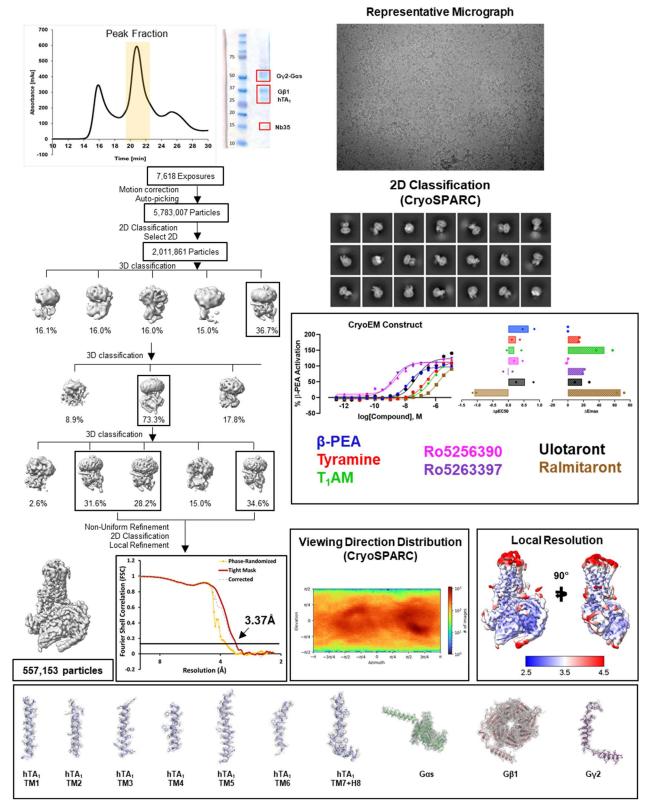
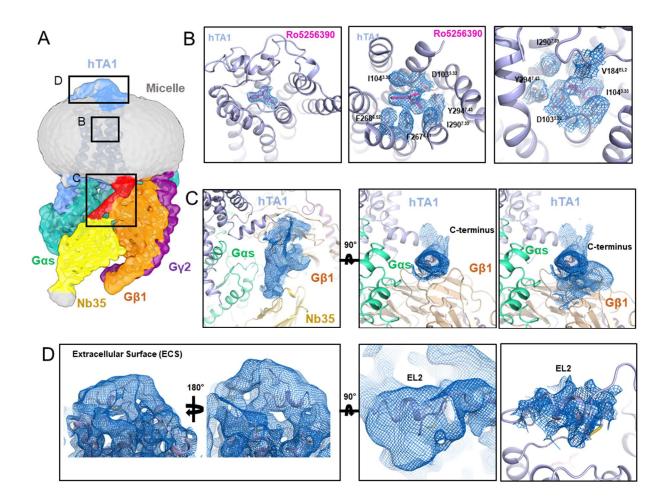
Supplementary Information for

Molecular Basis of Human Trace Amine-Associated Receptor 1 Activation

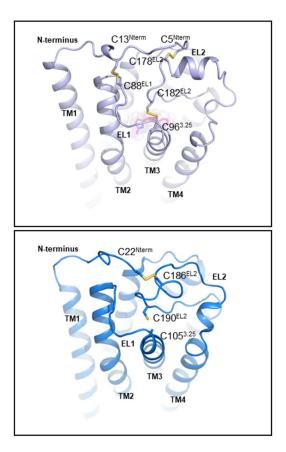

Gregory Zilberg*, Alexandra K. Parpounas, Audrey L. Warren, Shifan Yang, Daniel Wacker*

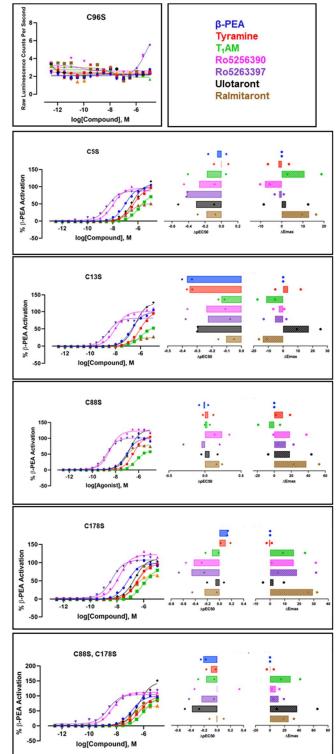
*To whom correspondence should be addressed: Gregory Zilberg (greg.zilberg@icahn.mssm.edu), Daniel Wacker (Daniel.wacker@mssm.edu)

This file includes:

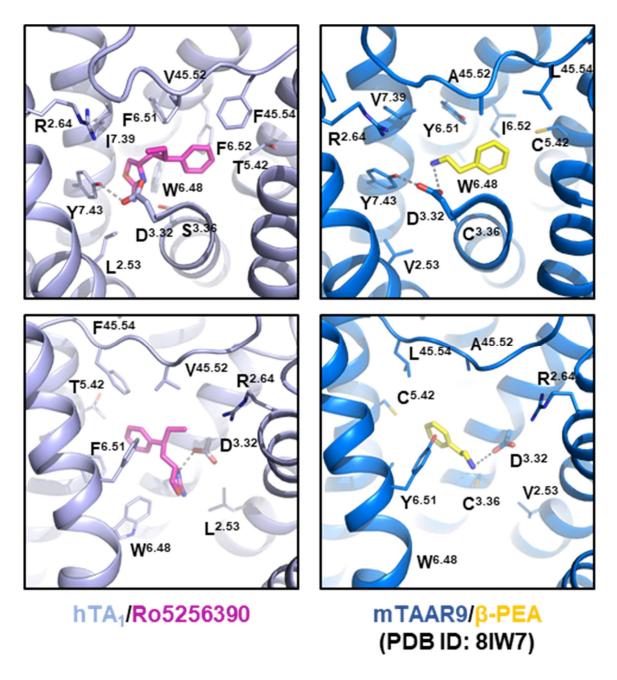

Supplementary Figures 1-7

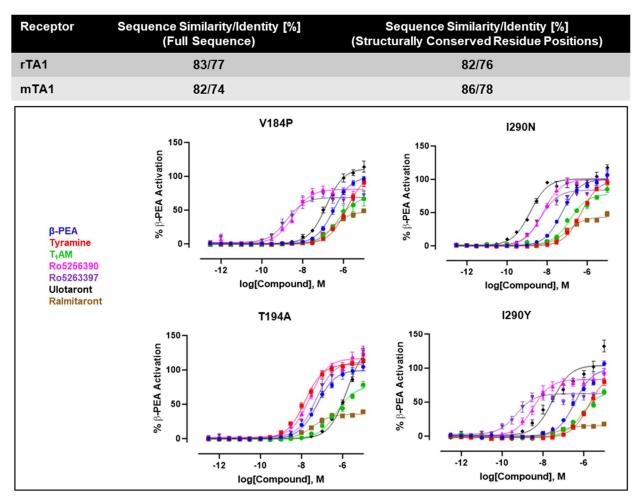
Supplementary Tables 1-3




Supplementary Fig. 1 | Purification, and cryo-EM structure determination of the Ro5256390-bound hTA1-Gs-Nb35 complex. Analytical size exclusion chromatography and SDS-PAGE show monodisperse and pure hTA1-Gs-Nb35

