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SUPPLEMENTARY INFORMATION 

Estimation of SEED’s design bias on the MASS2 dataset 

To investigate the existence of a possible design bias in SEED (i.e., an over-optimistic result 
driven by an architecture particularly suitable for MASS2 signals), we assessed the 
performance of SEED, DOSED, A7, and Spinky on MASS2-Test, on 4 subjects that were 
kept out of SEED’s development process (see Data partition in Methods). Instead of applying 
a cross-validation scheme where both validation and testing subsets alternated cyclically (the 
scheme used for performance comparison in Table 2), the testing subset was fixed to MASS2-
Test.  

The mean F1-score and mIoU in Supplementary Table 1, are similar to those in Table 2, as 
is the difference in performance between detectors, indicating negligible design bias. The 
standard deviations are different (and smaller) than those in Table 2, which is expected due 
to the testing set being fixed (and thus not exhibiting inter-subject variability). 

Supplementary Table 1: SS and KC detection performance on MASS2-Test. 

Dataset Detector F1-score (%) mIoU (%) 
Mean ± SD p-value Mean ± SD p-value 

MASS2-SS-E1 SEED 81.0 ± 0.5  85.1 ± 0.2  
DOSED 78.0 ± 0.5 <0.001 75.3 ± 1.3 <0.001 
A7 69.7 ± 0.4 <0.001 74.9 ± 0.2 <0.001 

MASS2-SS-E2 SEED 85.1 ± 0.5  78.0 ± 0.2  
DOSED 81.8 ± 0.7 <0.001 73.8 ± 0.5 <0.001 
A7 73.4 ± 0.1 <0.001 74.8 ± 0.1 <0.001 

MASS2-KC SEED 83.3 ± 0.4  90.5 ± 0.2  
DOSED 78.0 ± 0.9 <0.001 72.2 ± 1.3 <0.001 
Spinky 65.7 ± 0.2 <0.001 42.3 ± 0.1 <0.001 

mIoU: mean Intersection over Union; N.A.: not available. MASS2-Test is a subset of 4 subjects that were kept out of the entire development 
process of SEED (see Data Partition in Methods). Metrics of SEED (proposed detector), DOSED, A7 and Spinky were obtained using 
open-source implementations. P-values are defined against SEED’s performance. 

 
Correlation between experts and detectors for subject-level parameters of SSs and 
KCs 

Table 4 presents statistics for the relationship between expert-derived and detector-derived 
subject-level parameters. These relationships are represented with scatter plots in 
Supplementary Figure 1 for SS detection and in Supplementary Figure 2 for KC detection. It 
can be observed that a linear relationship is an accurate approximation of the relationship 
observed in the samples, especially for SEED. 
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Supplementary Figure 1: Correlation between experts and detectors for subject-level parameters of SSs. 
Each panel presents a scatter plot for the MODA dataset, comparing the real value (from expert annotations) 
against the predicted value from detections. The parameters considered were (a-c) mean duration, (d-f) density, 
(g-i) mean PP amplitude, and (j-l) mean SS frequency. 
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Supplementary Figure 2: Correlation between experts and detectors for subject-level parameters of KCs. 
Each panel presents a scatter plot for the MASS2-KC dataset, comparing the real value (from expert 
annotations) against the predicted value from detections. The parameters considered were (a-c) mean duration, 
(d-f) density, and (g-i) mean PP amplitude. 
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SS and KC detection performance per parameter range 

Figure 3 illustrates the effect of parameter ranges on SS and KC detection performance. The 
exact F1-scores, along with p-values for the comparison against SEED, are shown in 
Supplementary Table 2 for SS detection and in Supplementary Table 3 for KC detection. 

 

Supplementary Table 2: SS detection performance (F1-score) per parameter range. 

