	DC	DC <u>2 μm</u>
BI BI	CETN1	RS	ES	CETN1	RS	ES .	POC1B-	RS	ES
	g		1	•	•	4	ab2	4.4	
	POC5			POC1B- ab1	Ţ		FAM161A		
RS									*
ES	Merge	C1	PC	Merge C1	C1	PO	Merge C1	C1	DO
Lu	C1 C2 8 μm	C2	DC	*C2	• C2	DC	C2	C2	DC 2 µm
ci Hs Testes	cii Sg	RS	ES	ciii Sg	RS	ES	civ Sg	RS	ES
BL				¢EINT	2	*	ab2	Q	. j
Sc -		•	×.,	æ		β.			. .
	POC5			POC1B- ab1	,	-	FAM161A		
			٩.	•	ŕ	•			<u>.</u>
	S Merge	01	1.50	Merge	C1	DC	Merge	01	
Lu	8 um	2 C2	PC	C2	C2	DC	C2	C2	DC 2 um
d Bovine									
ى 1 008 قارات	ETN1 POO	C5 POC1 -ab1	IB PO -ab	C1B FAM	161A *****				
400 - ****	Ť š	***	·····	ī 🛉 🔤	1				
nalised ioton c	Ĩ 🖣 🛓 🛔	• _	T						
도쿄 0J 2 n= 42	60 109 25 82	87 31 13	33 112 25 2	203 262 24	111 127				
e Rabbit ຼັອ ອ ⁸⁰⁰ າ	₿¢			÷**** @	¢				
centric ountin	*****	1	···· 1						
oton o	♣ ∳		T		17				
ਘੁੱਖ 0] ∰ S n= 58	₩ ♣ ♣ 85 61 31 75	66 30 5	8 74 28 1	💶 🐇 🚗 129 189 18	12 9 189				
f_Human									
		*	****	***** <u>ns</u>					
	<u>*</u> *****	ns *****	Į 🖉 ㅣ		iŦ				
	* 🗣 🚓 🛎	•			T				
∽ n= 32 Sg	64 70 35 62 RS ES Sg RS	77 30 50 ES Sg R	0 73 51 S ES Sg I	81 102 49 RS ES Sg	81 102 RS ES				

9 Fig 7

25 188 197 RS ES Sg

FAM161A

11 Supplementary Figures, Supplementary Tables, and their Legends

12 Supplementary Figure 1– Spermatozoa with one canonical centriole (the proximal centriole) and one 13 atypical centriole (the distal centriole) are present throughout the mammalian tree of life.

14 a) Example of paddle/eyedrop-shaped sperm head with a centrally inserted neck, barrel-shaped proximal

15 centriole (PC, canonical centriole), and funnel-shaped distal centriole (DC, atypical centriole), as in humans,

16 and a sickle-shaped sperm head with a laterally attached neck and no centrioles, as in house mice. Based

17 on Knobil and Neill's Physiology of Reproduction ¹. The acrosome is shown in red; the nucleus is shown in

- 18 blue, and all other parts of the sperm are shown in green. **b**) A systematic survey of previous transmission
- 19 electron microscopic studies of Eutherian spermatozoan centrioles.

b bi) Eutherian: The four main groups of Eutherian mammalian species (color-coded) have one canonical centriole (the PC) in their spermatozoa. Phylogeny based on (Song et al., 2012).

bii) Monotreme: The structure of the sperm neck is simpler in Monotreme Mammals than in Eutherian Mammals: While a PC is found near the nucleus, and the mitochondria reach the nucleus, neither striated columns nor a canonical DC are observed (Carrick and Hughes, 1982).

biii) Marsupial: In Marsupials, the DC is not observed or persists in a modified form (Lloyd et al., 2002; Temple-Smith, 1994). The PC (aka transverse centriole) is observed in some species (Lloyd et al., 2002), having been reported in the mature spermatozoa of *Perameles nasuta*, *Macrotis lagotis*, several dasyurids, the petaurid genus Petaurus, and the peramelid *Isoodon macrourus* ((Sapsford et al., 1969) and (Johnston et al., 1995) in (Lloyd et al., 2002)). A remnant PC is present in *Hypsiprymnodon moschatus* (Lloyd et al., 2002). No PC is detected in *Trichosurus vulpecula* and most macropods ((Harding, 1979) in (Lloyd et al., 2002)).

21 b References:

- Bedford, J.M. 1967. Observations on the fine structure of spermatozoa of the bush baby (Galago senegalensis), the African green
 monkey (Cercopithecus aethiops) and man. *The American journal of anatomy*. 121:443-459.
- Bernard, R.T., and A.N. Hodgson. 1988. Fine structure of the neck of epididymal spermatozoa of Schreiber's long-fingered bat (Chiroptera: Mammalia). *Gamete Res.* 21:41-50.
- Carrick, F.N., and R.L. Hughes. 1982. Aspects of the Structure and Development of Monotreme Spermatozoa and Their Relevance
 to the Evolution of Mammalian Sperm Morphology. *Cell and Tissue Research*. 222:127-141.
- Fawcett, D.W. 1965. The anatomy of the mammalian spermatozoon with particular reference to the guinea pig. Z Zellforsch Mikrosk
 Anat. 67:279-296.
- Garanina, A.S., I.B. Alieva, E.E. Bragina, E. Blanchard, B. Arbeille, F. Guerif, S. Uzbekova, and R.E. Uzbekov. 2019. The Centriolar
 Adjunct(-)Appearance and Disassembly in Spermiogenesis and the Potential Impact on Fertility. *Cells*. 8:180.
- Harding, H.R. 1979. Reproduction in male marsupials. A critique with additional observation on sperm development and structure,
 Elibrary..
- Healey, P., and B.J. Weir. 1970. Changes in the ultrastructure of chinchilla spermatozoa in different diluents. *J Reprod Fertil*. 21:191-193.
- Heath, E., R. Jeyendran, and E. Graham. 1983. Ultrastructure of Spermatozoa of the Asiatic Elephnat (Elephas maximus).
 Anatomia, Histologia, Embryologia. 12:245-252.
- Johnston, S., L. Daddow, and F. Carrick. 1995. Ultrastructural and light microscopic observations of mature epididymal spermatozoa
 and sperm maturation of the greater bilby Macrotis lagotis (Metatheria, Mammalia). Advances in Spermatozoal Phylogeny and
 Taxonomy. 166:397-407.
- 41 Lee, J.-H., and K.-R. Park. 2011. Fine Structure of Sperm in the Korea Squirrel, Tamias sibiricus. *Applied Microscopy*. 41:99-107.
- Leung, M.R., M.C. Roelofs, R.T. Ravi, P. Maitan, H. Henning, M. Zhang, E.G. Bromfield, S.C. Howes, B.M. Gadella, H. Bloomfield Gadelha, and T. Zeev-Ben-Mordehai. 2021. The multi-scale architecture of mammalian sperm flagella and implications for ciliary
 motility. *EMBO J.* 40:e107410.
- Lloyd, S., F. Carrick, and L. Hall. 2002. Ultrastructure of the mature spermatozoon of the musky rat-kangaroo, Hypsiprymnodon moschatus (Potoroidae: Marsupialia). *Acta Zoologica*. 83:167-174.
- 47 Nicander, L., and A. Bane. 1962. Fine structure of boar spermatozoa. *Z Zellforsch Mikrosk Anat.* 57:390-405.
- 48 Ounjai, P., K.D. Kim, P.V. Lishko, and K.H. Downing. 2012. Three-dimensional structure of the bovine sperm connecting piece 49 revealed by electron cryotomography. *Biology of reproduction*. 87:73.
- 50 Pedersen, H. 1969. Ultrastructure of the ejaculated human sperm. ZZellforsch Mikrosk Anat. 94:542-554.
- 51 Sapsford, C., C.A. Rae, and K. Cleland. 1969. Ultrastructual studies on maturing spermatids and on sertoli cells in the bandicoot 52 Perameles nasuts Geoffroy (Marsupialia). *Australian Journal of Zoology*. 17:195-292.
- 53 Sato, N., and C. Oura. 1984. The fine structure of the neck region of cat spermatozoa. *Okajimas folia anatomica Japonica*. 61:267-54 285.
- 55 Schmehl, M., and E. Graham. 1989. Ultrastructure of the domestic tom cat (Felisdomestica) and tiger (Pantheratigrisaltaica) 56 spermatozoa. *Theriogenology*. 31:861-874.
- Song, S., L. Liu, S.V. Edwards, and S.Y. Wu. 2012. Resolving conflict in eutherian mammal phylogeny using phylogenomics and
 the multispecies coalescent model. *Proceedings of the National Academy of Sciences of the United States of America*. 109:14942 14947.
- Soon-Jeong, J., P. Joo-Cheol, K. Heung-Joong, S.B. Chun, Y. Myung-Hee, L. Do-Seon, and J. Moon-Jin. 2006. Comparative fine
 structure of the epididymal spermatozoa from three Korean shrews with considerations on their phylogenetic relationships. *Biocell*.
 30:279-286.
- Sousa, P.C., E.A. Santos, J.A. Bezerra, G.L. Lima, T.S. Castelo, J.D. Fontenele-Neto, and A.R. Silva. 2013. Morphology,
 morphometry and ultrastructure of captive six-banded armadillo (Euphractus sexcinctus) sperm. *Animal reproduction science*.
 140:279-285.
- 66 Temple-Smith, P.D. 1994. Comparative structure and function of marsupial spermatozoa. *Reprod Fertil Dev.* 6:421-435.
- 67 Tingari, M. 1991. Studies on camel semen. III. Ultrastructure of the spermatozoon. Animal reproduction science. 26:333-344.
- Woodall, P.F., and C. FitzGibbon. 1995. Ultrastructure of Spermatozoa of the Yellow-rumped Elephant Shrew Rhynchocyon
 chrysopygus (Mammalia: Macroscelidea) and the Phylogeny of Elephant Shrews. *Acta Zoologica*. 76:19-23.

Supplementary Table 1 – In rodents, FAM161A is evolving more quickly than the other rod proteins in Muridae. 71

Gene	FAM161A (Muridae)	FAM161A (Cricetidae)	FAM161A (Other	FAM161A (Rodents)	FAM161B (Rodents)	POC1b (Rodents)	POC5 (Rodents)	CETN1 (Rodents)	WDR90 (Rodents)
			Myomorpha)						
ω (dN/dS)	0.62960	0.57030	0.48616	0.57592	0.33602	0.19055	0.26702	0.03423	0.26510

Supplementary Table 2– Codon-wide selection analysis to identify sites under positive and negative selection.

Selection analysis identified more positively (Green font) and negatively (red font) selected sites in rodents than in primates, Carnivora, and ungulates. The number of codons used in each lineage is indicated in parentheses. The number of selected sites and the site numbers along the primary structure are indicated for each method and mammalian order. MEME ² is a generalization of FEL ³. The initial analytical phases of the two approaches are identical; however, FEL assumes that the same dN/dS (ω) ratio applies to all branches, while MEME models variable dN/dS (ω) values across lineages at an individual site.