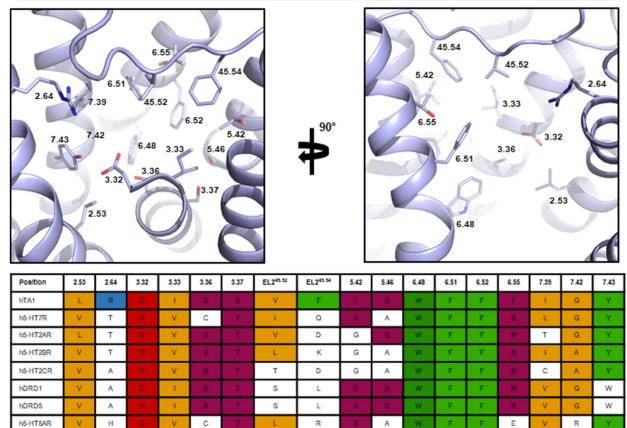
complex. Data were collected on a 300 keV Krios, a representative micrograph is shown, and processed in cryoSPARC v4.1.2.: Particles were picked from motion corrected micrographs, subjected to 2D classification (representative classes are shown), followed by ab initio model building and 3D classification. After multiple rounds of 3D classification, the particle stack was subjected to non-uniform refinement. We further removed bad particles through a final 2D classification step, before performing local refinement using a receptor-only mask built based on the mask generated by cryoSPARC for the non-uniform refinement job. A final map was obtained with GS-FSC indicating a resolution of 3.37 Å applying the 0.143 cutoff. Viewing direction distribution analysis (cryoSPARC) indicates sufficient coverage. An initial model was built in PHENIX, and then further refined in ServalCat for the generation of final maps and coordinates. Calculations in cryoSPARC indicate local resolutions of up to 3 Å around the compound binding site. Viewing direction analysis indicates isotropic distribution of views in final particle stack. Bottom panel shows representative cryoEM densities (grey mesh) of receptor helices (light blue), Gas (green), G β 1 (salmon), and G γ 2 (purple) subunits at 4σ . Insert also shows activation of the cryoEM construct β_2 AR-Nterm-hTA1-F112^{3.41}W in transfected HEK293T cells mediated by a panel of agonists. Data represent mean ± SEM of two independent experiments (n=2) performed in triplicate. See Supplementary Table 1 for fitted parameter values. Differences in efficacies and potencies compared to the wildtype construct are shown as bar graphs.


Supplementary Fig. 2 | Representative Cryo-EM density of Ro5256390-bound hTA1-Gs-Nb35 complex. A, Overall unsharpened cryo-EM density of the Ro5256390-bound hTA1-Gs-Nb35 complex, colored by element and featuring inlays demonstrating the relative location of subsequent local density figures B-D. hTA1, light blue; C-terminus of hTA1, red; Ro5256390, magenta; G α s, green; G β 1, orange; G γ 2, purple, Nb35, yellow, detergent micelle, grey. B, Sharpened cryo-EM density of the ligand Ro5256390 and nearby residues within the OBP shown as blue mesh at a contour level of 6 σ . C, Unsharpened cryo-EM density of the C-terminal tail of hTA1 packing against G β 1 shown as blue mesh at a contour level of 4 σ . D, Unsharpened cryo-EM density (3 left panels) and sharpened cryo-EM density (right panel) of the hTA1 extracellular surface shown as blue mesh at a contour level of 6 σ and 4 σ , respectively.



Supplementary Fig. 3 | Importance of the extracellular disulfide network for

activities of hTA1 agonists. Zoom-in on the extracellular disulfide network of hTA1 (light blue) and mTAAR9 (marine blue) with key cysteines shown as sticks (left). Effects of cysteine mutations on the activities of hTA1 agonists (right). Data are shown both as full concentration response curves and as bar graphs denoting differences between mutant and wild type receptor with potencies determined as pEC₅₀s and efficacies measured as E_{max} . Data represent mean ± SEM of two independent experiments (n=2) performed in triplicate. See Supplementary Table 1 for fitted parameter values.



Supplementary Fig. 4 | Role of key OBP residues in the activities of hTA1 agonists. Zoom-in on OBP of hTA1 (light blue) and mTAAR9 (marine blue) with key residues shown as sticks (left). Two angles are shown and grey dashes indicate ionic bonds between the conserved residue D3.32 and the agonists Ro5256390 (magenta) and β -PEA (yellow).

Supplementary Fig. 5 | Implications of species differences for the activities of TA1 agonists. Calculation of sequence similarity and identity for both complete receptor sequences or only structurally conserved positions between human and rodent TA1 (top). Effects of species-related residue substitutions on the activities of TA1 agonists (bottom). Data are shown as full concentration response curves and represent mean ± SEM of two independent experiments (n=2) performed in triplicate. See Supplementary Table 1 for fitted parameter values.

Receptor	Sequence Similarity/Identity [%] (Full Sequence)	Sequence Similarity/Identity [%] (Structurally Conserved Residue Positions)
hTAAR2	56/42	69/53
hTAAR3	60/44	68/50
hTAAR5	51/33	59/41
hTAAR6	54/36	63/43
hTAAR8	49/32	58/39
hTAAR9	54/38	61/43

Supplementary Fig. 6 | Similarities in the OBPs of hTA1, TAARs, and aminergic neurotransmitter receptors. Calculation of sequence similarity and identity for both complete receptor sequences or only structurally conserved positions between hTA1

