### Supplementary Data

Integrative genotyping of cancer and immune phenotypes by long-read sequencing.

### Inventory:

- Supplementary Figures 1-14
- Supplementary Tables 1-10
- Supplementary References



### Supplementary Figures

#### Supplementary Figure 1. Benchmarking of nanoranger.

**a** Distribution of number of extracted transcripts (defined by a truseq motif and template-switch oligo (TSO) sequence at a distance of 26 nucleotides) per sequenced read for 13 long-read sequenced amplicon libraries.

**b** Percentage of sequenced reads containing a single or multiple extracted transcripts.

c Number of extracted transcripts compared to number of sequenced reads.

d Length of reads (original) and extracted transcripts (processed) for analysis of somatic mutations.

**e**, **f** Synthetically concatenated data sequenced on PacBio were processed with *nanoranger* and compared to results of the PacBio processing pipeline. Number of segments extracted from each read with *nanoranger* and skera.

**g**, **h** Number of identified molecules per gene (g) and per cell (h) with *nanoranger* and the PacBio analysis pipeline.

**i**, **j** Number of cell barcodes associated with genes and number of genes detected per cell barcode with *nanoranger* and the PacBio analysis pipeline.



## Supplementary Figure 2. Analysis of cell types and gene expression profiles using deconcatenated PacBio data.

**a**, **b** UMAP projection of cell types identified based on count matrices generated with *nanoranger* or the PacBio analysis pipeline using PacBio data (a). The feature plots demonstrate genes with higher detection rate using *nanoranger* processing (b).



## Supplementary Figure 3. Comparison of sequencing error with Illumina and V14 Oxford Nanopore Technology (ONT) chemistry based on T cell receptor (TCR) sequencing data.

**a** Gating strategy of tumor-infiltrating lymphocytes (TILs) used for single cell TCR sequencing. The TCR data of TILs were obtained by resequencing an amplicon library using the Oxford Nanopore platform that had previously been reported (Oliveira et al., Nature 2021).<sup>1</sup>

**b** TCR reads were aligned against their respective consensus sequence, enabling to determine mismatch and indel rates of each read.

c Per-base mismatch rate (left) and indel rate (right) of each read with Illumina and ONT sequencing.

d Distribution of mismatches and indels per read for Illumina (grey) and ONT (orange).

e Statistics of mismatch and indel rates with Illumina and ONT.

**f** Rate of indels with Illumina (grey) and ONT (orange) increases with higher lengths of guanine homopolymers in TCR reads.

Statistical testing with two-sided Student's t-test.



Supplementary Figure 4. Detection of somatic mutations and fusions in Kasumi-1 and K562.
a, b Knee plots for mixing experiment of Kasumi-1 and K562 cells. Read count for each cell barcode is shown for all cells ranked by their read count for Kasumi-1 (red) and K562 (yellow). Detection of *TP53*<sup>R248G</sup> (top) or *TP53*<sup>Q136fs</sup> (bottom) is shown in purple, while wildtype cells are shown in cyan.
c Percentage of genotyped cells for *TP53*<sup>Q136fs</sup> for K562 (yellow) and Kasumi-1 (red).
d Coverage of 5' 10x cDNA after removal of template-switch oligo (TSO) artifacts.
e Amplification rate versus read length for reads mapping to *BCR::ABL1* in K562.



#### Supplementary Figure 5. Coverage of 3' 10x Genomics single cell cDNA libraries.

**a** Coverage of 10x 3' cDNA Oxford Nanopore sequencing reads in pseudobulk analysis following processing with *nanoranger* without streptavidin purification (left), after streptavidin purification (middle) and after streptavidin purification and extraction of reads containing a cell barcode (right).



## Supplementary Figure 6. Comparison of sequencing coverage with *nanoranger* and GoT ONT reveals that GoT improves capture of lowly abundant transcripts.

**a-c** Comparison of sequencing depth per cell barcode (high-quality cell barcode – red, low-quality cell barcode – grey) between *nanoranger* and genotyping of transcriptomes (GoT) sequencing using Oxford Nanopore (ONT) (left). Knee plots and violin plots showing sequencing depth of high-quality cell barcodes detectable with nanoranger and GoT (yellow) or only with GoT ONT (blue) (middle and right). To enable direct comparison of captured cell barcodes, the cDNA for the GoT condition was used as input for nanoranger.