Selection	Ungulates	Carnivora/22 c	Primates	Rodents
Analysis	722 codons	odons	716 codons	714 codons
MEME: Episodic Diversifying Selection (P< 0.05)	9 Sites : 46, 47, 49, 60, 62, 67, 84, 312, 440, 505	7 sites : (35, 49, 60, 65, 451, 476, 518, 688	10 Sites : 44, 53, 136, 186, 268, 302, 348, 633, 634, 695	53 Sites : 5, 10, 11, 15, 18, 22, 23, 44, 56, 59, 60, 61, 62, 65, 67, 68, 71, 113, 134, 135, 174, 177, 230, 237, 254, 325,378, 422, 427, 442, 451, 453, 467, 479, 633, 634, 635, 636, 639, 657, 680, 682, 687, 690, 713
FEL: Pervasive Diversifying Selection (P< 0.05)	0 Sites	2 Sites : (27, 65)	2 Sites: 54, 268	14 Sites: 10, 22, 23, 62, 67, 230, 363, 392, 427, 442, 451, 473, 512, 656
PAML (M8 BEB, No *= PP=90, *PP >95, **PP>95)	5 Sites: 13L, 46L, 61A, 61R*, 511A*	17 Sites: 5H, 17T, 27V, 35P, 36L*, 65R*, 85G, 172C*, 219Q, 315Y*, 420G, 429C, 450H, 476T*, 498Y*, 589M*, 603Q*	6 Sites: 38A, 171V, 213R*, 306R, 391H*, 406C**)	42 Sites: 4P, 22 I**, 45A, 46A**, 48M, 52E**, 53Q**, 55K, 56V, 65G*, 67H*, 71G*, 78F, 81T, 129F, 130I, 152L*, 184T*, 192V, 213*, 221A, 230S, 264*, 270R*, 288S, 289C*, 345F, 399S, 403C**, 405R*, 406F, 438W**, 442P*, 448F*, 451C*, 455C*, 467S, 473L*, 496R*, 511E*, 512C*, 656F
FEL: Purifying Selection (P< 0.05)	34 sites: 3, 50, 51, 54, 55, 56, 107, 135, 146, 159, 166, 232, 235, 277, 291, 294, 295, 298, 310, 323, 330, 331, 359, 361, 371, 390, 463, 465, 523, 526, 530, 567, 583, 603	38 Sites 37,38,45,78,91, 130,159,163,18 2,203,204,212,1 49,252,264,273, 280,292,296,32 8,330,373,398,4 02,412,436,447, 461,469,479,52 2,526,530,535, 555,617,634,71 4	37 Sites 8,12,34,35,58,6 2,71,76,83,94,1 53,160,178,198 ,208,211,239,2 46,262,273,326 ,331,369,404,4 12,444,452,453 ,486,517,558,5 64,585,586,637 ,659,664	100 Sites: 2, 8, 9, 51, 86, 90, 93, 97, 98, 101, 103, 105, 111, 121, 138, 140, 143, 155, 156, 158, 165, 170, 185, 194, 198, 205,210,236,240,241,244,245,246,258, 274,285,287,292,293,295,300,303,304, 305,306,318,321,323,324,326,327,329, 330,331,335,337,338,357,358,371,379, 389,425,464,484,499,514,518,522,523, 534,525,541,548,569,570,575,591,595, 598,605,606,610,611,612,615,616,620, 622,624,625,626,637,638,654,665,674, 679,695,707
FUBAR: Pervasive Purifying Selection (P< 90)	28 Sites: 3, 50, 51, 54, 55, 56, 60, 107, 135, 146, 159, 166, 232, 235, 277, 294, 310, 325, 330, 359, 390, 465, 523, 526, 530, 567, 583, 603	31 Sites: 37, 38, 45, 78, 91, 130, 159, 182, 203, 212, 253, 264, 273, 292, 296, 328, 330, 398, 412, 447, 461, 469, 479, 522, 526, 530, 535, 555, 617, 634	19 Sites: 34, 58, 62, 76, 178, 208, 239, 262, 273, 326, 404, 412, 444, 452, 486, 517, 586, 659, 664	107 Sites: 1, 2, 9, 86, 90, 93, 94, 98, 101, 103, 105, 109, 115, 138, 140, 143, 155, 156, 158, 165, 170, 185, 194, 198, 201, 205, 209, 210, 236, 238, 240, 241, 243, 244, 246, 258, 274, 276, 280, 281, 282, 283, 285, 287, 293, 295, 304, 306, 318, 323, 324, 326, 329, 330, 331, 335, 337, 338, 354, 356, 358, 364, 371, 465, 470, 481, 514, 518, 523, 524, 525, 527, 533, 537, 548, 563, 565, 570, 575, 585, 591, 592, 595, 598, 605, 606, 610, 612, 613, 614, 615, 616, 620, 621, 622, 624, 625, 626, 637, 638, 650, 663, 665, 674, 693, 695, 707

84 85 Supplementary Table 3 – Number of negatively selected (NSS) and positively selected (PSS) sites with P<0.05 using FEL and FUBAR analysis.

		Muridae	Cricetidae	Other rodents
FEL (P<0.05)	Negatively selected sites (NSS)	4	87	48
	Positively selected sites (PSS)	14	14	15
FUBAR (PP >90)	Negatively selected sites (NSS)	7	14	28
	Positively selected sites (PSS)	0	3	0

87 Supplementary Figure 2– House mice express a Type 3 (555-aa) FAM161A isoform in the testes.

88 a) Various annotated FAM161A isoforms found in house mouse testes, based on transcriptome sequencing 89 performed by Green et al 2018⁴. **b–c**) FAM161A isoform types 1–3 with exons numbered and approximate 90 locations of forward, reverse (filled, colored triangles), and sequencing primers (open, colored triangles) 91 chosen for PCR with reverse-transcribed mRNA isolated from either house mouse testis or eve tissue (b): 92 and electrophoresis gel with expected sizes (in base pairs) of bands produced using the indicated primers 93 (c) "-", no band was expected for that reaction. A cDNA library was constructed using a 3' RACE kit (Roche). The First PCR was performed using the cDNA library, the product of which was used to perform the Second 94 95 PCR. Sequencing was performed on the Second PCR product following gel extraction. MW, molecular 96 weight. Results were consistent across three independent experiments. d) The NCBI house mouse testis 97 EST database showed that eight FAM161A transcripts have the unique C-terminus sequence characteristic 98 of type 3. а

d The NCBI mouse testis EST database shows that eight FAM161A transcripts have the unique, C-terminus sequence characteristic of type 3:

99 AV283297.2, Al613936.1, AV262776.1, AA492939.1, BB015036.1, AV257583.1, AV283863.1, AA064510.1.

Supplementary Figure 3 – House mouse and human FAM161A isoforms can localize to canonical centrioles in U2OS cells.

102 a and c) Human FAM161A (hFAM161A) type 2, house mouse FAM161A (mFAM161A) type 2, and 103 mFAM161A type 3 were localized to the centrosome based on pericentrin (a) and y-tubulin (c) labeling in 104 U2OS cells. Human FAM161A type 2 and mFAM161A type 2 also exhibit pericentrosomal localization, 105 probably because these isoforms colocalize with microtubules emanating from the centrosome. b and d) Quantification showing the percentage of centrioles exhibiting centrosomal, pericentrosomal, and non-106 centrosomal localization of hFAM161A type 2, mFAM161A type 2, and mFAM161A type 3. All experiments 107 108 were repeated three times with consistent results. Statistical analyses used are unpaired, two-tailed t test. 109 Source data are provided at the Source Data File.

112 Supplementary Figure 4 – House mouse and human FAM161A isoforms can localize to canonical 113 centrioles in 3T3 cells.

114 a and c) Human FAM161A (hFAM161A) type 2, house mouse FAM161A (mFAM161A) type 2, and 115 mFAM161A type 3 were localized to the centrosome based on pericentrin (a) and y-tubulin (c) labeling in 116 3T3 cells. Human FAM161A type 2 and mFAM161A type 2 also exhibit pericentrosomal localization, 117 probably because these isoforms colocalize with microtubules emanating from the centrosome. **b** and **d**) 118 Quantification showing the percentage of centrioles exhibiting centrosomal, pericentrosomal, and non-119 centrosomal localization of hFAM161A type 2, mFAM161A type 2, and mFAM161A type 3. All experiments 120 were repeated three times with consistent results. Statistical analyses used are unpaired, two-tailed t test. 121 Source data are provided at the Source Data File.