V

L

G

L

L

L

С

т

С

G

A

A

Y

1

s

т

hTAAR2

hTAAR6

hTAAR5

L

V

R

R

R

L

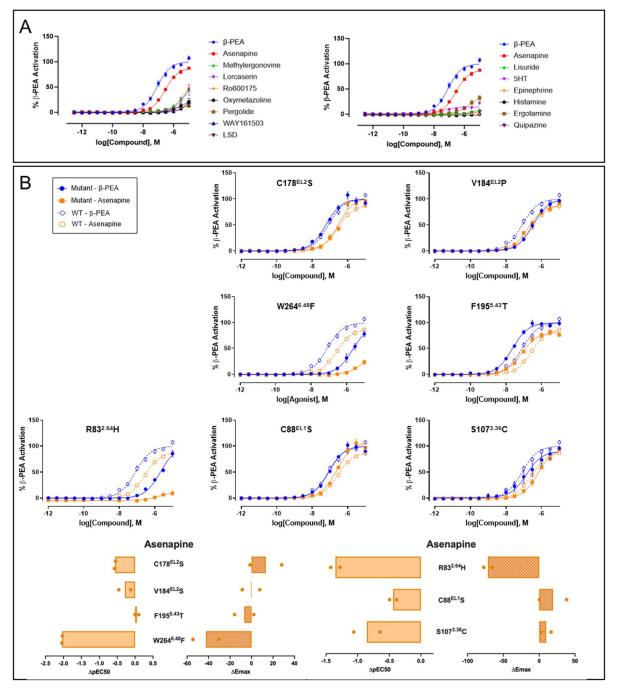
٧

т

С

С

I.


Y

L

V

т

and the other members of the human TAAR family (top). Location of structurally conserved residue positions in the OBP of hTA1 (middle). Sequence alignment of corresponding structurally conserved positions residues (bottom). Most similar sequences are shown and ranked according to analysis done with tools of the GPCRdb.

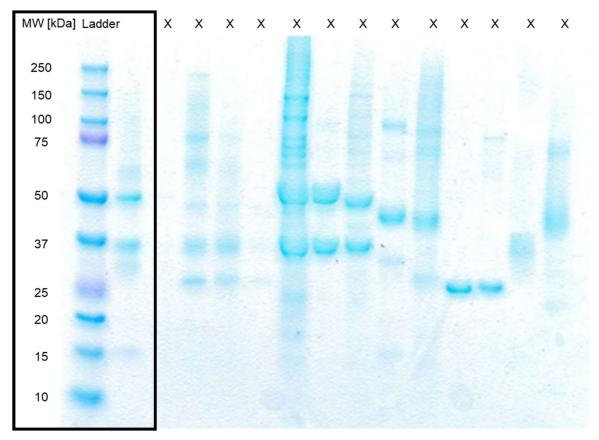
Supplementary Fig. 7 | Off-target hTA1 activities of aminergic compounds and SAR studies of asenapine at hTA1. A, Concentration response curves of top hits obtained from screening a curated aminergic compound library for hTA1 activities. Data represent mean ± SEM of two independent experiments (n=2) performed in triplicate. See Supplementary Table 3 for single concentration values of individual compounds in screen. **B**, Effects of OBP mutations on the activity of asenapine at hTA1. Data are shown both as full concentration response curves and as differences between mutant and wild type receptor with potencies determined as $pEC_{50}s$ and efficacies measured as E_{max} . Data represent mean ± SEM of two independent experiments (n=2) performed in triplicate. See Supplementary Table 1 for fitted parameter values.

Supplementary Table 1 | Efficacies and potencies of compounds at wildtype and mutant hTA1. ND (not

determined) indicates that mutations abolish signaling. Data represent mean $pEC_{50} \pm SEM$ or mean $E_{max} \pm SEM$ normalized to β -PEA of two independent experiments (n=2) for all mutants and three independent experiments (n=3) for wt hTA1. All experiments were performed in triplicate.