**d** Number of cells genotyped with each experimental condition. RT – reverse transcription.



#### Supplementary Figure 7. Detection of leukemic clones in erythroid and megakaryocytic cells.

**a** Genotyping rate of different recurrently mutated genes in AML/MDS. Shown are the number of cell barcodes that are associated with high-quality cells.

**b** Integrated analysis of somatic mutations ( $IDH2^{R140Q}$ ,  $TP53^{R179H}$ ,  $TP53^{P278S}$ ,  $TET2^{I1873T}$ ,  $U2AF1^{S34Y}$ ), detection of del(7q) and gene expression across hematopoietic cell types in AML1002.

**c** Detection of somatic mutations (*DNMT3A<sup>R882H</sup>*, *RUNX1<sup>I117S</sup>*, *SF3B1<sup>K700E</sup>*), *del(20q)* and RNA expression across hematopoietic cell types in AML1022.

**d** Detection of somatic mutations ( $ASXL1^{Q748^*}$ ,  $RUNX1^{R320^*}$ ), chromosomal aberrations (amp(8) and amp(21p)) and RNA expression across hematopoietic cell types in AML1019. The scatter plot (right) demonstrates mutual exclusivity of two AML subclones defined by amp(8p) and amp(21p), consistent with detection of  $RUNX1^{R320^*}$  and wildtype  $RUNX1^{wt}$ .



Supplementary Figure 8. Limits of targeted genotyping.

**a** Distribution of cell numbers across apparent variant allele frequencies per cell for *DNMT3A*<sup>R882H</sup>, *RUNX1*<sup>1177S</sup> and *SF3B1*<sup>K700E</sup> mutation (left) and distribution of UMIs detected per cell barcode (right) in AML1022.

**b** Read coverage of *DNMT3A*, *RUNX1* and *SF3B1* transcripts achieved with *nanoranger* versus whole-transcriptome Illumina sequencing.

**c** Mapping of *DNMT3A*<sup>R882H</sup>, *RUNX1*<sup>I177S</sup> and *SF3B1*<sup>K700E</sup> mutations to hematopoietic cell types in bone marrow of AML1022.

**d** Comparison of pseudobulk donor chimerism and variant allele frequency for *DNMT3A*<sup>R882H</sup>, *RUNX1*<sup>1177S</sup> and *SF3B1*<sup>K700E</sup> mutations across detected cell types in AML1022 bone marrow. The size of bubbles indicates the number of cells per cell type.



Supplementary Figure 9. Longitudinal tracking of somatic mutations in AML.

**a** Detection of recurrent somatic mutations at screening (left) and at time of response (right) in 5 study participants of ETCTN/CTEP 10026. The UMAP projection shows cells with wildtype (black) and mutated alleles (red).

**b**, **c** Percentage of cells (b) and percentage of cells with amp(1p), del(3p) or del(5q) throughout treatment (c) across HSC, LMPP, GMP, megakaryopoietic and erythroid compartment in AML8007.



#### Supplementary Figure 10. Expression clusters in AML.

**a-d** Overview of UMAP projection of bone marrow-derived AML single cell RNA sequencing (scRNA-seq) profiles. Application of van Galen<sup>2</sup> (b) and erythroid/megakaryocytic signature (c) to AML bone marrow scRNA-seq profiles and to 646 bulk RNA-seq profiles obtained from the Beat AML dataset (d).<sup>3</sup> **e** Re-analysis of data from *van Galen* et al. Cell types were identified using reference-based annotation and projected onto reference UMAP (Methods). Percentage of cells with detectable somatic mutation (top) and number of cells that could be genotyped per cell type (bottom).



#### Supplementary Figure 11. Tracking of somatic and mitochondrial DNA mutations.

**a** Native coverage of mitochondrial transcripts in 5' scRNA-seq cDNA after removal of template-switch oligo artifacts as sequenced by long-read sequencing. Mitochondrial genes are annotated. Primers used for amplification of mitochondrial genes are indicated by red vertical lines.

**b** Targeted amplification of mitochondrial transcripts increases their coverage compared to standard whole-transcriptome 5' scRNA-seq libraries.

**c** Comparison of mitochondrial transcript coverage with targeted amplification using Oxford Nanopore sequencing (ONT) (yellow) and from native whole-transcriptome 5' scRNA-seq library (grey) from the same sample.

