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Supplementary information includes  

 Supplementary Figure 1-13 and their related figure legends   
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Supplementary Figure 1. Establishment of genome-wide CRISPR/Cas9 dropout screens for 

SARS-CoV-2 infection (a) Evaluation of permissiveness of human epithelial cell lines for SARS-

CoV-2 infection. Human epithelial cells were infected with recombinant SARS-CoV-2-Nluc at 

MOI=0.2 and luciferase signals were measured at 24-h post-infection. At least two independent 

experiments were performed. Data were analyzed using one-way ANOVA followed by Tukey’s 

post hoc test were presented as mean values ± SD; n = 6 biologically independent samples. (b) 

Expression of ACE2 and Cas9 expression in A549-AC cells detected by western blot analysis. 

Anti-human ACE2 and anti-FLAG antibodies were used to determine the level of ACE and FLAG-

tagged Cas9, respectively. (c) Expression levels of ACE2 and Cas9 in A549-AC cells detected by 

flow cytometry. The expression of GFP, a surrogate reporter for Cas9, was used to determine Cas9 

expression. (d) Dose effect of SARS-CoV-2 on CPE. A549-AC cells were infected with different 

MOIs (ranging from 0.1 to 40) of recombinant SARS-CoV-2. 48 hours after infection, the viability 

of infected cells was measured. A four-parameter nonlinear regression method was used to 

generate the estimated dose-response curve and to calculate the MOI for 50% of cell lysis. (e) 

Representative images of cells before and after viral infection (scale bar 12.5μm, magnification 

400×). Typical bright field images of pooled A549-AC cells with the gRNA library were illustrated 

before (left panel) and after (right panel) SARS-CoV-2 infection. Samples were triplicated in 

experiments. The comparisons with statistical significance were indicated. Source data and exact 

p-values are provided in a Source data file. *p<0.05; ***p<0.001; ****p<0.0001. 
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Supplementary Figure 2. Quality evaluation of results from the genome-wide CRISPR 

dropout screen. (a) Raw read counts of total gRNAs in samples collected from the genome-wide 

CRISPR dropout screen. (b) Correlations of gRNA abundance across experimental samples. 

Pairwise Pearson correlation analyses were performed between two distinct samples. (c) 

Distribution of gRNAs targeting essential and non-essential genes in the reference sample (upper 

panel), the control samples (middle panel), and the SARS-CoV-2 infected samples (bottom panel). 
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Supplementary Figure 3. Changes in abundance of gRNAs targeting cohesin-related genes 

in the SARS-CoV-2 screen. Cohesin-related genes are into two categories: Inscreen (gRNAs 

targeting genes with statistically significant depletion in the SARS-CoV-2 group) and Others 

(gRNAs targeting genes without statistically significant depletion in the SARS-CoV-2 group). 

Boxplots of normalized gRNA counts of each category in three types of samples: the Ref samples, 

the control samples, and the SARS-CoV-2 samples were shown. Data were analyzed using 

Wilcoxon signed-rank test and presented as mean values ± SD; Source data and exact p-values are 

provided in a Source data file. *p<0.05; ***p<0.001; ****p<0.0001. 
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Supplementary Figure 4. Phenotypes of knocking out putative host factors in lung epithelial 

cells. (a) Effects of knocking out putative host factors on CPE at the high MOI condition. A549-

AC cell lines expressing related gRNAs were infected with SARS-CoV-2 at MOI=5. The cell 

viability was measured at 48 hours post-infection. (b) Effects of knocking out putative host factors 

on in vitro growth. Equal numbers of genetically modified A549-AC cells were seeded and 

cultured for 48 hours in vitro. The relative changes in cell numbers of A549-AC cells with gene-

specific KO were calculated by normalizing with cell numbers of A549-AC cells expressing non-

targeting gRNA. At least two independent experiments were performed. Data were analyzed using 

one-way ANOVA followed by Dunnett’s post hoc test and were presented as mean values ± SD; 

n = 3 biologically independent samples. Source data and exact p-values are provided in a Source 

data file. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. n.s., not significant. 
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Supplementary Figure 5. Comparisons of expression levels of identified host factors in lung 

epithelial cells from pneumonia patients. The mRNA expression levels of two pro-viral factors 

(ATP6V0D1and DPAGT1) and three anti-viral factors (DAZAP2, VTA1, and KLF5) in epithelial 

cells in bronchoalveolar lavage fluids were extracted from published datasets. Patients were 

stratified by their diagnosis (COVID-19 and non-COVID-19) and severity (mild and severe). Log-

transformed mRNA counts of each host factor in lung epithelial cells from different patient groups 

were illustrated. The comparisons with statistical significance were indicated in the method. 