br/tr/ (bcCsb z) Span ± SEM (bcD z)	enapine	Asena	itaront	Ralmi	taront	Ulot	63397	Ro52	56390	Ro52	AM	T1.	mine	Tyra	PEA	β-F	
WII (7.09±0.05) 100±2.2e (6.38±0.04) 80±9.02 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) 80±2.15 (8.33±0.06) (8.33±0.05) (8.33±0.05) (8.33±0.05) (8.33±0.05) (10±2.22) (8.33±0.05) (8.33±0.05) (8.33±0.05) (10±2.23) (8.33±0.05) (10±2.23) (8.33±0.05) (10±2.15) (10±2.15) (11±5)	1) ± Span ± SEM		Span ± SEM	(pEC50 ±		(pEC50 ±	Span ± SEM	(pEC50 ±	Span ± SEM	(pEC50 ±	Span ± SEM	(pEC50 ±	Span ± SEM	(pEC50 ±	Span ± SEM	(pEC50 ±	
CropEM Construct 17.39 (7.5 ± 0.04) 100 ± 1.84 (6.5 ± 0.05) 224.7 (6.5 ± 0.05) 22.47 (6.5 ± 0.05) 102.23 ± 2.86 (6.1 ± 0.06) 49.24 (6.2 ± 0.06) 49.24 (7.5 ± 0.07) 49.34 (7.5 ± 0.07) 124.95 ± 3.36 (7.5 ± 0.07) 150.67 (7.5 ± 0.07) 100 ± 3.11 (6.5 ± 0.05) 106.6 ± 2.66 (7.5 ± 0.07) 100 ± 3.11 (7.5 ± 0.07) 100 ± 3.11 (6.5 \pm 0.05) 100 ± 2.23 ± 2.86 (6.5 \pm 0.05) 100.6 ± 2.66 (7.5 \pm 0.07) 449.24 (7.5 \pm 0.07) 124.95 ± 3.36 (7.5 \pm 0.07) 100 ± 3.11 (7.5 \pm 0.07) 100 ± 2.23 ± 2.86 (6.5 \pm 0.05) 100 ± 2.23 ± 2.86 (6.5 \pm 0.05) 110 ± t (7.5 \pm 0.07) 100 ± 2.02 (7.5 \pm 0.07) 100 ± 2.02 (7.5 \pm 0.07) 100 ± 2.02 (7.5 \pm 0.07) 100 ± 2.23 ± 2.86 (6.5 \pm 0.05) 10.1 ± t (7.5 \pm 0.07) 100 ± 2.3 ± 2.86 (6.5 \pm 0.05) 100 ± 2.85 ± 2.86 (6.5 \pm 0.05) 100 ± 2.85 ± 2.86 (6.5 \pm 0.05) 100 ± 2.85 ± 2.86 (6.5 \pm 0.06) 100 ± 2.72 ± (7.8 \pm 0.05) 122 ± 1.38 (7.1 \pm 0.05)	$(33)^{88.71 \pm 2.33}$			(6.96 ± 0.08)) 109.03 ± 5.87	(6.74 ± 0.05	86.7 ± 0.98	1.47 (8.83 ± 0.09)	103.3 ± 1.72	5.33 (8.27 ± 0.08)			98.98 ± 0.26	(6.38 ± 0.04)	100 ± 2.26	80.62 (7.09 ± 0.05)	WT
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$)4) 95.22 ± 1.98	51.76 (7.28 ± 0.04)	107.48 ± 3.32	1348.3 (5.87 ± 0.04)	124.95 ± 3.35	49.24 (7.3 ± 0.06)	106.6 ± 2.69	1.5 (8.82 ± 0.06)	102.23 ± 2.88	2.47 (8.6 ± 0.06)			112.93 ± 2.5	234.72 (6.62 ± 0.04)	100 ± 1.84	17.39 (7.75 ± 0.04)	CryoEM Construct
C5S 99.66 100 ± 2.22 (48.22) (48.2) (5.38 ± 0.05) 97.41 ± 4.98 (114.99) (81.19 ± 8.03) (8.41 ± 0.07) 85.5 ± 2.16 (6.44 ± 0.07) (6.44 ± 0.07) (6.44 ± 0.07) (6.44 ± 0.07) (6.73 ± 0.05) 101.01 ± (6.73 ± 0.05) 50.02 ± 3.33 (26.55 ± 1.06) (6.55 ± 1.06)	97.39 ± 0.96	72.78 (7.14 ± 0.06)	82.55 ± 4.39	25.69 (7.59 ± 0.06)	100 20 1 0 02	39.64 (7.4 ± 0.06)	78.31 ± 9.88	0.66 (9.18 ± 0.09)	97.65 ± 9.34				99.52 ± 1.00		100 1 2 11	25.45	
C138 $(1032, 2)$ $930, 5/$ $100, 12$ $280, 54$ $930, 5/$ $140, 12$ $280, 542, 659$ $120, 22$ $280, 542, 659$ $120, 22, 22, 66, 220, 70$ $120, 22, 22, 66, 220, 70$ $120, 22, 22, 66, 220, 70$ $120, 22, 22, 66, 220, 70$ $120, 22, 22, 66, 220, 70$ $120, 22, 22, 66, 220, 70$ $120, 22, 22, 66, 220, 70, 70, 22, 14, 98$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 22, 14, 98)$ $(68, 22, 01, 70, 28, 14, 98)$ $(110, 12, 23, 20, 70, 10, 12, 28, 28, 28, 28, 28, 28, 28, 28, 28, 2$		· ·															
C138 (7.33 ± 0.63) $(93.05/{}$ $(93.05/{}$ (10.23 ± 0.61) (10.25 ± 0.11) (10.25 ± 0.01) $(10.$		260.62 (6.58 ± 0.05)	53.02 ± 3.33	167.73 (6.78 ± 0.05)		(6.44 ± 0.06)	85.5 ± 2.16	(8.41 ± 0.07)		(8 ± 0.06)	81.19 ± 8.03	1114.99 (5.95 ± 0.04)	97.41 ± 4.98	418.22 (6.38 ± 0.05)	100 ± 2.22		C5S
C688 3^{4} ($7, 0 \pm 0, 06$) 100 ± 2.93 $(7, 0 \pm 0, 06)$ 100 ± 2.93 $(7, 0 \pm 0, 06)$ 100 ± 2.93 $(7, 0 \pm 0, 06)$ ND			26 36 ± 2 60	140.12) 126.36 ± 7.99	357.44 (6.45 ± 0.04)	81.23 ± 7.68	2.48 (8.6 ± 0.08)	100.38 ± 3.73	9.21 (8.04 ± 0.06)	50.02 ± 5.04	1013.87	102.3 ± 8.61	930.57 (6.03 ± 0.04)	100 ± 2.41		C13S
C965 ND		238.04 (6.62 ± 0.04)	77.92 ± 14.98	69.97 (7.16 ± 0.05)		156.05 (6.81 ± 0.04	100.25 ± 9.11	1.64 (8.78 ± 0.06)	121.71 ±	3.1		689.69 (6.16 ± 0.04)	109.25 ± 8.40	374.73 (6.43 ± 0.04)	100 ± 2.93		C88S
C88/1768 100 ± 2.48 515.05 99.35 ± 4.80 199.26 98.9 ± 13.16 5.38 111.12 ± 5.22 2.55 99.65 ± 7.35 43.41 140.47 ± 112.93 65.82 ± 7.22 204.17 W264F (6.98 ± 0.05) 100 ± 2.48 (5.96 ± 0.05) 98.5 ± 7.30 (6.95 ± 0.06) 28.01 (6.95 ± 0.06) 65.82 ± 7.22 (204.17) W264F (2494.13) 100 ± 4.75 (10321.72 (11327.04) 1126.95 (5.65 ± 14.54) (5.78 ± 0.06) 57.37 ± 4.79 (5.24 ± 0.06) 101.15 ± 7.15 (5.55 ± 0.11) 40.13 ± 7.28 (94.66 ± 0.02) R83H (260 ± 0.07) 100 ± 5.46 (4.5 ± 1.31) 448.15 (7.93 ± 0.33) 6.95 ± 12.95 (5.19 (6.82 ± 0.11) 48.56 ± 10.14 (8.5 ± 0.15) 33.86 ± 8.09 (5.56 ± 0.08) 10.14 (8.79 ± 0.4) 2.51 ± 6.63 (5.71 ± 0.05) D103N ND	ND			ND		ND			ND		ND	ND	ND	ND	ND	ND	C96S
C88/1788 131.00 100 ± 2.48 516.05 99.35 ± 4.80 199.26 98.9 ± 13.16 5.38 111.12 ± 5.22 2.55 98.55 ± 7.35 43.41 140.47 ± 112.93 66.82 ± 7.22 (6.9 ± 0.05) W264F 2494.13 100 ± 2.48 510.05 100 ± 1.75 1327.04 122.93 (6.9 ± 0.05) 98.5 ± 7.35 (6.36 \pm 0.06) 28.01 (6.95 ± 0.06) 65.82 ± 7.22 (6.9 ± 0.07) W264F 2494.13 100 ± 4.75 (10321.72 11327.04 1126.95 (5.1 ± 0.06) 76.56 ± 14.54 (5.78 ± 0.06) 57.37 ± 4.79 5241.11 (5.28 ± 0.06) 101.15 ± 7.15 (5.55 ± 0.11) 40.13 ± 7.28 (94.66 ± 0.01) R83H 2060.6 (5.9 ± 0.07) 100 ± 5.46 (4.5 ± 1.31) 448.15 (7.93 ± 0.33) 6.95 ± 12.95 5.19 (8.28 ± 0.11) 80.86 ± 10.14 (8.5 ± 0.15) 33.86 ± 8.09 (5.56 ± 0.08) 10.14 (8.79 \pm 0.4) (8.71 \pm 0.5) D103N ND ND ND ND ND ND ND ND ND ND <th>102.03 ± 7) 14.74</th> <th>315.45 (6.5 ± 0.07)</th> <th>69.54 ± 2.90</th> <th>, 194.78 (6.71 ± 0.04)</th> <th>) 111.31 ± 7.17</th> <th>208.98 (6.68 ± 0.06)</th> <th></th> <th></th> <th></th> <th></th> <th>86.82 ± 7.63</th> <th>982.78 (6.01 ± 0.05)</th> <th>98.36 ± 1.77</th> <th>328.08 (6.48 ± 0.04)</th> <th>100 ± 2.97</th> <th></th> <th>C178S</th>	102.03 ± 7) 14.74	315.45 (6.5 ± 0.07)	69.54 ± 2.90	, 194.78 (6.71 ± 0.04)) 111.31 ± 7.17	208.98 (6.68 ± 0.06)					86.82 ± 7.63	982.78 (6.01 ± 0.05)	98.36 ± 1.77	328.08 (6.48 ± 0.04)	100 ± 2.97		C178S