**d** Mitochondrial transcripts are more abundant in metabolically active cells such as most AML populations (progenitors) compared to T/NK cells (effector cells) and therefore are preferentially amplified.

**e** Coverage of mitochondrial transcripts after targeted amplification and Oxford Nanopore sequencing with *nanoranger* (ONT) correlates with coverage from standard whole-transcriptome 5' scRNA-seq data (Illumina). Progenitor cells with higher metabolic activity have higher mitochondrial DNA coverage than effector cells.

**f** Mitochondrial DNA mutations with bulk variant allele frequency >0.5% show high agreement between scRNA-seq and mtscATAC-seq libraries. As mtscATAC-seq is DNA-based, it also detected non-expressed mtDNA mutations that are part of the hypervariable region but undetectable using scRNA-seq, as indicated in the lower box.

**g** Concordance of donor and recipient annotation with mtDNA variants and *souporcell*<sup>4</sup>. The relevant fields are highlighted. Due to insufficient coverage of cells with little mtDNA abundance, mtDNA variants are unable to assign some cells that *souporcell* can annotate.



#### Supplementary Figure 12. Genotyping of de-novo AML and B ALL cells.

**a** UMAP projection demonstrating detection of somatic mutations and copy number changes in de-novo AML 2 and 3.

**b** Percentage of mutated cells across myeloid, megakaryocytic and erythroid lineage in de-novo AML 1-3 assessed with somatic mutations (left) or copy number changes (right).

**c** Differential gene expression analysis of *BCR::ABL1<sup>-</sup>* B cells and *BCR::ABL1<sup>+</sup>* ALL (acute lymphoblastic leukemia) cells.

**d** Expression of *MS4A1* (encoding CD20) and *DNTT* (Terminal deoxynucleotidyl transferase) in ALL bone marrow.

**e** Detection of CNV changes in re-analyzed data of B ALL single cell profiles by Wittkowski et al., Cancer Cell 2020<sup>5</sup> and Caron et al., Scientific Reports 2020<sup>6</sup>.

ETV, ETV6/RUNX1 – ALL with *ETV6/RUNX1*, PH – ALL with Philadelphia chromosome (*BCR::ABL1*<sup>+</sup>), HHD – ALL with high hyper diploid karyotype



Supplementary Figure 13. Genotyping of CAR T cells with *nanoranger*.

**a** Coverage plot of Oxford Nanopore reads mapping to CAR sequence amplified with CD247-specific primer from cDNA of CAR T cell infusion product.

**b** Knee plot of cell barcodes with CAR T cell reads obtained from unamplified cDNA (Illumina) (yellow) and amplicons using a *CD28*- (light red) or *CD247*-specific primer (dark red).

c Number of cell barcodes detected from data shown in (b).

**d**, **e** Number of cells with detected CAR T cell transcript as a function of the number of analyzed reads (d) and amplification rate of reads as a function of their length (e). Shorter reads have higher amplification rate. **f** Length distribution of transcripts containing the CD28 germline SNP (blue) versus the CD28 SNP encoded by the CAR expression vector (red).

**g** High correlation of identified CAR transcripts and transcripts containing the CAR-specific CD28 SNP per cell.

**h** Expression of CAR transcripts in CD4<sup>+</sup> and CD8<sup>+</sup> T cells from CAR T cell infusion products or circulating CAR T cells at day 7 after infusion shown for all cells (left) or as mean expression across samples (right).

i UMAP projection of single cell RNA sequencing profiles of CAR infusion products (n=4) and circulating immune cells at day 7 after CAR T cell infusion (n=4) annotated using reference map.



#### Supplementary Figure 14. Isoform detection in immune cells.

**a** UMAP projection of AML1002 single cell RNA sequencing profiles with detection of U2AF1 variants a, b and c using *nanoranger* (left). Heatmap demonstrating expression of U2AF1 variants a, b and c across cell types (right).

**b** Expression of CD45RA (CITE-seq, right) and *PTPRC* exon 4 (encoding CD45RA, left) in AML1007. **c** Expression of *PTPRC* exon 4 (encoding CD45RA) in AML3005 before (UMAP left) and after infusion of ipilimumab (UMAP right). Percentage of cells with detectable exon 4 shown for T cell subpopulations in bar plot.