Parameter Range F1-score (%) 
SEED DOSED A7 

Mean ± SD Mean ± SD p-value Mean ± SD p-value 
SS duration (s) 
(MODA) 

<0.6 64.8 ± 2.6 66.3 ± 3.4 0.178 50.0 ± 3.4 <0.001 
0.6 – 0.9 85.6 ± 1.7 78.2 ± 2.7 <0.001 80.5 ± 1.7 <0.001 

>0.9 92.5 ± 1.0 83.9 ± 1.6 <0.001 87.8 ± 2.0 <0.001 
SS PP amplitude (μV) 
(MODA) 

<30 70.6 ± 2.6 63.6 ± 2.9 <0.001 58.6 ± 1.7 <0.001 
30 – 40 83.3 ± 1.5 79.8 ± 2.2 <0.001 74.6 ± 2.9 <0.001 

>40 89.4 ± 2.0 86.5 ± 2.5 0.002 84.0 ± 2.3 <0.001 
SS frequency (Hz) 
(MODA) 

<12.8 77.9 ± 2.6 72.6 ± 4.0 <0.001 67.0 ± 4.1 <0.001 
12.8 – 13.5 84.6 ± 1.6 81.7 ± 1.1 <0.001 78.7 ± 1.9 <0.001 

>13.5 83.0 ± 1.2 78.6 ± 1.5 <0.001 75.3 ± 2.6 <0.001 
Subject’s age 
(MODA) 

Younger 83.5 ± 1.5 79.8 ± 1.6 <0.001 75.5 ± 1.5 <0.001 
Older 78.5 ± 2.4 73.2 ± 2.8 <0.001 69.1 ± 3.8 <0.001 

SS: sleep spindle; epm: events per minute; PP: peak-to-peak. The performance is computed by restricting the collection of annotations and 
detections to have parameter values within a given range. P-values are defined against SEED’s performance. 

 

Supplementary Table 3: KC detection performance (F1-score) per parameter range. 

Parameter Range F1-score (%) 
SEED DOSED Spinky 

Mean ± SD Mean ± SD p-value Mean ± SD p-value 
KC duration (s) 
(MASS2-KC) 

<0.65 73.6 ± 1.8 69.1 ± 3.1 <0.001 70.0 ± 3.6 0.003 
0.65 – 0.8 87.4 ± 1.2 82.4 ± 1.8 <0.001 73.3 ± 1.7 <0.001 

>0.8 93.9 ± 1.2 84.7 ± 3.8 <0.001 56.0 ± 7.4 <0.001 
KC PP amplitude (μV) 
(MASS2-KC) 

<110 68.8 ± 3.0 57.6 ± 3.0 <0.001 37.0 ± 2.5 <0.001 
110 – 160 87.3 ± 1.2 82.8 ± 2.0 <0.001 63.9 ± 2.3 <0.001 

>160 95.4 ± 1.3 93.1 ± 2.5 0.006 87.9 ± 2.6 <0.001 

KC: K-complex; epm: events per minute; PP: peak-to-peak. The performance is computed by restricting the collection of annotations and 
detections to have parameter values within a given range. P-values are defined against SEED’s performance. 
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Transfer learning 

Supplementary Figure 3 illustrates the distribution shifts found in expert annotations when 
considering different labeled SS datasets. The SS annotations found in MASS2-SS-E1, 
unlike those in other datasets, tend to have a duration closer to the mean duration, with 
practically no annotations lasting less than 0.5s. On the other hand, these annotations tend to 
have a larger amplitude and almost no annotations exhibiting less than 20μV PP amplitude. 

 
Supplementary Figure 3: SS parameters distribution for expert annotations. To illustrate the difference in 
signal characteristics of expert annotations determined by different experts, each panel compares the 
distribution of event-level SS parameters between labeled datasets, where MODA was further divided into two 
subsets: MODA-Younger (100 subjects with mean age 24.1) and MODA-Older (80 subjects with a mean age 
62.0). (a) Distributions of the duration of each SS. (b) Distributions of the PP amplitude of each SS. In each 
distribution, we include the mean (indicated by a cross) and the interquartile range (indicated by a solid line). 

Figure 4 shows the SS detection performance drops that occur when using a trained detector 
on a dataset not used for training and without fine-tuning. The exact F1-scores and p-values 
for the comparisons against SEED are shown in Supplementary Table 4. 

Supplementary Table 4: Detector generalization to a dataset not used for training. 