W264F 2494.13 100 ± 4.75 10321.72 11327.04 28.7 ± 10.91 126.95 76.56 ± 14.54 1650.09 57.37 ± 4.79 5241.11 101.15 ± 7.15 3534.69 40.13 ± 7.28 (5.03 ± 0.01) R83H 2060.6 31400.86 533.44 ± 11.69 6.95 ± 12.95 5.19 48.56 ± 10.14 3.18 33.86 ± 8.09 2723.37 102.49 ± 1.62 2.51 ± 6.63 (5.71 ± 0.7) D103N ND ND<	08) 86.32 ± 8.40	204.71 (6.69 ± 0.08)	65.82 ± 7.22	112.93 (6.95 ± 0.06)	146.47 ±	434.41 (6.36 ± 0.06)	98.55 ± 7.35	2.55 (8.59 ± 0.09)	111.12 ± 5.22	5.38 (8.27 ± 0.06)	98.9 ± 13.16	1090.26 (5.96 ± 0.05)	99.35 ± 4.80	516.05 (6.29 ± 0.06)	100 ± 2.48		C88/178S
R83H 2060.6 1400.86 533.44 11.69 6.95 ± 12.95 5.19 48.56 ± 10.14 3.18 33.86 ± 8.09 2723.37 102.49 ± 1.62 2.51 ± 6.63 1945.56 D103N ND																	
R83H 2060.6 1400.86 533.44 11.69 6.95 ± 12.95 5.19 48.56 ± 10.14 3.18 33.86 ± 8.09 2723.37 102.49 ± 1.62 2.51 ± 6.63 1945.56 D103N ND	16) ^{46.21 ± 12.0}	9426.69 (5.03 ± 0.16)	40.13 ± 7.28	3534.69 (5.45 ± 0.11)) 110.15 ± 7.15	5241.11 (5.28 ± 0.06)	57.37 ± 4.79	(5.78 ± 0.06)	76.56 ± 14.54	(6.9 ± 0.09)	28.7 ± 10.91	11327.04 (4.95 ± 0.97)	100.51 ± 1.29	10321.72 (4.99 ± 0.08)	100 ± 4.75		W264F
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17.15 ± 5.82	1945.56 (5.71 ± 0.18)	2.51 ±6.63	1.62	102.49 ±	2723.37		3.18 (8.5 ± 0.15)	48.56 ± 10.14	5.19 (8.28 ± 0.11)	6.95 ± 12.95	11.69 (7.93 ± 0.33)	533.44 ±	31400.86	100 ± 5.46		R83H
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ND		ND	ND	ND	ND	ND						ND	ND	ND	ND	D103N
V184P 321.16 100 ± 1.96 1490.18 105.2 ± 5.68 539.16 $70.26 \pm$ 3.3 79.83 ± 1.63 1.89 67.49 ± 4.18 143.18 12.04 ± 2.48 272.95 48.73 ± 0.14 167.89 T194A 63.62 100 ± 2.46 26.82 108.77 ± 4.66 235.21 $99.97 \pm$ 34.76 115.79 ± 9.22 7.32 ± 0.14 1030.06 $179.74 \pm$ 69.44 48.89 ± 20.44 540.32 (6.31 ± 0.03) 99.42 ± 0.19 139.3 76.97 ± 5.53 6.21 98.98 ± 2.27 8.33 ± 0.07 83.69 ± 1.69 1030.06 ± 1030.06 179.74 ± 10.48 69.44 48.89 ± 20.44 540.32 1290N 54.74 100 ± 2.5 491.72 139.3 76.97 ± 5.53 6.21 ± 0.06 98.98 ± 2.27 8.33 ± 0.07 83.69 ± 1.69 $14.3.18 \pm 0.07$ $10.9.97 \pm 3.83 \pm 0.014$ 101.59 ± 0.20 10.48 ± 0.14 $10.43 \pm 0.33 \pm 0.013$ 108.9 ± 2.044 $1030.06 \pm 179.74 \pm 0.04$ 108.48 ± 0.20 10.48 ± 0.20	98.45 ± 6.76	617.91 (6.21 ± 0.21)	49.2 ± 7.85				112.19 ± 12.31	247.82 (6.61 ± 0.80)	88.84 ± 19.77	504.39 (6.3 ± 1.55)	72.05 ± 7.70				100 ± 3.55		S107C
V164 (6.49 ± 0.04) 100 \pm 1.36 (5.83 ± 0.06) 103.2 \pm 3.06 (6.27 ± 0.05) 20.95 (8.48 ± 0.1) 79.35 ± 1.63 (8.72 ± 0.1) 67.49 ± 4.16 (6.84 ± 0.06) 112.04 ± 2.46 (6.56 ± 0.06) 46.73 ± 0.14 (6.77 ± 0.16) T194A (7.23 ± 0.13) 100 \pm 2.46 (26.82) (7.49 ± 0.14) 108.77 \pm 4.66 (235.21 $99.97 \pm$ 34.76 (7.62 ± 0.13) 115.79 ± 9.22 (7.32 ± 0.14) 28.24 (5.64 ± 0.12) 55.90 (7.33 ± 0.13) 48.89 ± 20.44 (6.31 ± 0.03) 99.42 ± 0.19 139.3 6.21 99.89 ± 2.27 4.63 $100 \pm 3.69 \pm 1.69$ 14.88 ± 0.08 99.97 ± 4.68 79.47 ± 0.14 79.44 ± 0.04 79.44 ± 0.04 79.47 ± 0.14																	
T194A 63.62 (7.23 ± 0.13) 100 ± 2.46 (7.34 ± 0.14) 26.82 (7.84 ± 0.14) 108.77 ± 4.66 (6.41 ± 0.14) 99.97 ± 34.76 (6.41 ± 0.14) 115.79 ± 9.22 (7.62 ± 0.13) 56.43 (7.32 ± 0.14) 110.06 ± 1030.06 (5.86 ± 0.12) 179.74 ± 69.44 (5.86 ± 0.12) 69.44 (7.33 ± 0.13) 48.89 ± 20.44 (6.34 ± 0.12) 56.43 (7.32 ± 0.14) 110.06 ± 1030.06 (5.86 ± 0.12) 179.74 ± 69.44 (5.86 ± 0.12) 69.44 (7.33 ± 0.13) 48.89 ± 20.44 (6.34 ± 0.12) 56.43 (5.86 ± 0.12) 100 ± 2.5 (5.86 ± 0.12) 99.47 ± 0.14 (8.85 ± 0.08) 99.97 ± 4.68 (7.02 ± 0.06) 99.47 ± 0.14 (7.02 ± 0.06) 43.63 ± 5.35 (6 ± 0.04) 100 ± 3.64 1962.68 (5.71 ± 0.07) 98.99 ± 3.20 888.62 (6.05 ± 0.08) 84.11 ± 8.72 0.69 (9.16 ± 0.18) 61.58 ± 3.99 30.31 (7.52 ± 0.11) 103.23 ± 7.35 43.71 (7.36 ± 0.17) 17.57 ± 2.61 274.98 (6.56 ± 0.01) 1290Y 6.43 ± 0.07 100 ± 3.64 1962.68 (5.71 ± 0.07) 88.94 ± 4.39 3.79 (8.42 ± 0.08) 84.11 ± 8.72 0.69 (9.16 ± 0.18) 30.31 (7.52 ± 0.11) 103.23 ± 7.35 43.71 (7.36 ± 0.17) 17.57 ± 2.61 274.98 (6.56 ± 0.01) 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100	07) 88.26 ± 8.11	167.89 (6.77 ± 0.07)	48.73 ± 0.14	272.95 (6.56 ± 0.06)) ^{112.04 ± 2.48}	143.18 (6.84 ± 0.06)	67.49 ± 4.18	1.89 (8.72 ± 0.1)	79.83 ± 1.63	3.3 (8.48 ± 0.1)	70.26 ± 20.95	539.16 (6.27 ± 0.05)	105.2 ± 5.68	1490.18 (5.83 ± 0.06)	100 ± 1.96	321.16 (6.49 ± 0.04)	V184P
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	119.91 ± 1) 53.22	540.32 (6.34 ± 0.11)	48.89 ± 20.44	69.44 (7.33 ± 0.13)	179.74 ± 55.90	1030.06	110.06 ± 28.24				99.97 ±	235.21 (6.41 ± 0.14)	108.77 ± 4.66	26.82 (7.84 ± 0.14)	100 + 2.46	63.62	T194A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1001.59 (6 ± 0.04)	43.63 ± 5.35	94.7 (7.02 ± 0.06)	99.97 ± 4.68	1.4 (8.85 ± 0.08)				0.04	76.97 ± 5.53	139.3 (6.86 ± 0.07)	99.42 ± 0.19	491.72 (6.31 ± 0.03)	100 ± 2.5	54.74	1290N
	51 07 + 4 43	274.98 (6.56 ± 0.08)	17.57 ± 2.61	43.71 (7.36 ± 0.17)	, 103.23 ± 7.35	30.31 (7.52 ± 0.11)	61.58 ± 3.99	0.69 (9.16 ± 0.18)	84.11 ± 8.72	3.79 (8.42 ± 0.08)	68.94 ± 4.39	888.62 (6.05 ± 0.08)	98.99 ± 3.20	1962.68 (5.71 ± 0.07)	100 + 3.64	371.9	1290Y
F195T 23.54 100 + 6.34 108.96 ± 213.01 65.51 + 6.79 2.90 106.38 + 1.33 20.93 101.40 + 5.29 121.61 114.34 + 1.09 620.51 77.17 + 0.48 77.08	-,			1.1.00 - 0.117	/	1		1 (2.10 = 0.10)				(1.00 - 0.00)				<u></u>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$)5) 81.88 ± 8.97	77.08 (7.11 ± 0.05)	77.17 ± 9.48	620.51 (6.21 ± 0.79)	114.34 ± 1.09	121.61 (6.92 ± 0.11)	101.40 ± 5.29	20.93 (7.68 ± 0.60)	106.38 ± 1.33	2.90 (8.54 ± 0.14)	65.51 ± 6.79	213.01 (6.67 ± 1.32)	108.96 ± 10.72	6.34 (8.20 ± 0.59)	100 ±	23.54 (7.63 ± 0.07)	F195T
	04 70 - 5 04									14.65 (7.83 ± 0.05)	68.29 ±	3515.94	123.62 ±	4846.81	100 ± 2.03	701.12	T271A
T271N 3/4.35 100 + 3.3 862.88 102 55 + 3.93 560.2 119.8 \pm 12.58 110.48 \pm 5 108.08 + 8.54 1408.35 133.69 \pm 118.86 87.44 + 33.75 4/8.81	121.93 ±	478.81 (6.32 ± 0.04)	87.44 ± 33.75	118.86	133.69 ±	1408.35	108.08 ± 8.54	(8.3 ± 0.07)	110.48 ±	12.58	119.8 ±	560.2	102 55 + 3 93	862.88	100 ± 3.3	374.35	T271N