123 Supplementary Figure 5 – The mechanism of rod protein interaction

124 a) Expression of human FAM161A (hFAM161A) type 2, human POC1B (hPOC1B), and human POC5 (hPOC5) and guantification of their colocalization with tubulin in U2OS cells. b) Expression of various 125 126 fragments of hFAM161A type 2 with full-length hPOC1B and quantification of FAM161A colocalization with hPOC1B. c) Expression of various fragments of hFAM161A type 2 with hPOC5 and quantification of 127 128 FAM161A colocalization with hPOC5. Scale bars are 10 µm. d) Yeast two-hybrid analysis to map the 129 hPOC5-interacting domain of hFAM161A. BD, binding domain; AD, activation domain; DDO, double dropout 130 (-Leu, -Trp); TDO, triple dropout (-Leu, -Trp, -His); QDO, quadruple dropout (-Leu, -Trp, -His, -Ade). e) Yeast 131 two-hybrid analysis to map the domain mediating the interaction between hPOC1B and hPOC5. f) Model depicting the mechanism of interaction between rod proteins, WD, WD40 repeat domains; CBR, centrin-132 133 binding region; EF-hand, a calcium-binding motif. CC, coiled-coil domain; n, number of cells. The data 134 shown are the representative images and quantification from three independent experiments. The graphs 135 are presented as box and whisker plots, where upper and lower bounds show interguartile range, line within 136 the box shows median, and the whiskers show minimum and maximum data points. ****P<0.0001, 137 ***P<0.001, **P<0.01, *P<0.05 (unpaired, two-tailed *t-test*, exact p-values are provided in the source data 138 file), ns, not significant; n= number of transfected cells, BD, Binding Domain; AD, Activation Domain. Source 139 data are provided in the Source Data File.

QDO TDO DDD

d

BD:

FAM161A-N

 $FAM161A\Delta N$

FAM161A

FAM161A

ΒD

FAM161A-N

AD:

POC5

POC5

POC5

AD

AD

POC5

POC1B-C=365-478 POC5-N=1-222

32

230-660

140 141 **b** _{Tubulin}

1-660

141-660

142 Supplementary Figure 6 – FAM161A isoforms exhibit different localization patterns in 3T3 cells.

a) Expression analysis of human FAM161A (hFAM161A) type 2 (second panel from left), house mouse
FAM161A (mFAM161A) type 2 (middle four panels), mFAM161A type 3 (right panel) in 3T3 cells.
b) Quantification showing the percentage of cells exhibiting each of the various expression patterns
observed during expression analysis of hFAM161A type 2, mFAM161A type 2, and mFAM161A type 3. C,
"Cytoplasmic"; I, "Intranuclear"; I+C, "Intranuclear + Cytoplasmic"; P, "Perinuclear". The experiment was
repeated three times with consistent results. Source data are provided at the Source Data File.

149

151 **Supplementary Figure 7– FAM161A sequence alignment**

152 Alignment of the amino acid sequences of human FAM161A type 1 (Hs1), human FAM161A type 2 (Hs2),

mouse FAM161A type 1 (Mm1), mouse FAM161A type 2 (Mm2), and mouse FAM161A type 3 (Mm3). The

154 various protein domains are marked using color coding.