Training 
dataset 

Evaluation 
dataset 

F1-score (%) 
SEED DOSED A7 

Mean ± SD Mean ± SD p-value Mean ± SD p-value 
MASS2-SS-E1 MASS2-SS-E1 80.8 ± 2.1 76.8 ± 2.9 <0.001 73.0 ± 3.4 <0.001 

MASS2-SS-E2 59.1 ± 6.3 58.5 ± 7.1 0.823 59.1 ± 6.3 0.974 
MODA 53.6 ± 4.3 48.9 ± 4.3 0.006 64.1 ± 1.8 <0.001 

MASS2-SS-E2 MASS2-SS-E1 57.5 ± 5.3 55.7 ± 7.3 0.461 50.3 ± 6.4 0.002 
MASS2-SS-E2 86.1 ± 2.0 82.5 ± 2.5 <0.001 74.9 ± 2.8 <0.001 

MODA 67.7 ± 2.5 68.3 ± 2.1 0.452 64.6 ± 2.5 0.002 
MODA MASS2-SS-E1 61.1 ± 6.0 63.6 ± 7.4 0.318 61.5 ± 5.2 0.821 

MASS2-SS-E2 73.2 ± 4.9 73.1 ± 4.4 0.961 71.2 ± 5.5 0.317 
MODA 81.8 ± 1.4 77.5 ± 1.7 <0.001 73.3 ± 1.9 <0.001 

The performance is computed by training the detector in the training dataset and evaluating the detector, without any fine-tuning, in the 
evaluation dataset. P-values are defined against SEED’s performance. 
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Figure 5 shows how SEED’s performance improves with fine-tuning and the effect of 
different types of pretraining (including no pretraining at all). The exact statistics of F1-score, 
Recall, Precision, and mIoU are shown in Supplementary Table 5. 

Supplementary Table 5: SS detection performance on MODA with fine-tuning after pretraining SEED 
on another dataset. 

Fraction of MODA 
(%) 

Pretraining dataset F1-score (%) Recall (%) Precision (%) mIoU (%) 

0 MASS2-SS-E1 53.6 ± 4.3 38.0 ± 4.5 92.1 ± 1.5 77.2 ± 1.0 
CAP-A7 75.0 ± 1.5 75.2 ± 1.9 74.8 ± 2.5 72.7 ± 0.8 

10 None 77.9 ± 1.5 80.0 ± 4.6 76.4 ± 4.1 78.1 ± 1.5 
MASS2-SS-E1 79.5 ± 2.4 78.8 ± 6.0 80.7 ± 3.6 82.1 ± 0.8 

CAP-A7 78.8 ± 1.5 79.0 ± 2.9 78.7 ± 2.7 79.6 ± 1.2 
20 None 78.9 ± 1.6 81.1 ± 5.2 77.4 ± 4.8 79.8 ± 0.9 

MASS2-SS-E1 79.6 ± 2.0 78.8 ± 6.7 81.3 ± 4.5 82.3 ± 0.8 
CAP-A7 80.4 ± 1.1 82.0 ± 2.3 79.0 ± 2.4 81.2 ± 0.6 

40 None 79.5 ± 2.6 83.9 ± 6.9 76.1 ± 4.3 81.5 ± 1.0 
MASS2-SS-E1 81.0 ± 1.9 83.1 ± 5.4 79.5 ± 3.3 82.9 ± 0.5 

CAP-A7 81.1 ± 1.3 82.8 ± 2.9 79.6 ± 3.4 82.1 ± 1.0 
70 None 81.0 ± 1.5 84.9 ± 2.9 77.6 ± 3.2 82.7 ± 0.5 

MASS2-SS-E1 81.9 ± 1.3 84.3 ± 2.8 79.7 ± 2.7 83.3 ± 0.5 
CAP-A7 81.7 ± 1.1 82.9 ± 2.3 80.6 ± 1.9 83.1 ± 0.6 

100 None 81.8 ± 1.4 83.1 ± 2.7 80.6 ± 2.5 83.4 ± 0.5 
MASS2-SS-E1 81.9 ± 1.3 82.7 ± 2.7 81.2 ± 2.1 83.6 ± 0.5 

CAP-A7 81.9 ± 1.2 82.6 ± 2.2 81.4 ± 2.4 83.5 ± 0.5 

SS: sleep spindle. The performance is obtained by pretraining SEED on the pretraining dataset and then fine-tuning on a fraction of the 
MODA dataset. A fraction of 0% represents no training, whereas 100% represents no restrictions in size. 
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Perturbation analysis of SEED 

Experiments were conducted to assess SEED’s sensitivity to perturbation in the EEG using 
input scaling, axis inversion, and band-stop filtering in SS and KC detection tasks. The 
changes in F1-score after each perturbation are shown in Supplementary Figure 4.  