Supplementary Table 2 I Cryo-EM data collection, refinement and validation statistics.


	Ro5256390/
	hTA1-Gs-Nb35 (EMD-42268)
	(PDB ID: 8UHB)
Data collection and processing	
Magnification	64,000
Voltage (kV)	300
Electron exposure (e–/Å ²)	53.88
Defocus range (µm)	-0.5 to -1.8
Pixel size (Å)	1.069
Symmetry imposed	C1
Initial particle images (no.)	6,413,421
Final particle images (no.)	626,730
Map resolution (Å)	3.35
FSC threshold	0.143
Map sharpening B-factor (Ų)	-160.3
Refinement	
Model composition	
Non-hydrogen atoms	8417
Protein residues	1075
Ligands	1
R.m.s. deviations	
Bond lengths (Å)	0.004
Bond angles (°)	0.619
Validation	
Clashscore	9.16
Poor rotamers (%)	0
Ramachandran plot	
Favored (%)	94.15
Allowed (%)	5.85
Disallowed (%)	0

Supplementary Table 3 | Activity of 10 μ M aminergic drugs at hTA1 as determined by cAMP accumulation in HEK293T cells. Experiment was performed in quadruplicate. Compounds that met the activation threshold of 2*log2 fold change (log2fc) over DMSO baseline are highlighted in green.