**d** Detection of soluble (black) and membranous (green) *IL7R* based on differential expression of exon 6 across different targeted Oxford Nanopore-sequenced single cell RNA sequencing libraries (left). Projection of both isoforms on UMAP of each library (right).

## **Supplementary Tables**

| Name        | Sequence                           | Comment                                          |
|-------------|------------------------------------|--------------------------------------------------|
| AAO272      | CTACACGACGCTCTTCCGAT*C*T           | standard venus                                   |
| bio-AAO273  | 5Biosg/UAUAAGCAGTGGTATCAACGCAG*A*G | biotinylated mars PCR 1                          |
| rhCGA_venus | cgaCTACACGACGCTCTTCrCGATCc/3SpC3/  | optimized venus primer for rhPCR PCR 2           |
| CGAvenus.PS | CGACTACACGACGCTCT*T*C              | optimized venus primer for nested PCR 3          |
| mars.PS     | AAGCAGTGGTATCAACGCAG*A*G           | mars primer for whole cDNA library amplification |
|             |                                    |                                                  |
| biotin      | /5Biosg/                           |                                                  |
| spacer      | /3SpC3/                            |                                                  |
| mars        | AAGCAGTGGTATCAACGCAGAG             |                                                  |

Supplementary Table 1. Generic primers used for targeted amplification.

| Name                  | Sequence                                       | Comment               |
|-----------------------|------------------------------------------------|-----------------------|
| Bio_rh_BCRABL.1       | /5Biosg/CACTGGGTCCAGCGAGAArGGTTTC/3SpC3/       | BCR::ABL1 PCR2        |
| mars_nested_BCRABL.3  | AAGCAGTGGTATCAACGCAGAGAGAAGGTTTTCCTTGGAGTTCCAA | BCR::ABL1 PCR3        |
|                       |                                                |                       |
| Bio_rh_RUNX1T1.1      | /5Biosg/GAATGGCTCGTGCCATTAGTTAArCGTTGA/3SpC3/  | RUNX1::RUNX1T1 PCR2   |
| mars_nested_RUNX1T1.2 | AAGCAGTGGTATCAACGCAGAGTCAGCCTAGATTGCGTCTTCA    | RUNX1::RUNX1T1 PCR3   |
|                       |                                                |                       |
| Alternative primers   |                                                |                       |
| mars_nested_BCRABL.1  | AAGCAGTGGTATCAACGCAGAGCTCAGACCCTGAGGCTCAA      | used for testing only |
| mars_nested_BCRABL.2  | AAGCAGTGGTATCAACGCAGAGAGCGAGAAGGTTTTCCTTGGA    | used for testing only |
| mars_nested_BCRABL.4  | AAGCAGTGGTATCAACGCAGAGGGAGCGGCTTCACTCAGAC      | used for testing only |
| mars_nested_BCRABL.5  | AAGCAGTGGTATCAACGCAGAGAGGCTCAAAGTCAGATGCTACT   | used for testing only |
| mars_nested_BCRABL.6  | AAGCAGTGGTATCAACGCAGAGATGCTACTGGCCGCTGAA       | used for testing only |
| mars_nested_RUNX1T1.1 | AAGCAGTGGTATCAACGCAGAGTGGCATTGTTGGAGGAGTCA     | used for testing only |
| mars_nested_RUNX1T1.3 | AAGCAGTGGTATCAACGCAGAGCCACAGGTGAGTCTGGCAT      | used for testing only |
| mars_nested_RUNX1T1.4 | AAGCAGTGGTATCAACGCAGAGGCATTGTGGAGTGCTTCTCAGTA  | used for testing only |

Supplementary Table 2. Primers used for targeted amplification of fusion genes.