 

Supplementary Figure 4: Perturbation analysis. Three types of perturbations were used. (a-b) Changing the 
amplitude of the EEG by multiplying the signal with a scale factor between 0.5 and 1. (c-d) Inverting the EEG 
by changing the sign of its values (amplitude inversion) or by reversing the temporal axis (time inversion). (e-
f) Band-stop filtering to remove a specific frequency band. Each data point represents the mean ± 2SD of the 
F1-score computed by micro-average. 

The scaling perturbation had a similar effect on both SS and KC detection. As expected, 
recall and precision changed in opposite directions in response to scaling; higher amplitude 
led to more detections implying that the amplitude of EEG signals is a relevant feature in 
deciding the existence of an event. The analyses revealed that signal amplitude was slightly 
more relevant for KC than for SS detection due to the higher sensitivity of the F1-score to 
the scaling factor. Furthermore, amplitude perturbation had little effect on mIoU, suggesting 
that event duration is not affected by global scaling. 
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Inversion perturbation had different effects on SS and KC detection. SS detection was mostly 
unaffected by inversions, which is consistent with the fact that SSs are mostly symmetrical 
both in amplitude and time. In contrast, both types of inversion caused large drops in KC 
detection performance, which is consistent with the fact that KCs are asymmetrical in both 
amplitude and time.  

The band-pass filtering perturbation also affected SS and KC detection differently. For SS 
detection, filtering out components below 2Hz had no significant effects on performance; 
between 4-8Hz, it substantially reduced precision; and between 10-16Hz, it reduced 
performance to zero. In accordance with the literature, these results suggest that SEED’s 
detections rely on activity in the sigma frequency band, which is complemented by 
information from the 4-8Hz band that is used to discard false positives.  

For KC detection, filtering out frequency components below 4Hz reduced performance to 
zero; between 4-8Hz, it substantially reduced precision; and above 8Hz, it had no effect on 
performance. In line with the literature, these results suggest that SEED’s detections rely on 
the activity below 4Hz, complemented by information extracted from the 4-8Hz band that is 
used to discard false positives. 
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General SS statistics in NSRR6 

SEED was used to generate a large collection of 4,388,910 SS detections from N2 stage EEG 
signals obtained from 11,244 subjects from the unlabeled NSRR6 dataset. This large 
collection allows robust statistics to be obtained for the most common parameters of SSs. 
The distributions of three event-level parameters (duration, peak-to-peak amplitude, and 
frequency) and one subject-level parameter (density of SSs during N2 stage) are shown in 
Supplementary Figure 5. Central and variation measurements of these distributions are 
shown in Supplementary Table 6. 

 

Supplementary Figure 5: Distribution of SS parameters on NSRR6 according to SEED’s detections. (a-
c) Event-level parameters: (a) duration, (b) PP amplitude, and (c) spindle frequency. (d) Subject-level density. 
The average of each distribution is indicated by a dotted vertical line. 

Supplementary Table 6: SS parameters statistics on NSRR6 according to SEED’s detections. 

Parameter Mean Central 50% interval Central 90% interval 

Duration (s) 0.82 0.56 – 0.96 0.44 – 1.48 

PP amplitude (μV) 37.3 27.7 – 43.8 20.6 – 62.9 

Frequency (Hz) 13.0 12.2 – 13.9 10.9 – 14.9 

Density (epm) 2.02 0.60 – 2.94 0.14 – 5.84 

SS: sleep spindle; PP: peak-to-peak; epm: events per minute. Duration, PP amplitude, and frequency are event-level parameters, whereas 
density is a subject-level parameter. The central 50% and 90% intervals correspond to the range determined by the percentiles 25 to 75 and 
5 to 95, respectively. 

The NSRR6 dataset has thousands of subjects, covering a large range of sex and age 
demographics. However, the coverage is not uniform. To interpret the previous statistics in 
the right context, Supplementary Figure 6 shows the age distribution for each sex. Older 
adults represent most of the dataset. The statistics shown in Supplementary Figure 5 and 
Supplementary Table 6 are largely influenced by this population. 
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Supplementary Figure 6: Subject’s demographics on NSRR6. (a) Age distribution of men. (b) Age 
distribution of women. Only subjects with at least 10 SEED’s detections of SSs are shown. 
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Prototypical SSs in NSRR6 according to SEED 

In Supplementary Figure 7, five SSs were assigned the highest detection probability by SEED 
(0.99 event probability). These detections can be interpreted as prototypes of “ideal” SSs, as 
learned by SEED during training. The prototypes have a clear spindle-like shape (i.e., a 
waxing and waning shape) that stands out from the background signal, an abrupt onset and 
offset, large amplitude, a duration of ~1s, and little activity outside the sigma band (11-16Hz) 
except for some slow waves (0-2Hz). Furthermore, EEG signals in the SSs’ immediate 
context are free from artifactual contamination in the 11-16Hz frequency range, and they 
occur in the context of other high-probability SSs. 