Source data and exact p-values are provided in a Source data file. *p<0.05; ***p<0.001; 

****p<0.0001. 
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Supplementary Figure 6. Successful gene-specific perturbations in A549-AC cells. (a) 

Inhibition of gene-of-interests in A549-AC cells by gene-specific gRNAs at mRNA level. (b) 

Inhibition of gene-of-interests in A549-AC cells by gene-specific gRNAs at protein level. (c) 

Increased mRNA expression of gene-of-interests in gene-specific overexpression (OE) A549-AC 

cells. (d) Increased protein expression of gene-of-interests in gene-specific OE A549-AC cells. 

The comparisons with statistical significance were indicated. At least two independent 

experiments were performed. Data were analyzed using unpaired T-test with two tails were 

presented as mean values ± SD; n = 3 biologically independent samples. Source data and exact p-

values are provided in a Source data file. ***p<0.001; ****p<0.0001. 
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Supplementary Figure 7. Successful gene-specific perturbations in H2023-AC and Calu-3-

Cas9 cells. Inhibition of gene-of-interests in H2023-AC cells (a) and Calu-3-Cas9 cells (b) by 

gene-specific gRNAs at mRNA level were determined by RT-PCR. The comparisons with 

statistical significance were indicated. At least two independent experiments were performed. Data 

were analyzed using unpaired T-test with two tails were presented as mean values ± SD; n = 3 

biologically independent samples. Source data and exact p-values are provided in a Source data 

file. ***p<0.001; ****p<0.0001. 
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Supplementary Figure 8. Effects of perturbation of selected host factors on CPE induced by 

SARS-CoV-2 in H2023-AC and Calu-3-Cas9 cells. (a-b) Putative five host factors including two 

pro-viral factors (ATP6V0D1, DPAGT1) and three anti-viral factors (DAZAP2, VTA1, KLF5) were 

knocked out in H2023-AC and Calu-3-Cas9 cells. Genetically modified H2023-AC cells (a) and 

Calu-3-Cas9 cells (b) were infected with recombinant SARS-CoV-2 at MOI=0.5, 2.5, and 5 for 48 

hours. H2023-AC and Calu-3-Cas9 cells expressing a non-targeting gRNA (NC) served as control 

cells. Data were normalized using the viability of corresponding cells at mock conditions. At least 

two independent experiments were performed. Data were analyzed using one-way ANOVA 

followed by Dunnett’s post hoc test and were presented as mean values ± SD; n = 3 biologically 

independent samples. Source data and exact p-values are provided in a Source data file. *p<0.05; 

**p<0.01; ***p<0.001; ****p<0.0001. 
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Supplementary Figure 9. Effects of perturbation of selected host factors on CPE induced by 

the Delta strain of SARS-CoV-2. A549-AC cells with or without genetic KO were infected with 

recombinant SARS-CoV-2 (Delta strain) at MOI=0.5, 2.5, and 5 for 48 hours. A549-AC cells 

expressing a non-targeting gRNA (NC) served as control cells. Data were normalized using the 

viability of corresponding cells at mock conditions. At least two independent experiments were 

performed. Data were analyzed using one-way ANOVA followed by Dunnett’s post hoc test and 

were presented as mean values ± SD; n = 3 biologically independent samples. Source data and 

exact p-values are provided in a Source data file. **p<0.01; ***p<0.001; ****p<0.0001. 

  