Compound	Log2fc of DMSO ± SD	Compound	Log2fc of DMSO ± SD
2-Bromo-LSD	0.204 ± 0.413	LuAE58085	-0.537 ± 0.285
5-Methoxytryptamine	0.523 ± 0.199	Lurasidone	0.764 ± 0.17
5-HT	1.794 ± 0.316	LY266097	0.745 ± 0.161
Alprenolol	0.287 ± 0.164	LY393558	-0.068 ± 0.169
Altanserin	0.684 ± 0.246	MDL109	0.532 ± 0.138
Amisulpride	0.706 ± 0.297	Mesulergine	0.848 ± 0.156
Amphetamine	4.026 ± 0.304	Methiothepin	0.061 ± 0.516
Aripiprazole	0.535 ± 0.101	Methylergonovine	3.724 ± 0.197
AS19	0.363 ± 0.116	NAD299	0.499 ± 0.12
Asenapine		NAN190	0.472 ± 0.045
βPEA		Nemonapride	0.693 ± 0.106
BRL54443	0.531 ± 0.155	NPS ALX Compound 4a	0.113 ± 0.157
Buspirone	0.318 ± 0.156	Olanzapine	0.461 ± 0.114
BW723C86	1.446 ± 0.158	Oxymetazoline	2.307 ± 0.106
Cabergoline	0.71 ± 0.188	Paliperidone	0.617 ± 0.048
Carvedilol	-0.068 ± 0.072	Paroxetine	0.691 ± 0.092
Chlorpromazine		Pergolide	2.403 ± 0.197
Clozapine	tore includer and torestand and	Pimethixene	-0.362 ± 0.331
CNO	0.716 ± 0.038	Pimozide	0.756 ± 0.097
	0.302 ± 0.282	Prazosin	-0.306 ± 0.266
Cyanopindolol	0.016 ± 0.047	Propanolol	0.404 ± 0.219
Cyproheptadine	-0.486 ± 0.177	Quinpirole	1.96 ± 0.167
Dihydroergotamine DMSO	-0.480 ± 0.177 0.025 ± 0.571	Quipazine	2.286 ± 0.178
		Raclopride	-0.389 ± 0.224
Donitriptan	1.034 ± 0.065	Rauwolscine	0.086 ± 0.118
DR 4485		Reserpine	0.436 ± 0.395
Efavirenz		Risperidone	0.531 ± 0.099
Epinephrine		Ritanserin	0.538 ± 0.204
Ergotamine		Ro600175	3.659 ± 0.062
Fananserin	0.199 ± 0.111	RS 39604	-0.323 ± 0.189
Fluoxetine		RS 127445	1.34 ± 0.122
Flupentixol	0.441 ± 0.111	SB204741	-0.001 ± 0.155
Fluphenazine	0.327 ± 0.238	SB269970	
GBR12909	-1.05 ± 0.147	SB399885	-0.563 ± 0.171
GMD281014		SCH 23390	0.589 ± 0.103
Haloperidol	0.713 ± 0.2	Sertindole	
Histamine		Spiperone	0.261 ± 0.144
Ipsapirone	-0.011 ± 0.211	Sumatriptan	0.746 ± 0.109
Ketanserin		Tetrabenazine	0.51 ± 0.217
LE300		Terguride	
Lisuride		WAY161503	NOT OF A REPORT OF A REPORT OF A REPORT
Lobeline		Yohimbine	
Lorcaserin	Development of the second	Ziprasidone	1
LP12		Zolmitriptan	
LSD	2.923 ± 0.238	Zotepine	0.272 ± 0.11

Supplementary Data

An uncropped gel of the gel provided in Supplementary Figure 1. Relevant lanes are indicated by a box, all other lanes correspond to material unrelated to this study.

Supplementary Primer Information

Oligonucleotides used to generate the mutants characterized in this publication.

TA1 I290Y F	GACGTGCTTTACTGGTTCGGCTAT
TA1 I290N F	GACGTGCTTAACTGGTTCGGCTAT
TA1 I290mut R	GTTCAGGGTGGGCGGTAT
TA1 F112W F	CGCTTCAATCTGGCACCT
TA1 F112W R	GGTGCCAGATTGAAGCGCTGC
TA1 C5S F	CTTTTTCTCATAATATC
TA1 C5S R	ATGAGAAAAAGGCATCATATC
TA1 C13S F	CAACATTTCCTCCGTG
TA1 C13S R	CAATTGTTTTTCACGGAGGAAATG
TA1 C88S F	CTCTGCCGAGCACTCTTGG
TA1 C88S R	CGAAATACCAAGAGTGC
TA1 C96S F	CGAAGTGTTCTCCAAAATTC
TA1 C96S R	GAATTTTGGAGAACAC