 

Supplementary Figure 7: Examples of 5 EEG segments with “ideal” SS detections on the NSRR6 dataset. 
The spindles at the center of each EEG segment were detected by SEED with a probability of 0.99. Other SS 
detections can be seen in other segments of the signals. All SS detections are indicated by horizontal blue lines, 
with their event probabilities annotated below. 
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Relationship between sigma power and SS density 

Relative sigma power (ratio between average power in the 11-16Hz and 4.5-30Hz ranges) is 
expected to correlate with SS density in sleep studies1. Analyses revealed that the relationship 
between NSRR6’s relative sigma power and SS density, derived from SEED’s SS detections, 
shows a pattern similar to the one observed in the relationship between relative sigma power 
and SS density derived from expert annotation for the MODA dataset. This can be interpreted 
as a ground truth for this relationship (Supplementary Figure 8). 

 

Supplementary Figure 8: Relationship between relative sigma power and SS density in SEED’s detections 
on NSSR’s stage N2 data. The relationship between SEED's SS detection density on NSRR6 (unlabeled for 
SSs) and relative sigma power (ratio between average power in the 11-16Hz and 4.5-30Hz ranges) is shown 
with blue boxplots. The relationship between SS density (expert labels) and relative sigma power on the MODA 
dataset is shown with green markers as ground truth, for comparison purposes. 
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Selected hyperparameter and design decisions 

Hyperparameters and architectural decisions of the neural network model were selected 
through experiments on the MASS2-Train subset of the data. In each experiment, 
performance was measured using the proposed AF1 metric with cross-validation (see 
Methods for details), and the options with the highest AF1 were kept.  

For the neural network architecture, we explored different options for both the local encoding 
stage and the contextualization stage to arrive at our selected design shown in Figure 2b. For 
the local encoding stage, we stacked convolutional layers, starting with blocks made of two 
layers followed by subsampling, and we tested several variations including dilated layers, 
blocks with residual connections, parallel branches concatenated at the end, and varying 
numbers of blocks and layers within a block. For the contextualization stage, we explored 
recurrent architectures (LSTM, GRU2, and their bidirectional versions), convolutional 
architectures (like temporal convolutional networks3 and encoding-decoding convolutional 
networks4), and self-attention architectures5. We found that convolutional alternatives 
reached a lower mIoU, and self-attention alternatives required pre-training to reach RNNs’ 
performance, without additional gains.  

For the selected components, the value of each hyperparameter was selected through 
experiments. Supplementary Table 7 details the selected value and evaluated options of each 
hyperparameter. The choice of 20s for the input signal is mainly based on the literature 
(previous detectors and the MASS2 pagination). To make an experimentally informed 
decision, we explored other window sizes, from 5s to 120s, and we found that performance 
saturated at 15-23s windows, so we kept 20s for simplicity.   
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Supplementary Table 7: Summary of hyperparameter values. 

Hyperparameter Selected Value Evaluated Options 

Extra EEG samples at borders (𝑇!) 520 
Determined by the signal that is removed 

at the borders after convolutions (0.6s) 
and BLSTM (2s) 

Input EEG signal length 20s 5s to 120s 

Initial convolutional filters (F) 64 16, 32, 64, 128 

Type of pooling layer Average pooling Average pooling or Max pooling 

Number of convolutional blocks 3 1 to 5 

Size of BLSTM layers (𝑁") 256 per direction 64, 128, 256, 512 per direction 

Size of last hidden layer (𝑁#) 128 32, 64, 128, 256 

Dropout rate after local encoding stage (𝜌") 0.2 0, 0.2, 0.5 

Dropout rate after BLSTM (𝜌#) 0.5 0, 0.2, 0.5 

Training batch size 32 16, 32, 64 

Initial learning rate 10$% 10$#, 10$&, 10$%, 10$', 10$( 

Learning rate decay factor 2 2 or 10 

Learning rate decay patience 5 epochs 5 or 10 epochs 
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