gDAZAP2 gVTA1 gKLF5

-Log10(p-value) -Log10(p-value) -Log10(p-value)
0 1 2 3

Oleate Biosynthesis II 

Axonal Guidance Signaling

Kinetochore Metaphase Signaling

CLEAR Signaling

Sphingosine and Sphingosine-1
-phosphate Metabolism

Ceramide Degradation

Estrogen-Dependent
Breast Cancer Signaling

Role of Osteoblasts, Osteoclasts and
Chondrocytes in Rheumatoid Arthritis

Mitotic Roles of Polo-Like Kinase

Estrogen Biosynthesis

Inhibition of Matrix Metalloproteases

Colorectal Cancer
Metastasis Signaling

Hepatic Fibrosis Signaling

Role Of Osteoblasts In
Rheumatoid Arthritis Signaling

Osteoarthritis Pathway

0 5 10 15 20

MicroRNA Biogenesis Signaling

Ephrin Receptor Signaling

Pulmonary Fibrosis
Idiopathic Signaling

Role of BRCA1 in
DNA Damage Response

ID1 Signaling

CLEAR Signaling

Hepatic Fibrosis Signaling

Molecular Mechanisms of Cancer

HER-2 Signaling in Breast Cancer

Axonal Guidance Signaling

Sirtuin Signaling

Cell Cycle Control of
Chromosomal Replication

Epithelial Adherens
Junction Signaling

Hereditary Breast
Cancer Signaling

Kinetochore Metaphase Signaling

0 2 4 6 8

Pancreatic Adenocarcinoma Signaling

Corticotropin Releasing
Hormone Signaling

Inhibition of Matrix
Metalloproteases

Axonal Guidance Signaling

Role of Macrophages, Fibroblasts and
Endothelial Cells in Rheumatoid Arthritis

Xenobiotic Metabolism
CAR Signaling

Xenobiotic Metabolism Signaling

Wound Healing Signaling

Colorectal Cancer
Metastasis Signaling

IL-10 Signaling

Xenobiotic Metabolism
PXR Signaling

Protein Kinase A Signaling

Hepatic Fibrosis
Hepatic Stellate Cell Activation

Pulmonary Fibrosis
Idiopathic Signaling

HIF1α Signaling

gNC
gDAZAP2
gVTA1
gKLF5

A549-AC

-200 -150 -100 -50 0 50
-50

0

50

100

150

PCA-1

PC
A

-2

a

b c d

JHou et.al Supplementary Figure 10



Supplementary Figure 10. Molecular characterization of DAZAP2 /VTA1/KLF5-KO cells. 

(a) PCA analysis reveals distinct transcriptomic profiles among A549-AC with and without genetic 

KO. (b-d) IPA of results from the unique DEGs among DAZAP2-KO (b), VTA1-KO (c), and 

KLF5-KO (d) cells. The top 15 enriched canonical pathways displaying statistical significance 

were listed. p-values for each gene set were calculated by using a Right-Tailed Fisher’s Exact Test. 

Source data and exact p-values are provided in a Source data file. 
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Supplementary Figure 11. Levels of SERPINE1 expression in lung epithelial cells from 

COVID-19 patients. The mRNA expression levels of SERPINE1 in epithelial cells in 

bronchoalveolar lavage fluids were extracted from published scRNA-Seq datasets as described in 

Supplementary Figure 5. The box plot was made by using Log-transformed mRNA counts in lung 

epithelial cells from different patient groups. The comparisons with statistical significance were 

indicated in the method.  

  



● ±10kb of SNP
●p-value<0.001

Single cell
Transcriptome

analysis

●p-value<0.05

Protein-Protein
Interactions:
114,366 PPIs

229 PPIs:
43 enriched
44 depleted 

RNA-Protein
Interactions:

452 RPIs

GWAS
meta-analysis

8 RPIs:
6 enriched
2 depleted
29 hits:
15 enriched
14 depleted 

59 hits:
30 enriched
29 depleted

Genome-wide CRISPR library
18,436 genes

●|log2FC|> 0.5
●p-value<0.05

147 hits: 
63 enriched
84 depleted

Integrative Analyses Literature investigation

12 datasets

Indicated selection
criteria

Identified hits:
29 enriched
11 depleted

Genome-wide
CRISPR screens
using human cell lines

32 Concordant hits:
24 enriched (Severe group   )
8 depleted (Severe group   ) 

Automatically selected
● p-value<0.05
● Top ranking based on |log2FC|
     Enriched: Top 10
     Depleted: Top 30
● ≤1 in reported datasets

Manually selected GOIs
● p-value<0.05
● ≤1 in reported datasets
● Revelance evaluated by integrative analyses

4 enriched
26 depletedValidation

Mechanistic studies 2 enriched: ATP6V0D1, DPAGT1
3 depleted: DAZAP2, VTA1, KLF5

Top ranked GOIs

JHou et.al Supplementary Figure 12



Supplementary Figure 12. Summary of experimental procedures including screens, 

integrative analysis, candidate selection, and validation. 
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Supplementary Figure 13. Gating strategy of flow cytometry. 
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