Supplementary Information for

Tensile straining of iridium sites in manganese oxides for protonexchange membrane water electrolysers

Hui Su,^{1,5,*} Chenyu Yang,^{2,5} Meihuan Liu,³ Xu Zhang,⁴ Wanlin Zhou,² Yuhao Zhang,² Kun Zheng,⁴ Shixun Lian,^{1,*} and Qinghua Liu^{2,*}

¹Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China ²National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China

³ State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, Hunan, China

⁴Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China

⁵ These authors contributed equally: Hui Su, Chenyu Yang.

*E-mail: suhui@hunnu.edu.cn; sxlian@hunnu.edu.cn; qhliu@ustc.edu.cn

Contents:

Supplementary Figs. 1-32;

Supplementary Tables 1-7;

Supplementary references 1-20.

Supplementary Fig. 1 SEM images of (a) and (b) MnO_2 , (c) and (d) Ir- MnO_2 , (e) and (f) TS-Ir/ MnO_2 .

Supplementary Fig. 2 (a) and (b) XRD patterns for TS-Ir/MnO₂, Ir-MnO₂ and MnO₂ electrocatalysts. (c) and (d) XRD patterns for MnO_2 , Ir-MnO₂ (2.5 wt%, 3.9 wt% and 5.1 wt%) and TS-Ir/MnO₂ electrocatalysts.

Supplementary Fig. 3 (a) TEM and (b) HRTEM images of MnO₂. (c) TEM and (b) HRTEM images of Ir-MnO₂.

Supplementary Fig. 4 (a) and (b) TEM images of TS-Ir/MnO₂.

Supplementary Fig. 5 STEM-EDS mapping images for TS-Ir/MnO₂.

Supplementary Fig. 6 STEM-EDS mapping images for Ir-MnO₂.

Supplementary Fig. 7 HAADF-TEM image for Ir-MnO₂ and inset red circles represent Ir sites.

Supplementary Fig. 8 Mn 2p XPS spectra for MnO_2 , Ir-MnO₂ and TS-Ir/MnO₂.

Supplementary Fig. 9 High-resolution spectra of O 1s for MnO_2 (a), Ir- MnO_2 (b) and TS-Ir/ MnO_2 (c).

Supplementary Fig. 10 (a) $k^2\chi(k)$ curves of Ir L₃-edge EXAFS oscillation functions for TS-Ir/MnO₂, Ir-MnO₂, IrO₂ and Ir foil. (b) $k^3\chi(k)$ curves of Mn *K*-edge EXAFS oscillation functions for TS-Ir/MnO₂, Ir-MnO₂, MnO₂ and Mn foil.

Supplementary Fig. 11 The fitting curves of k^2 -weighted Ir L₃-edge EXAFS spectra and corresponding k²-weighted FT of Ir L₃-edge EXAFS oscillation functions for (a, b) TS-Ir/MnO₂, (c, d) Ir-MnO₂ and (e, f) IrO₂.

Supplementary Fig. 12 (a) OER polarization curves of TS-Ir/MnO₂, Ir-MnO₂, IrO₂. (b) The corresponding overpotentials at current densities of 10, 100 and 200 mA cm⁻².

Supplementary Fig. 13 OER polarization curves of TS-Ir/MnO₂ with different metal loading of Ir.

Supplementary Fig. 14. (a) Linear sweep voltammetry (LSV) curves for Ir electrocatalysts thermal annealed at 150, 250 and 350 °C. TEM images of Ir-based electrocatalysts annealed at (b) 250 °C, (c) 150 °C and (d) 350 °C.

Supplementary Fig. 15. Linear sweep voltammetry (LSV) curves of TS-Ir/MnO₂ under 25, 50 and 80 $^{\circ}$ C in 0.1 M HClO₄.

Supplementary Fig. 16. Nyquist plots measured at 1.55 V (*vs.* RHE) of TS-Ir/MnO₂, Ir-MnO₂, MnO₂ and IrO₂.

Supplementary Fig. 17 Double-layer capacitance measurements. (a), (c) CVs were conducted in a non-Faradaic region of voltammogram at the following scan rate: 5, 10, 15, 20, 25 and 30 mV s⁻¹ for TS-Ir/MnO₂ and Ir-MnO₂, respectively. (b), (d) The difference in charging currents variation at an underpotential plotted against scan rate for estimation of double-layer capacitance (C_{dl}) for TS-Ir/MnO₂ and Ir-MnO₂, respectively.