TA1 C178S FCATGTCCACTCTCGGTA1 C178S RCCACCCCGAGAGTGGTA1 C182S FCGGGGTGGATCCTCCGTA1 C182S RCTAAAAAACACGGAGGATCCACCTA1 D103N FGTCTACGAATATCATGCTCAGCTA1 D103N RCATGATATTCGTAGACGTGTGAATTTTGTA1 F195T FGTCCTGACGACCATGACTTCCTTA1 F195T RGTCCAGGTCGTCAGGACGCTA1 R83H FGGCCCACTCTGCCGAGCACTA1 V184P FATGCTCCCCGTTTTTAGTA1 V184P RAAAACGGGGAGCATCCTA1 T194A FTCCTGGCGTTCATGACTA1 W264F FCTGATATGTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCTA1 T271A FTTTGTGCTGTCATGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATCTA1 S107C RGCTGCAGAGCATGATATCC		
TA1 C182S FCGGGGTGGATCCTCCGTA1 C182S RCTAAAAAACACGGAGGATCCACCTA1 D103N FGTCTACGAATATCATGCTCAGCTA1 D103N RCATGATATTCGTAGACGTGTGAATTTTGTA1 F195T FGTCCTGACGACCATGACTTCCTTA1 F195T RGTCATGGTCGTCAGGACGCTA1 R83H FGGCCACTCTGCCGAGCACTA1 N184P FATGCTCCCCGTTTTTAGTA1 T194A FTCCTGGCGTCATGACTA1 W264F FCTGATATGTTTTGTCCTTCTCTA1 W264F RAGGACAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 C178S F	CATGTCCACTCTCGG
TA1 C182S RCTAAAAAACACGGAGGATCCACCTA1 D103N FGTCTACGAATATCATGCTCAGCTA1 D103N RCATGATATTCGTAGACGTGTGAATTTTGTA1 F195T FGTCCTGACGACCATGACTTCCTTA1 F195T RGTCATGGTCGTCAGGACGCTA1 R83H FGGCCACTCTGCCGAGCACTA1 R83H RGGCAGAGTGGACCATGCTGTAGTA1 V184P FATGCTCCCCGTTTTTAGTA1 V184P RAAAACGGGGGAGCATCCTA1 T194A FTCCTGGCGTTCATGACTA1 W264F FCTGATATGTTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 C178S R	CCACCCCGAGAGTGG
TA1 D103N FGTCTACGAATATCATGCTCAGCTA1 D103N RCATGATATTCGTAGACGTGTGAATTTTGTA1 F195T FGTCCTGACGACCATGACTTCCTTA1 F195T RGTCATGGTCGTCAGGACGCTA1 R83H FGGTCCACTCTGCCGAGCACTA1 R83H RGGCAGAGTGGACCATGCTGTAGTA1 V184P FATGCTCCCCGTTTTTAGTA1 V184P RAAAACGGGGAGCATCCTA1 T194A FTCCTGGCGTTCATGACTA1 W264F FCTGATATGTTTTGTCCTTTCTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 C182S F	CGGGGTGGATCCTCCG
TA1 D103N RCATGATATTCGTAGACGTGTGAATTTTGTA1 F195T FGTCCTGACGACCATGACTTCCTTA1 F195T RGTCATGGTCGTCAGGACGCTA1 R83H FGGCCACTCTGCCGAGCACTA1 R83H RGGCAGAGTGGACCATGCTGTAGTA1 V184P FATGCTCCCCGTTTTTAGTA1 V184P RAAAACGGGGAGCATCCTA1 T194A FTCCTGGCGTTCATGACTA1 W264F FCTGATATGTTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 C182S R	CTAAAAAACACGGAGGATCCACC
TA1 F195T FGTCCTGACGACCATGACTTCCTTA1 F195T RGTCATGGTCGTCAGGACGCTA1 F195T RGGTCCACTCTGCCGAGCACTA1 R83H FGGCAGAGTGGACCATGCTGTAGTA1 R83H RGGCAGAGTGGACCATGCTGTAGTA1 V184P FATGCTCCCCGTTTTTTAGTA1 V184P RAAAACGGGGAGCATCCTA1 T194A FTCCTGGCGTTCATGACTA1 T194A RAACGCCAGGACGCTA1 W264F FCTGATATGTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 D103N F	GTCTACGAATATCATGCTCAGC
TA1 F195T RGTCATGGTCGTCAGGACGCTA1 R83H FGGTCCACTCTGCCGAGCACTA1 R83H RGGCAGAGTGGACCATGCTGTAGTA1 V184P FATGCTCCCCGTTTTTTAGTA1 V184P RAAAACGGGGAGCATCCTA1 T194A FTCCTGGCGTTCATGACTA1 W264F FCTGATATGTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RTCTGCAGCGCTTCATGGACTA1 T271A RTCTGCAGCGCTTCAATC	TA1 D103N R	CATGATATTCGTAGACGTGTGAATTTTG
TA1 R83H FGGTCCACTCTGCCGAGCACTA1 R83H RGGCAGAGTGGACCATGCTGTAGTA1 R83H RGGCAGAGTGGACCATGCTGTAGTA1 V184P FATGCTCCCCGTTTTTTAGTA1 V184P RAAAACGGGGGAGCATCCTA1 T194A FTCCTGGCGTTCATGACTA1 T194A RAACGCCAGGACGCTA1 W264F FCTGATATGTTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271N RTGACATTACAAATGAAGAAAGGACTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 F195T F	GTCCTGACGACCATGACTTCCT
TA1 R83H RGGCAGAGTGGACCATGCTGTAGTA1 V184P FATGCTCCCCGTTTTTTAGTA1 V184P RAAAACGGGGAGCATCCTA1 T194A FTCCTGGCGTTCATGACTA1 T194A RAACGCCAGGACGCTA1 W264F FCTGATATGTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271A FTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RTCTGCAGCGCTTCAATC	TA1 F195T R	GTCATGGTCGTCAGGACGC
TA1 V184P FATGCTCCCCGTTTTTTAGTA1 V184P RAAAACGGGGAGCATCCTA1 T194A FTCCTGGCGTTCATGACTA1 T194A RAACGCCAGGACGCTA1 W264F FCTGATATGTTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271N RTGACATTACAAATGAAGAAAGGACTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 R83H F	GGTCCACTCTGCCGAGCAC
TA1 V184P RAAAACGGGGAGCATCCTA1 T194A FTCCTGGCGTTCATGACTA1 T194A RAACGCCAGGACGCTA1 W264F FCTGATATGTTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271N RTGACATTACAAATGAAGAAAGGACTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 R83H R	GGCAGAGTGGACCATGCTGTAG
TA1 T194A FTCCTGGCGTTCATGACTA1 T194A RAACGCCAGGACGCTA1 W264F FCTGATATGTTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271N RTGACATTACAAATGAAGAAAGGACTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 V184P F	ATGCTCCCCGTTTTTAG
TA1 T194A RAACGCCAGGACGCTA1 W264F FCTGATATGTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271N RTGACATTACAAATGAAGAAAGGACTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 V184P R	AAAACGGGGAGCATCC
TA1 W264F FCTGATATGTTTTGTCCTTTCTTCTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271N RTGACATTACAAATGAAGAAAGGACTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 T194A F	TCCTGGCGTTCATGAC
TA1 W264F RAGGACAAAAACATATCAGAAAGACTA1 W264F RCATTTGTAATGTCATGGACCCTA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271N RTGACATTACAAATGAAGAAAGGACTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 T194A R	AACGCCAGGACGC
TA1 T271N FCATTTGTAATGTCATGGACCCTA1 T271N RTGACATTACAAATGAAGAAAGGACTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 W264F F	CTGATATGTTTTTGTCCTTTCTTC
TA1 T271N RTGACATTACAAATGAAGAAAGGACTA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 W264F R	AGGACAAAAACATATCAGAAAGAC
TA1 T271A FTTTGTGCTGTCATGGACTA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 T271N F	CATTTGTAATGTCATGGACCC
TA1 T271A RACAGCACAAATGAAGAAAGTA1 S107C FTCTGCAGCGCTTCAATC	TA1 T271N R	TGACATTACAAATGAAGAAAGGAC
TA1 S107C F TCTGCAGCGCTTCAATC	TA1 T271A F	TTTGTGCTGTCATGGAC
	TA1 T271A R	ACAGCACAAATGAAGAAAG
TA1 S107C R GCTGCAGAGCATGATATCC	TA1 S107C F	TCTGCAGCGCTTCAATC
	TA1 S107C R	GCTGCAGAGCATGATATCC