| Name                | Sequence                                        | Comment               |
|---------------------|-------------------------------------------------|-----------------------|
| Bio_rh_CD28.1       | /5Biosg/CAGGAGCCTGCTCCTCTTArCTCCTA/3SpC3/       | CD28 primer PCR 2     |
| mars_nested_CD28.1  | AAGCAGTGGTATCAACGCAGAGTCCTCTTACTCCTCACCCAGAA    | CD28 primer PCR 3     |
|                     |                                                 |                       |
| Bio_rh_CD247.1      | /5Biosg/TCATTGTACAGGCCTTCCTGArGGGTTA/3SpC3/     | CD247 primer PCR 2    |
| mars_nested_CD247.1 | AAGCAGTGGTATCAACGCAGAGGGCCACGTCTCTTGTCCAA       | CD247 primer PCR 3    |
|                     |                                                 |                       |
| Alternative primers |                                                 |                       |
| mars_nested_CD28.2  | AAGCAGTGGTATCAACGCAGAGGGCCACTGTTACTAGCAAGCTATA  | used for testing only |
| mars_nested_CD28.3  | AAGCAGTGGTATCAACGCAGAGAGCACCCAAAAGGGCTTAGAA     | used for testing only |
| mars_nested_CD28.4  | AAGCAGTGGTATCAACGCAGAGAGGTGTTTCCCCTTTCACATGGATA | used for testing only |
| mars_nested_CD247.2 | AAGCAGTGGTATCAACGCAGAGTCGTACTCCTCTCTCGTCCTA     | used for testing only |
| mars_nested_CD247.3 | AAGCAGTGGTATCAACGCAGAGTTGAGCTCGTTATAGAGCTGGTT   | used for testing only |
| mars_nested_CD247.4 | AAGCAGTGGTATCAACGCAGAGCGCTCCTGCTGAACTTCA        | used for testing only |

Supplementary Table 3. Primers used for targeted amplification of CAR transcripts.