Supplementary Fig. 18 Double-layer capacitance measurements. (a), (c) CVs were conducted in a non-Faradaic region of voltammogram at the following scan rate: 5, 10, 15, 20, 25 and 30 mV s⁻¹ for MnO₂ and IrO₂, respectively. (b), (d) The difference in charging currents variation at an underpotential plotted against scan rate for estimation of double-layer capacitance (C_{dl}) for MnO₂ and IrO₂, respectively.

Supplementary Fig. 19 OER polarization curves of TS-Ir/MnO₂ electrocatalyst before and after 3000 electrochemical test cycles.

Supplementary Fig. 20 Chronoamperometry measurement of TS-Ir/MnO₂.

Supplementary Fig. 21 (a) Dissolved content of metal Ir, (b) the calculated constant S-number under 200 mA cm⁻². (c) Chronoamperometry measurement and S-number for TS-Ir/MnO₂.

Supplementary Fig. 22 (a) TEM and (b) HAADF-TEM images for $TS-Ir/MnO_2$ after electrochemical measurements.

Supplementary Fig. 23 Ir 4f XPS spectra for TS-Ir/MnO₂ before and after electrochemical measurements.

Supplementary Fig. 24 (a) Ir L_3 -edge XANES spectra and (b) Fourier transforms (FTs) of the Ir L_3 -edge EXAFS oscillations of TS-Ir/MnO₂ before and after electrochemical measurements.

Supplementary Fig. 25 O 1s XPS spectra for TS-Ir/MnO₂ before and after electrochemical measurements.

Supplementary Fig. 26 In situ SRIR spectroscopy measurements of $Ir-MnO_2$ at various potentials.

Supplementary Fig. 27 $k^2\chi(k)$ curves of Ir L₃-edge EXAFS oscillation functions for TS-Ir/MnO₂ under different applied potentials.

Supplementary Fig. 28 (a) Mn K-edge XANES spectra and (b) Fourier transforms (FTs) of the Mn K-edge EXAFS oscillations of TS-Ir/MnO₂ under different applied potentials.

Supplementary Fig. 29 The FTIR image of TS-Ir/MnO₂@CC before and after isotopically labelled OER measurements.

Supplementary Fig. 30 In situ XAFS measurements for TS-Ir/MnO₂. The fitting curves of k^2 -weighted EXAFS spectra and the Re($k^2\chi(k)$) oscillation curves under ex situ conditions (a and b) and 1.15 V conditions (c and d).

Supplementary Fig. 31 In situ XAFS measurements for TS-Ir/MnO₂. The fitting curves of k^2 -weighted EXAFS spectra and the Re($k^2\chi(k)$) oscillation curves under 1.30 V conditions (a and b) and 1.43 V conditions (c and d).

Supplementary Fig. 32 (a) TEM image and (b) STEM-EDS mapping images for TS-Ir/MnO₂ after the PEM electrolyser device test.

Sample	Apparent bond length (Ir–O)	Apparent bond length (Mn–O)
TS-Ir/MnO ₂	1.54 Å	1.50 Å
Ir-MnO ₂	1.48 Å	1.47 Å
MnO ₂		1.47 Å
IrO ₂	1.60 Å	

Supplementary Table 1. The apparent bond length of Ir–O/Mn–O in all samples.

Supplementary Table 2 Structural parameters for TS-Ir/MnO₂, Ir-MnO₂ and IrO₂ electrocatalysts extracted from quantitative EXAFS curve-fitting using the ARTEMIS module of IFEFFIT.

Sample	Path	N	R (Å)	σ²(10 ⁻³ Ų)	$\Delta E_0(eV)$	R-factor
TS-Ir/MnO ₂	Ir-O	4.2±0.3	1.94±0.005	3.6±0.5	9.7±1.3	0.005
Ir-MnO ₂	Ir-O	4.1±0.2	1.89±0.01	5.1±1.1	9.8±2.1	0.005
IrO ₂	Ir-O	6	2.01±0.01	3.3±0.5	9.7±1.6	0.003

N, coordination number; R, bond length; σ^2 Debye-Waller factor; ΔE_0 inner potential shift.

Supplementary Table 3. Comparison of OER activity of TS-Ir/MnO₂ electrocatalyst with other recently reported catalysts in acid solution according to catalytic kinetic parameter (Tafel slope).¹⁻¹¹