Hs1	MATSHRVAKLVASSLQTPVNPITGARVAQYEREDPLKALAAAEAILEDEEEEKVAQPA	58	POC1B Binding segment
Hs2	MATSHRVAKLVASSLQTPVNPITGARVAQYEREDPLKALAAAEAILEDEEEEKVAQPA	58	
Mm1	MASPHQEARLAAASLLLSANPITGARVAQYESEDSLESLVAAGLAAAMEEEEQKKVWQMR	60	
Mm2	MASPHQEARLAAASLLLSANPITGARVAQYESEDSLESLVAAGLAAAMEEEEQKVWQMR	60	
Mm3	**: *: *:*:*:*	60	
Hs1 Hs2 Mm1 Mm2 Mm3	GASADLNTSFSGVDEHAPISYEDFVNFPDIHHSNEEYFKKVEELKAAHIETMAKLEKMYQ GASADLNTSFSGVDEHAPISYEDFVNFPDIHHSNEEYFKKVEELKAAHIETMAKLEKMYQ -ASAGCH-NFSGKDEEVAFESTMNFSDIYHSDEEYFRKLKDLKAVHEETMSKLEKMYQ -ASAGCH-NFSGKDEEVAFESTMNFSDIYHSDEEYFRKLKDLKAVHEETMSKLEKMYQ -ASAGCH-NFSGKDEEVAFESTMNFSDIYHSDEEYFRKLKDLKAVHEETMSKLEKMYQ 	118 118 116 116 116	
Hs1	DKLHLKEVQPVVIREDSLSDSSRSVSEKNSYHPVSLMTSFSEPDLGQSSSLYVSSSEEEL	178	POC5 Binding segment
Hs2	DKLHLKEVQPVVIREDSLSDSSRSVSEKNSYHPVSLMTSFSEPDLGQSSSLYVSSSEEEL	178	
Mm1	DKLNIKDIQAGFIRDGISDSSSSASEKSCSHPALSVTSLSEPDLDGSSLST-TTDEGL	175	
Mm2	DKLNIKDIQAGFIRDGISDSSSSASEKSCSHPALSVTSLSEPDLDGSSLST-TTDEGL	175	
Mm3	***::*:*:* .**:** *.***. ** :********	175	
Hs1 Hs2 Mm1 Mm2 Mm3	PNLEKEYPRKNRMMTYAKELINNMWTDFCVEDYIRCKDTGFHAAEKRRKKRKEWVPTITV PNLEKEYPRKNRMMTYAKELINNMWTDFCVEDYIRCKDTGFHAAEKRRKK <mark>KEWVPTITY</mark> PDLEEKTPGESSAMVHAQELINNMWNDFSVEDYIQYDSDS-RTAKKKRKAKSLTPKITV PDLEEKTPGESSAMVHAQELINNMWNDFSVEDYIQYDSDS-RTAKKKRKAKSLTPKITV PDLEEKTPGESSAMVHAQELINNMWNDFSVEDYIQYDSDS-RTAKKKRKAKSLTPKITV *:**:: * :. *::*******	238 238 234 234 234	
Hs1	PEPFQMMIREQKKKEESMKSKSDIEMVHKALKKQEEDPEYKKKFRANPVPASVFLPLYHD	298	dimerization domain
Hs2	PEPFQMMIREQKKKEESMKSKSDIEMVHKALKKQEEDPEYKKKFRANPVPASVFLPLYHD	298	
Mm1	PVPFEMTVREQNRREKALSARSDLETKLLKRDEDDAECKKKFRANPVPSCVLLPLYED	292	
Mm2	PVPFEMTVREQNRREKALSARSDLETKLLKRDEDDAECKKKFRANPVPSCVLLPLYED	292	
Mm3	* **:* :**::::::::::::::::::::::::::::	292	
Hs1	LVKQKEERRRSLKEKSKEALLASQKPFKFIAREEQKRAAREKQLRDFLKYKKKTNRFKAR	358	
Hs2	VKQKFERERSI.KEKSKEALLASQKPFKFIAREEQKRAAREKQLRDFLKYKKKTNRFKAR	358	
Mm1	LVKQSEERRKKARENNRAALLASLKPFKFIAREEQKQAVREKKLRDLFRAKRKTNQFKAK	352	
Mm2	LVKQSEERRKKARENNRAALLASLKPFKFIAREEQKQAVREKKLRDLFRAKRKTNQFKAK	352	
Mm3	***********************************	352	
Hs1 Hs2 Mm1 Mm2 Mm3	PIPRSTYGSTTNDKLKEEELYRNLRTQLRAQEHLQNSSPLPCRSACGCRNPRCPEQAVKL PIPRSTYGSTTNDKLKEEELYRNLRTQIRAQEHLQNSSPLPCRSACGCRNPRCPEQAVKL PVPRFIYRPAASDKPKEEELYGDSRMLPKVRDLL-QNSPWPSRSACRRFRDPRSPAKP PVPRFIYRPAASDKPKEEELYGDSRMLPKVRDLL-QNSPWPSRSACRRFRDPRSPAKP PVPRFIYRPAASDKPKEEELYGDSRMLPKVRDLL-QNSPWPSRSACRRFRDPRSPAKP ****	418 418 409 409 409	
Hs1	KCKHKVRCPTPDFEDLPERYQKHLSEHKSPKLLTVCKPFDLHASPHASIKREKILADIEA	478	UPF0564
Hs2	KCKHKVRCPTPDFEDLPERYQKHLSEHKSPKLLTVCKPFDLHASPHASIKREKILADIEA	478	
Mm1	RGKHRRRCLRRDGDLEKWKEPFSEYSFLKCPMLCEECCLHESPCDSDKRQKLLADIRA	467	
Mm2	RGKHRRRCLRRDGDLEKWKEPFSEYSFLKCPMLCEECCLHESPCDSDKRQKLLADIRA	467	
Mm3	: **: ** * * *:::: **: * *:: **: * *:: ******	467	
Hs1 Hs2 Mm1 Mm2 Mm3	DEENLKETRWPYLSPRRKSPVRCAGVNPVPCNCNPPVPTVSSRGREQAVRRSLEEKKMLE DEENLKETRWPYLSPRRKSPVRCAGVNPVPCNCNPPVPTVSSRGREQAVR DEEILRETRRPGRSPRRKSPGRSSNPKPRPHECSPPMPTASSRGREQAIR	538 528 527 517 517	Exon 4
Hs1 Hs2 Mm1 Mm2 Mm3	EERNRILTKQKQRMKELQKLLTTRAKAYDSHQSLAQISKSRVKCLRKSEKERMREYQREL KSEKERMREYQREI EERNRILTKQKQRMKDLQKLLATRVKAYGSHQSLSQIVKARVKELRRSEKARMREYWQEL 	598 542 587 531 531	
Hs1	EEREEKLKKRPLLFERVAQKNARMAAEKHYSNTLKALGISDEFVSKKGQSGKVLEYFNNQ	658	Type 3 unique sequence
Hs2	EEREEKLKKRPLLFERVAQKNARMAAEKHYSNTLKALGISDEFVSKKGQSGKVLEYFNNQ	602	
Mm1	EEQEEKLQKRPMLFERVTQRNARMAAERCYSNTLKALGLLEEFVSEKGQSGKVSEDFTRQ	647	
Mm2	EEQEEKLQKRPMLFERVTQRNARMAAERCYSNTLKALGLLEEFVSEKGQSGKVSEDFTRQ	591	
Mm3	EEQEEKLQKRPMLFERVTQVFIG	555	
Hs1 Hs2 Mm1 Mm2 Mm3	ETKSVTEDKESFNEEEKIEERENGEENYFIDTNSQDSYKEKDEANEESEEEKSVEESH ETKSVTEDKESFNEEEKIEERENGEENYFIDTNSQDSYKEKDEANEESEEEKSVEESH ELRSCTLEKESSYGEERENEEESYLTDISSQDSCKGNKEDIKDIKSGEENSGE ELRSCTLEKESSYGEERENEEESYLTDISSQDSCKGNKEDIKDIKSGEENSGE	716 660 700 644 555	

Supplementary Figure 8 – POC5 localizes to canonical centrioles when each of the three FAM161A 156 157 isoforms are overexpressed.

158 a) POC5 localization relative to overexpressed human FAM161A (hFAM161A) type 2, house mouse FAM161A (mFAM161A) type 2, and mFAM161A type 3 in U2OS cells. Human FAM161A type 2 and 159 mFAM161A type 2 exhibit centrosomal and pericentrosomal localization. b) Quantification showing the 160 161 percentage of centrioles exhibiting centrosomal, pericentrosomal, and non-centrosomal localization of 162 hFAM161A type 2, mFAM161A type 2, and mFAM161A type 3. c) POC5 localization relative to astral 163 microtubules when overexpressing hFAM161A type 2, mFAM161A type 2, and mFAM161A type 3 in U2OS 164 cells. d) Quantification showing the percentage of cells exhibiting centrosomal localization of POC5 based 165 on astral microtubules. All experiments were repeated three times with consistent results. Source data are 166 provided at the Source Data File. a POC5 centrosomal localization based on FAM161A

Transfection : Type 2 hFAM161A (Pericentrosomal)

Transfection Type 2 mFAM161A (Pericentrosomal)

17

.

Transfection : Type 2 mFAM161A (Centrosomal)

Transfection Type 3 mFAM161A Centrosomal)

c POC5 centrosomal localization based on astral microtubules Transfection : Type 2 hFAM161A

Transfection : Type 2 mFAM161A

p=0.30 RN

hFAN N=48

Transfection : Type 3 mFAM161A

Supplementary Figure 9 – House mouse FAM161A type 3 inhibits type 2 from recruiting POC1B to the microtubules.