| Name                   | Sequence                                                   | Comment  |
|------------------------|------------------------------------------------------------|----------|
| Bio_rh_ASXL1.1         | /5Biosg/CAAGCTACCCTGCAGCAArCTGCAC/3SpC3/                   |          |
| mars_nested_ASXL1.1    | AAGCAGTGGTATCAACGCAGAGCTGGCCAGCAGTAGGGAA                   |          |
| Bio_rh_ASXL1.2         | /5Biosg/CAGTTCTAACATCCGGATGCAArCTGAGA/3SpC3/               |          |
| mars_nested_ASXL1.2    | AAGCAGTGGTATCAACGCAGAGGTCCCCAGTGGGAGCAA                    |          |
| Bio_rh_DNMT3A.2        | /5Biosg/GTCCCTTACACACACGCAArAATACC/3SpC3/                  |          |
| mars_nested_DNMT3A.1   | AAGCAGTGGTATCAACGCAGAGATGACTGGCACGCTCCAT                   |          |
| Bio_rh_DNMT3A.3        | /5Biosg/CCTCAGGTTCCACCCACrATGTCA/3SpC3/                    |          |
| mars_nested_DNMT3A.2   | AAGCAGTGGTATCAACGCAGAGGGGCCAGAAGGCTGGAA                    |          |
| Bio_rh_FLT3-ITD.1      | /5Biosg/GACATGAGTGCCTCTCTTTCArGAGCTa/3SpC3/                |          |
| Bio_rh_FLT3-ITD.2      | /5Biosg/CCAAAAGCACCTGATCCTAGTACrCTTCCa/3SpC3/              |          |
| mars_nested_FLT3-ITD.1 | AAGCAGTGGTATCAACGCAGAGCTTTCAGCATTTTGACGGCAACC              |          |
| mars_nested_FLT3-ITD.2 | AAGCAGTGGTATCAACGCAGAGGCACCTGATCCTAGTACCTTCC               |          |
| Bio_rh_FLT3-TKD.1      | /5Biosg/GGCCATCCATTTTACAGGCArGACGGt/3SpC3/                 |          |
| mars_nested_FLT3-TKD.1 | AAGCAGTGGTATCAACGCAGAGCCCCTGACAACATAGTTGGAATCA             |          |
| Bio rh IDH2.1          | /5Biosg/TCTCCAGCATCTGGGCAArACCTGC/3SpC3/                   |          |
| mars nested IDH2.1     | AAGCAGTGGTATCAACGCAGAGCCTGAGCCACCATGTCATCAA                |          |
| Bio rh NPM1.1          | /5Biosg/CGGTAGGGAAAGTTCTCACTCTGCrTAATAc/3SpC3/             |          |
| mars nested NPM1.1     | AAGCAGTGGTATCAACGCAGAGGGACAGCCAGATATCAACTGTTACAG           |          |
| Bio rh NRAS 1          | /5Biosg/GGTGTGTTTGTGCTGTGGAArGAACCA/3SpC3/                 |          |
| mars nested NRAS.1     | AAGCAGTGGTATCAACGCAGAGGTTACATCACCACACATGGCAA               |          |
| Bio rh RUNX1.1         | /5Biosg/CGCCCACCATGGAGAArCTGGTC/3SpC3/                     |          |
| Bio_rh_RUNX12          | /5Biosg/ACTGTGATTTTGATGGCTCTGTGrGTAGGA/3SpC3/              |          |
| mars nested RUNX1.1    | AAGCAGTGGTATCAACGCAGAGGGTGAAGGCGCCTGGATA                   |          |
| mars nested RUNX1.2    | AAGCAGTGGTATCAACGCAGAGCTTGCGGTGGGTTTGTGAA                  |          |
| Bio rh SF3B1.1         | /5Biosg/CATCCTGTGCTGCCAGAArGTGTTC/3SpC3/                   |          |
| Bio rh SF3B1.2         | /5Biosg/GAGTTGCTGCTTCAGCCArAGGCAT/3SpC3/                   |          |
| mars nested SF3B1.1    | AAGCAGTGGTATCAACGCAGAGACTGTTTTACCACCTTCAGCACAA             |          |
| Bio rh SRSF2.1         | /5Biosg/GAAGTTTGCCAACTGAGGCAArAGCTTC/3SpC3/                |          |
| mars nested SRSF2.1    | AAGCAGTGGTATCAACGCAGAGAGGTCGACCGAGATCGAGAA                 |          |
| Bio rh STAG2.1         | /5Biosg/CTCTCTTCGGAGTGACATCTGAArAGGTCC/3SpC3/              |          |
| mars nested STAG2.1    | AAGCAGTGGTATCAACGCAGAGGCCAAATTTAAAGGTGGATGGCTCT            |          |
| Bio rh STAG2.2         | /5Biosg/GGCATCACTATACATCTTCATCCArAATGCA/3SpC3/             |          |
| mars nested STAG2.2    | AAGCAGTGGTATCAACGCAGAGTCGCATCACGGTATCTATGTACAA             |          |
| Bio rh TET2.1          | /5Biosg/CTCATTCATGCTCTTATGCTGGTAArAAGACT/3SpC3/            |          |
| mars nested TET2.1     | AAGCAGTGGTATCAACGCAGAGGTTGTGGCATGCAGCTCA                   |          |
| Bio rh TET2.2          | /5Biosg/CTGCATGACTGGTCCTGAArAGTCGA/3SpC3/                  |          |
| mars nested TET2.2     | AAGCAGTGGTATCAACGCAGAGAGTCGCAAAAGTTCTGCCAAC                |          |
| Bio rh TET2.4          | /5Biosg/TGCTGGCAGTTGTCCTGTArGCTCTA/3SpC3/                  |          |
| mars nested TET2.3     | AAGCAGTGGTATCAACGCAGAGGGTTATGCTTGAGGTGTTCTGACA             |          |
| Bio rh TP53.1          | /5Biosg/TGGGCAGTGCTCGCTTArGTGCTA/3SpC3/                    |          |
| mars nested TP53.1     | AAGCAGTGGTATCAACGCAGAGTCCCCTTTCTTGCGGAGATT                 |          |
| Bio rh U2AF1.1         | /5Biosg/CCTTATGAACTGGTTTGGTCAATCAArCTACAC/3SpC3/           |          |
| mars nested U2AF1.1    | AAGCAGTGGTATCAACGCAGAGGCTCTCTGGAAATGGGCTTCAA               |          |
| Alternative primers    | <u> </u>                                                   | 1        |
| Bio rh DNMT3A 1        | /5Biosg/TCCTTCAGCGGAGCGAArGAGGTA/3SpC3/                    | Notused  |
| Bio rh PTPN11 1        | /5Biosg/AGGTGGCGTTGGAGTArCAAGGA/3spc3/                     | Not used |
| mars nested PTPN11 1   | AAGCAGTGGTATCAACGCAGAGTCCTGCGCTGTAGTGTTTCAA                | Not used |
| Bio rh TET2 3          | /5Biosg/CATGTATGGATTGGTTGGATCCAGAragCaGT/3spc3/            | Not used |
|                        | , obtoby, and integration to the integration of the period | Not used |