Catalyst	Electrolyte	Support	Tafel slope (mV dec ⁻¹)	Ref.
TS-Ir/MnO ₂	0.1 M HCIO ₄	Carbon cloth	56.6	This work
Ir-MnO ₂	0.1 M HCIO ₄	Carbon cloth	101.2	This work
IrMnOF@Ir	0.1 M HCIO ₄	Carbon paper	58.3	[1]
Ir/δ-MnO ₂	$0.5 \text{ MH}_2 \text{SO}_4$	Carbon Paper	123	[2]
(Mn _{0.8} Ir _{0.2})O ₂ :10F	$0.5 \mathrm{MH}_2\mathrm{SO}_4$	Ti-foils	38	[3]
IrO _x /Zr ₂ ON ₂	0.5 M H ₂ SO ₄	RDE	48	[4]
GB-Ta _{0.1} Tm _{0.1} Ir _{0.8} O _{2-δ}	$0.5 \text{ MH}_2 \text{SO}_4$	RDE (Au)	64	[5]
IrO ₂ /GCN	$0.5 \mathrm{MH_2SO_4}$	RDE	57	[6]
12Ru/MnO ₂	0.1 M HCIO ₄	GCE	29.4	[7]
H/d-MnO _x /RuO ₂	$0.5 \text{ MH}_2\text{SO}_4$	GCE	43.8	[8]
$Li_{0.52}RuO_2$	$0.5 \text{ M H}_2 \text{SO}_4$	GCE	83.3	[9]
90-Co-MnO ₂	0.1 M HCIO ₄	GCE	158	[10]
IrO ₂ /a-MnO ₂	0.1 M HCIO ₄	GCE	74	[11]

Note: RDE, rotating disk electrode; GCE, glassy carbon electrode

	TS-Ir/MnO ₂	Ir-MnO ₂	MnO ₂	IrO ₂
C _{dl} (mF cm ⁻²)	23.62	9.43	9.16	22.45
ECSA	674.86	269.43	261.71	641.43
R _F	674.86	269.43	261.71	641.43

Supplementary Table 4. The calculated C_{dl} , ECSA and R_F for TS-Ir/MnO₂, Ir-MnO₂, MnO₂ and IrO₂.

Catalyst	Electrol yte	Support	η At 10 mA cm ⁻²	η At 250 mA cm ⁻²	Mass activity (A g _{metal} -1)	Ref.
	0.1 M	Carbon			1025 at 198 mV	This
TS-Ir/MnO ₂	HCIO ₄	cloth	198	356	7816 at 260 mV	work
	0.1 M	Carbon		502	54 at 198 mV	This
Ir-MnO ₂		cloth	275		2366 at 260 mV	work
	0.1 M	Au				[12]
Ir _{0.06} CO _{2.94} O ₄		electrode	292		2511 at 300 mV	
SS Pt-RuO ₂	0.5 M	CCE	228	282 (100 mA		[13]
HNSs	H ₂ SO ₄	GCE	220	cm ⁻²)		[13]
Ru -Pt Cu	0.1 M	RDE (GC)	280		779 at 250 m\/	[14]
			200		779 at 250 mV	[14]
IrO /SrIrO.	0.5 M	SrTiO.	270-290			[15]
	H ₂ SO ₄	31103	270-290			[10]
IrO /0r BalrO	0.5 M	GCE	230		168 at 230 mV	[16]
	H ₂ SO ₄					
Ru Ir O	0.5 M	Ti-plates	204	300 [*] (120 mA	1124 at 300 mV	[17]
	H ₂ SO ₄		201	cm ⁻²)		
$GB\text{-}Ta_{0.1}Tm_{0.1}$	0.5 M	RDF (Au)	198	260* (100 mA	3126 at 266 mV	[5]
Ir _{0.8} O _{2-δ}	H ₂ SO ₄		100	cm ⁻²)		[0]
$Mn_{0.73}Ru_{0.27}$	0.5 M	GCF	208		879 at 270 mV	[18]
O _{2-δ}	H ₂ SO ₄		200			[10]
12Ru/MnO ₂	0.1 M	GCE	161		1264 at 165 mV	[7]
	HCIO ₄				1201 at 100 mit	[.]
NaRuO ₂	0.1 M	Ti-plates	225		42 at 250 mV	[19]
	HCIO ₄					[]
Li-IrO _X	0.5 M	RDE	270		100 at 290 mV	[20]
	H_2SO_4					

Supplementary Table 5. Comparison of OER activity of TS-Ir/MnO₂ electrocatalyst with other recently reported catalysts in acid solution. $^{12-20}$

*Data are not specifically reported in the article, obtained from the LSV curves. Note: GCE, glassy carbon electrode; DRE, rotating disk electrode

Sample	Apparent bond length (Ir–O)
ex situ	1.54 Å
1.15 V	1.59 Å
1.30 V	1.59 Å
1.45 V	1.59 Å

Supplementary Table 6. The apparent bond length of Ir-O in TS-Ir/MnO₂ under different working conditions.

Supplementary Table 7. Structural parameters for TS-Ir/MnO₂ electrocatalyst under different potentials extracted from quantitative EXAFS curve-fitting using the ARTEMIS module of IFEFFIT.