170 **a-c**) Expression of human POC1B (hPOC1B) with house mouse FAM161A (mFAM161A) type 2 (a), 171 mFAM161A type 3 (b), and both mFAM161A types 2 & 3 (c). Only one FAM161A isoform at a time is shown in panel C; however, the cells were transfected with all three proteins (i.e., hPOC1B and mFAM161A types 172 173 2 & 3). Scale bars are 8 µm. d) Quantification of hPOC1B colocalization with tubulin under various 174 transfection conditions. e) mFAM161A type 3 and hPOC1B colocalize in extranuclear foci. Shown in inset. 175 The graphs are presented as box and whisker plots, where upper and lower bounds show interguartile 176 range, the line within the box shows median, and the whiskers show minimum and maximum data points. 177 ****P<0.0001 (unpaired, two tailed t test, exact p-values are provided in source data file). n, number of cells. 178 Scale bars are 5 µm. All images are representative of three independent experiments. The quantification 179 data was compiled from three independent experiments. Source data are provided at the Source Data File.

182 Supplementary Figure 10 – FAM161A labels the proximal and distal centrioles of dog spermatozoa.

183 Confocal (deconvolution) microscopy of the dog distal centriole showed that FAM161A exhibits prominent 184 left- and right-side labeling, suggesting that the distal centriolar rods are far away from each other. PC, 185 proximal centriole; DC, distal centriole; Ax, axoneme. Scale bars are 1 µm. All images are representative of 186 at least two independent experiments.

188 Supplementary Figure 11 – Centriole remodeling generates species-specific centriolar sizes.

189 Quantification of centriolar length based on CETN1 labeling in bovine (Bt), rabbit (Oc), and human (Hs) 190 testes at spermatogonia/spermatocyte (Sg) and round spermatid (RS) cell stages. The graphs are presented as box and whisker plots, where upper and lower bounds show interguartile range, line within the box shows 191 192 median, and the whiskers show minimum and maximum data points. C1/2, centriole 1/2; PC, proximal centriole; DC, distal centriole. ****P<0.0001, **P<0.01 (unpaired, two tailed t test, exact p-values are provided 193 194 in source data file); ns, not significant; n, number of centrioles. The result is based on immunostaining with 195 CETN1 and confocal imaging. The data was accumulated over three independent experiments. Source data 196 are provided at the Source Data File.

197

Supplementary Figure 12 – Quantification in the proximal and distal centrioles shows localization intensity changes similar to that observed during total centriole quantification.

Quantification of various proteins in individual centrioles (C1 and C2) of spermatogonia/spermatocytes (Sg), and in proximal and distal centrioles (PC and DC) of round (RS) and elongated spermatids (ES) in bovine. The graphs are presented as box and whisker plots, where upper and lower bounds show interquartile range, line within the box shows median, and the whiskers show minimum and maximum data points. ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05 (unpaired, two tailed *t* test, exact p-values are provided in source data file); ns, not significant; n, number of cells. Source data are provided at the Source Data File.

209 Supplementary Figure 13 – The bovine distal centriole begins splaying in round spermatids and 210 splits in elongated spermatids.

211 a) 3D-STORM imaging of bovine testes with rod protein staining during spermatogenesis. The white arrow 212 marks the splayed centriole. b) Centriolar length in spermatogonia/spermatocytes (Sg), round spermatids 213 (RS), and elongated spermatids (ES). The C1/2 panel includes both C1 and C2. c) Proximal and distal 214 centriolar width at their caudal (aka tip) and rostral (aka base) ends in round spermatids. C1/2, centrioles 1 215 and 2; PC, proximal centriole; DC, distal centriole. d) Distal centriolar rod length and width measurements 216 based on POC5 staining in elongated spermatids. All data shown were accumulated over three independent 217 experiments. The graphs are presented as box and whisker plots, where upper and lower bounds show interguartile range, line within the box shows median, and the whiskers show minimum and maximum data 218 219 points. Data shown in **d** is an average ± SD. ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05 (unpaired, two 220 tailed t test, exact p-values are provided in source data file); ns, not significant; n, number of centrioles. 221 Source data are provided at the Source Data File

225 Supplementary Figure 14 – FAM161A N-terminus Ab labeling in mouse testes

226 Immunostaining using FAM161A N-terminus antibody and POC1B ab2 in house mouse round spermatids

(RS). PC, proximal centriole; DC, distal centriole. Scale bars are 1 μm. The result was consistent in three
 independent immunostainings.

229

Supplementary Figure 15 – Quantification in the proximal and distal centrioles shows localization intensity changes similar to that observed during total centriole quantification.

234 Quantification of various proteins in individual centrioles (C1 and C2) of spermatogonia/spermatocytes (Sg), 235 and in proximal and distal centrioles (PC and DC) of round (RS) and elongated spermatids (ES) in mice. 236 The distal centriole in the round spermatid was determined as the larger and brighter POC5-labeled 237 centriole. The graphs are presented as box and whisker plots, where upper and lower bounds show 238 interguartile range, line within the box shows median, and the whiskers show minimum and maximum data ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05 (unpaired, two-tailed *t-test*, exact p-values are 239 points. provided in source data file); ns, not significant; n, number of cells. Source data are provided in the Source 240 241 Data File.

243 Supplementary Table 4 – Antibodies used in this study.

Antibody	Company	Concentration (Application)
(Production animal)	(Catalog number)	
POC5 ab1 (Rabbit)	Gifted by Dr. Bernan (PMID #19349582)	1:200 (Confocal)
		1:100 (STORM)
POC5 ab2 (Rabbit)	Thermo Fisher Scientific (PA5-24308)	1:200 (Confocal)
		1:100 (STORM)
CETN1 (Mouse)	Santa Cruz (2A6)	1:10 (Confocal)
		1:5 (STORM)
POC1B ab1 (Rabbit)	Thermo Fisher Scientific (PA5-24495)	1:300 (Confocal)
POC1B ab2 (Mouse)	Thermo Fisher Scientific (H00282809-B01P)	1:300 (Confocal)
		1:100 (STORM)
FAM161A ab1 (Rabbit)	Sigma Aldrich (HPA032119)	1:300 (Confocal)
FAM161A ab2 (Rabbit)	Novus Biologicals (NBP1-91508)	1:1000 (Western)
FAM161A N-terminus	Gifted by Dr. Dror Sharon (Hadassah-Hebrew	1:200 (Confocal)
(Rabbit)	University Medical Center)	
Tubulin (Mouse)	DSHB (Developmental Studies Hybridoma Bank)	1:20 (Supernatant)
	(E7)	1:100 (Concentrate)
Tubulin (Sheep)	Cytoskeleton, Inc. (ATN02)	1:500 (Confocal)
Anti-HA (Rabbit)	Invitrogen (SG77)	1:200 (Confocal)
		1:1000 (Western)
Anti-FLAG (Mouse)	Invitrogen (FG4R)	1:400 (Confocal)
		1:1000 (Western)
Anti-Rabbit A647 (Donkey)	Jackson ImmunoResearch (711-605-152)	1:300 (Confocal)
		1:100 (STORM)
Anti-Mouse A647 (Donkey)	Jackson ImmunoResearch (715-605-150)	1:300 (Confocal)
		1:100 (STORM)
Anti-Rabbit A488 (Donkey)	Jackson ImmunoResearch (711-545-152)	1:200 (Confocal)
Anti-Sheep A555 (Donkey)	Thermo Fisher Scientific (A-21436)	1:500 (Confocal)
Anti-Mouse A488 (Donkey)	Jackson ImmunoResearch (715-545-150)	1:200 (Confocal)
Anti-Sheep A488 (Donkey)	Jackson ImmunoResearch (715-545-003)	1:300 (Confocal)