Sample	Path	N	R (Å)	σ²(10 ⁻³ Ų)	∆E ₀ (eV)	R-factor
ex situ	lr-O	4.3±0.3	1.94±0.01	5.6±0.5	9.9±1.5	0.004
1.15V	lr-O	4.3±0.2	1.96±0.01	5.9±0.5		0.006
	Ir-O ₂	1.1±0.2	2.08±0.01	3.6±0.3	9.7	
1.30V r-	Ir-O ₁	4.2±0.2	1.96	5.5±0.8	9.7	0.003
	Ir-O ₂	1.3±0.2	2.08±0.01	3.2±0.2		
1.43V -	Ir-O ₁	3.3±0.2	1.96	5.2±1.2		
	Ir-O ₂	1.2±0.2	2.07±0.01	3.4±0.8	9.7	0.005

N, coordination number; R, bond length; σ^2 Debye-Waller factor; ΔE_0 inner potential shift

Reference

- 1 Xu, Z. *et al.* Light-driven orderly assembly of Ir-atomic chains to integrate a dynamic reaction pathway for acidic oxygen evolution. *Angew. Chem. Int. Ed.* **62**, e202301128 (2023).
- 2 Kakati, U. *et al.* Iridium incorporation into MnO₂ for an enhanced electrocatalytic oxygen evolution reaction. *ChemCatChem* **15**, e202201549 (2023).
- 3 Ghadge, S. D. *et al.* Experimental and theoretical validation of high efficiency and robust electrocatalytic response of one-dimensional (1D)(Mn, Ir) O₂: 10F nanorods for the oxygen evolution reaction in PEM-based water electrolysis. *ACS Cata.* **9**, 2134-2157 (2019).
- 4 Lee, C. *et al.* Catalyst-support interactions in Zr_2ON_2 -Supported IrO_x electrocatalysts to break the trade-off relationship between the activity and stability in the acidic oxygen evolution reaction. *Adv. Fun. Mater.* **33**, 2301557 (2023).
- 5 Hao, S. *et al.* Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. *Nat. Nanotechno.* **16**, 1371-1377 (2021).
- 6 Chen, J. *et al.* Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. *Angew. Chem. Int. Ed.* **58**, 12540-12544 (2019).
- 7 Lin, C. *et al.* In-situ reconstructed Ru atom array on α -MnO₂ with enhanced performance for acidic water oxidation. *Nat. Catal.* **4**, 1012-1023 (2021).
- 8 Wu, Z. *et al.* Hexagonal defect-rich MnOx/RuO₂ with abundant heterointerface to modulate electronic structure for acidic oxygen evolution reaction. *Adv. Fun. Mater.* 2307010.
- 9 Qin, Y. *et al.* RuO₂ electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. *Nat. Commun.* **13**, 3784 (2022).
- 10 Zhang, X., Feng, C., Dong, B., Liu, C. & Chai, Y. High-voltage-enabled stable cobalt species deposition on MnO₂ for water oxidation in acid. *Adv. Mater.* e2207066 (2023).
- 11 Wang, Z. *et al.* Influence of the MnO₂ phase on oxygen evolution reaction performance for low-loading iridium electrocatalysts. *ChemElectroChem* **8**, 418-424 (2021).
- Shan, J. *et al.* Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. *J. Am. Chem. Soc.* 143, 5201-5211 (2021).
- 13 Wang, J. *et al.* Single-site Pt-doped RuO₂ hollow nanospheres with interstitial C for high-performance acidic overall water splitting. *Sci. Adv.* **8**, eabl9271 (2022).
- 14 Yao, Y. *et al.* Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. *Nat. Catal.* **2**, 304-313 (2019).
- 15 Seitz, L. C. *et al.* A highly active and stable IrOx/SrIrO₃ catalyst for the oxygen evolution reaction. *Science* **353**, 1011-1014 (2016).
- Li, N. *et al.* Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity. *J. Am. Chem. Soc.* 143, 18001-18009 (2021).
- 17 He, J., Zhou, X., Xu, P. & Sun, J. Regulating electron redistribution of intermetallic iridium oxide by incorporating Ru for efficient acidic water oxidation. *Adv. Energy*

Mater. 11, 2102883 (2021).

- 18 Wang, K. *et al.* Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. *Energy Environ. Sci.* 15, 2356-2365 (2022).
- 19 Laha, S. *et al.* Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. *Adv. Energy Mater.* **9**, 1803795 (2019).
- 20 Gao, J. *et al.* Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. *J. Am. Chem. Soc.* **141**, 3014-3023 (2019).