247 Supplementary Table 5 – Primers used in this study.

Application	Primer	Sequence
	Oligo d(T)-Anchor	5'-GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTV-3'
3 RACE		<i>Mlu</i> site <i>Cla</i> site <i>Sal</i> site, V = A, C, or G (what is that)
	2FW	5'-CAGGAAACTCAAAGACCTGAAGG-3'
POR	PCR Anchor	5'-GACCACGCGTATCGATGTCGAC-3'
	3FW	5'-GCCAGCTGCGAGTGACAAGC-3'
	5RV	5'-CTGGAGGAACAAGAGGAAAAACTGC-3'
Z ^{III} PCR	5*RV	5'-GCCTCCACCTTTGTGCTCCGTC-3'
	7RV	5'-GAACCACAGCTGACACAAATGG-3'
Cogueneing	Seq. 3FW	5'-GCAGACATCAGAGCAGATGAAG-3'
Sequencing	Seq. 5RV	5'-GGAGTGAAAAGGCCAGGATGAG-3'
	Seq. 5*RV	5'-CCAGCTTTCTGTTTCTCAGTAC-3'
	Seq. 7RV	5'-GGAGAAGAAAGAGAGAATGAGG-3'

Supplementary Table 6 – Species analyzed in this study.

a. Rodent sequences analyzed in this study.

Organism	Length of amino acid sequence	Accession ID
Mus musculus	700	XM 006514828.5
house mouse		
Rattus norvegicus	653	XM 017599131.2
Norway rat		
Heterocephalus glaber	706	XM_004867228.3
naked mole-rat		
Nannospalax galili	709	XM 017800967.2
Upper Galilee Mountains blind mole rat		
Mesocricetus auratus	695	XM 005070431.4
golden hamster		
Dipodomys ordii	713	XM_013022573.1
Ord's kangaroo rat		
Castor canadensis	701	XM_020175016.1
American beaver		
Mus caroli	728	XM 029483590.1
Ryukyu mouse		
Mus pahari	550	XM_029545237.1
shrew mouse		
Peromyscus maniculatus bairdii	699	XM 006974797.2
prairie deer mouse		
Jaculus jaculus	921	XM 004665507.1
lesser Egyptian jerboa		
Meriones unguiculatus	699	XM 021626659.1
Mongolian gerbil		
Rattus rattus	471	XM 032916924.1
black rat		
Grammomys surdaster	260	XM 028778791.1
thicket rat		
Mastomys coucha	495	XM_031341979.1
southern multimammate mouse		
Arvicanthis niloticus	641	XM_034508367.1
African grass rat		
Cricetulus griseus	703	XM 003502153.5
Chinese hamster		
Peromyscus leucopus	782	XM_028876357.2
white-footed mouse		
Onychomys torridus	696	XM_036201671.1
southern grasshopper mouse		
Arvicola amphibius	704	XM 038339639.1
Eurasian water vole		
Microtus oregoni	705	XM_041669288.1
creeping vole		
Microtus ochrogaster	706	XM_026788902.1
prairie vole		
Cavia porcellus	686	XM_013150060.2
domestic guinea pig		
Octodon degus	702	XM 023720875.1
degu		
Fukomys damarensis	693	XM 033762286.1
Damaraland mole-rat		
Marmota marmota	551	XM_015479628.1
alpine marmot		
Ictidomys tridecemlineatus	705	XM 005322047.4
thirteen-lined ground squirrel		
Urocitellus parryii	705	XM_026387235.1

Arctic ground squirrel		
Marmota flaviventris	705	<u>XM 027934553.1</u>

b. Carnivore sequences analyzed in this study.

Organism	Length of amino acid sequence	Accession ID
Canis lupus familiaris	716	XM_005626140.4
dog		
Mustela putorius furo	729	XM_004742028.2
domestic ferret		
Panthera tigris altaica	665	XM_007075417.1
Amur tiger		
Enhydra lutris kenyoni	720	XM 022504396.1
northern sea otter		
Acinonyx jubatus	715	XM_027072376.1
cheetah		
Lynx canadensis	715	XM_030310672.1
Canada lynx		
Puma yagouaroundi	715	XM 040463327.1
jaguarundi		
Puma concolor	714	XM_025932404.1
puma		
Felis catus	715	XM_003984033.5
domestic cat		
Panthera pardus	715	<u>XM 019431779.1</u>
leopard		
Canis lupus dingo	716	XM_025468782.2
dingo		
Ursus arctos horribilis	719	XM_026485066.1
grizzly bear		
Lontra canadensis	721	XM 032873831.1
North American river otter		
Mustela erminea	729	XM_032353647.1
ermine		
Odobenus rosmarus	719	XM_004397721.1
divergens		
Pacific walrus		
Hyaena hyaena	705	XM_039240346.1
striped hyena		
Suricata suricatta	706	XM_029937442.1
meerkat		
Vulpes lagopus		<u>XM 041757534.1</u>
Arctic fox		
Vulpes vulpes	776	XM_025992735.1
red fox		
Ursus maritimus	719	<u>XM_040623440.1</u>
polar bear		
Ailuropoda melanoleuca	720	XM_034659197.1
giant panda		
Eumetopias jubatus	718	<u>XM 028089669.1</u>
Steller sea lion		
Zalophus californianus	718	<u>XM_027624320.1</u>
California sea lion		
Neomonachus schauinslandi	721	XM_021699187.1
Hawaiian monk seal		
Halichoerus grypus	722	<u>XM 036121192.1</u>
grey seal		

Leptonychotes weddellii Weddell seal	722	<u>XM_006733195.2</u>
Mirounga leonina southern elephant seal	720	XM_035001465.1
Phoca vitulina harbor seal	722	<u>XM_032410896.1</u>

c. Ungulate sequences analyzed in this study.

Organism	Length of amino acid sequence	Accession ID
Bos taurus	721	XM 005212825.4
cattle		
Odocoileus virginianus	716	XM 020891631.1
texanus		
Texas whitetail deer		
Bison bison	721	XM_010863278.1
American bison		
Bos indicus x Bos taurus	721	XM 027555592.1
hybrid cattle		
Bos mutus	717	<u>XM_005889728.2</u>
wild yak		
Bos indicus	710	<u>XM_019969488.1</u>
zebu		
Bubalus bubalis	721	<u>XM 006049386.2</u>
water buffalo		
Oryx dammah	810	<u>XM_040224006.1</u>
scimitar-horned oryx		
Capra hircus	722	<u>XM_013967738.2</u>
goat		
Ovis aries	722	<u>XM 027966713.2</u>
sheep		
Sus scrofa	720	<u>XM_003354802.4</u>
pig		
Vicugna pacos	723	<u>XM_015237028.2</u>
alpaca		
Camelus ferus	723	<u>XM_014564859.2</u>
Wild Bactrian camei	550	XM 040054000 4
Cameius bactrianus	552	<u>XM_010951902.1</u>
Bactrian camei	700	XM 04000770 0
	122	<u>XM_010989773.2</u>
Arabian camei	740	XNA 004750005 4
Neophocaena asiaeorientalis	/13	<u>XM_024753025.1</u>
Palaerantera acutareatrata	747	XM 007100700 1
Balaenoptera acutorostrata	/1/	<u>XIM_007189708.1</u>
scammony		
	740	XM 007404424.4
Lipotes veximiter	713	<u>XIM_007464134.1</u>
	747	XM 027121701 1
Lagenornynchus	/ / /	<u>XIVI 027131791.1</u>
Dacific white-sided delabia		
	717	XM 020877225 1
long finned pilot whole	111	<u>^IVI_U3U077333.1</u>
	717	XM 004280640.2
killer whole	() (<u> 1111 004280649.2</u>
	717	XM 010042077 2
common bottlenose dolphin	111	<u> ^IVI_UI3343U//.2</u>
Phonoana ainua	710	VM 022652279.4
Fliocoena sinus	113	<u> ^IVI_UJZUJJJ/0.1</u>

vaquita		
Monodon monoceros narwhal	717	XM 029232453.1
Delphinapterus leucas beluga whale	717	XM_022597296.2
Physeter catodon sperm whale	727	XM_024133601.2
Balaenoptera musculus blue whale	727	<u>XM_036873937.1</u>

d. Primate sequences analyzed in this study.

Organism	Length of amino acid sequence	Accession ID
Homo sapiens	716	<u>NM 001201543.2</u>
human		
Pan troglodytes	716	<u>XM_515502.6</u>
chimpanzee		
Macaca mulatta	716	XM_028831643.1
rhesus macaque		
Macaca fascicularis	716	<u>XM 005575777.2</u>
crab-eating macaque		
Callithrix jacchus	715	<u>XM_003734729.4</u>
white-tufted-ear marmoset		
Colobus angolensis	562	<u>XM_011941831.1</u>
palliates		
Angola black-and-white colobus		
Chlorocebus sabaeus	716	<u>XM_007970494.2</u>
green monkey		
Cercocebus atys	714	<u>XM_012039548.1</u>
sooty mangabey		
Macaca nemestrina	716	<u>XM_011713355.2</u>
pig-tailed macaque		
Papio anubis	716	<u>XM_003908708.5</u>
olive baboon		
Theropithecus gelada	716	<u>XM_025354341.1</u>
gelada		
Mandrillus leucophaeus	716	<u>XM_011987312.1</u>
drill		
Trachypithecus francoisi	711	<u>XM_033239161.1</u>
François' langur		
Rhinopithecus bieti	/11	<u>XM_017889712.1</u>
black snub-nosed monkey		
Rhinopithecus roxellana	/11	<u>XM_010384442.2</u>
golden snub-nosed monkey	744	
Piliocolobus tephrosceles	/11	<u>XM_023228337.1</u>
Ugandan red colobus	740	XIII 00 1000000 0
Gorilla gorilla	716	<u>XM_004029293.3</u>
western gorilla	740	VIA 00000074.0
Pan paniscus	/16	<u>XM_003830874.3</u>
pygmy chimpanzee	740	
Pongo abelii	/16	<u>NM 001374141.1</u>
Sumatran orangutan	740	XIII 000000404 4
Nomascus leucogenys	716	<u>XM_003262434.4</u>
northern white-cheeked globon	740	VM 022177270 4
	/10	<u>XIVI_U32177370.1</u>
Silvery gibbon	745	XM 0204040404
Saimiri poliviensis	/15	<u>XIVI U39464018.1</u>

Sapajus apella tufted capuchin	715	<u>XM 032292015.1</u>
Cebus imitator Panamanian white-faced capuchin	715	<u>XM_017522196.2</u>
Aotus nancymaae Ma's night monkey	715	<u>XM_012477168.2</u>
Carlito syrichta Philippine tarsier	715	<u>XM 008054794.2</u>
Propithecus coquereli Coquerel's sifaka	714	<u>XM_012639195.1</u>
Microcebus murinus gray mouse lemur	708	<u>XM_012764864.2</u>
Otolemur garnettii small-eared galago	712	<u>XM_003787945.1</u>

261 **References**

- 262 1 Plant, T. M. & Zeleznik, A. J. Knobil and Neill's physiology of reproduction. (Academic Press, 2014).
- 263 2 Murrell, B. *et al.* Detecting individual sites subject to episodic diversifying selection. *PLoS Genet* 8, e1002764 (2012). <u>https://doi.org:10.1371/journal.pgen.1002764</u>
- Kosakovsky Pond, S. L. & Frost, S. D. Not so different after all: a comparison of methods for detecting
 amino acid sites under selection. *Molecular biology and evolution* 22, 1208-1222 (2005).
- Green, C. D. *et al.* A Comprehensive Roadmap of Murine Spermatogenesis Defined by Single-Cell
 RNA-Seq. *Dev Cell* 46, 651-667 e610 (2018). <u>https://doi.org:10.1016/j.devcel.2018.07.025</u>