# Supplementary Table 4. Primers used for targeted amplification of somatic mutations associated with AML/MDS.

| Name              | Sequence                                                           | Comment    |
|-------------------|--------------------------------------------------------------------|------------|
| Bio_rh_mars_ND1.1 | /5Biosg/AAGCAGTGGTATCAACGCAGAGGGGAATGCTGGAGATTGTArATGGGA/3SpC3/    | PCR 2      |
| mars_nested_ND1.1 | AAGCAGTGGTATCAACGCAGAGGGGAGATTGTAATGGGTATGGAGACATA                 | PCR 3      |
| Bio_rh_mars_ND4.1 | /5Biosg/AAGCAGTGGTATCAACGCAGAGAGAGAGAAAACCCGGTAATGATrGTCGGA/3SpC3/ | PCR 2      |
| mars_nested_ND4.1 | AAGCAGTGGTATCAACGCAGAGGATGTCGGGGGTTGAGGGATA                        | PCR 3      |
| Bio_rh_mars_ND5.2 | /5Biosg/AAGCAGTGGTATCAACGCAGAGGTTTTGGCTCGTAAGAAGGCrCTAGAC/3SpC3/   | PCR 2      |
| mars_nested_ND5.2 | AAGCAGTGGTATCAACGCAGAGTGTGCGGTGTGTGATGCTA                          | PCR 3      |
|                   |                                                                    |            |
| rh_mars_ATP6      | AAGCAGTGGTATCAACGCAGAGTTATGTGTTGTCGTGCAGGTrAGAGGA/3SpC3/           | PCR 3 only |
| rh_mars_COX1.2    | AAGCAGTGGTATCAACGCAGAGGGCATCCATATAGTCACTCCArGGTTTC/3SpC3/          | PCR 3 only |
| rh_mars_COX1.4    | AAGCAGTGGTATCAACGCAGAGGATGAGTTTGCTAATACAATGCCArGTCAGA/3SpC3/       | PCR 3 only |
| rh_mars_COX2      | AAGCAGTGGTATCAACGCAGAGGGTAAATACGGGCCCTATTTCrAAAGAC/3SpC3/          | PCR 3 only |
| rh_mars_COX3      | AAGCAGTGGTATCAACGCAGAGCCCTCATCAATAGATGGAGACATArCAGAAC/3SpC3/       | PCR 3 only |
| rh_mars_CYTB      | AAGCAGTGGTATCAACGCAGAGGGCCCATTTGAGTATTTTGTTTTCArATTAGA/3SpC3/      | PCR 3 only |
| rh_mars_ND1.4     | AAGCAGTGGTATCAACGCAGAGGATAGTAGAATGATGGCTAGGGTGrACTTCC/3SpC3/       | PCR 3 only |
| rh_mars_ND2       | AAGCAGTGGTATCAACGCAGAGGGGGGGGAGATAGGTAGG                           | PCR 3 only |
| rh_mars_ND3       | AAGCAGTGGTATCAACGCAGAGTCAGTCTAATCCTTTTTGTAGTCACTrCATAGA/3SpC3/     | PCR 3 only |
| rh_mars_ND4.6     | AAGCAGTGGTATCAACGCAGAGGGAAGGGAGCCTACTAGGrGTGTAA/3SpC3/             | PCR 3 only |
| rh_mars_ND5.4     | AAGCAGTGGTATCAACGCAGAGGAGTAATAGATAGGGCTCAGGCrGTTTGC/3SpC3/         | PCR 3 only |
| rh_mars_ND5.6     | AAGCAGTGGTATCAACGCAGAGAGTGGTGATAGCGCCTAAGrCATAGC/3SpC3/            | PCR 3 only |
| rh_mars_ND5.8     | AAGCAGTGGTATCAACGCAGAGGAAGGATATAATTCCTACGCCCTrCTCAGA/3SpC3/        | PCR 3 only |
| rh_mars_ND6       | AAGCAGTGGTATCAACGCAGAGCTATTCCCCCCGAGCAATCTrCAATTC/3SpC3/           | PCR 3 only |
| rh_mars_RNR1      | AAGCAGTGGTATCAACGCAGAGCGTCCAAGTGCACTTTCCrAGTACC/3SpC3/             | PCR 3 only |
| rh_mars_RNR2.2    | AAGCAGTGGTATCAACGCAGAGGAAGGCGCTTTGTGAAGTAGrGCCTTC/3SpC3/           | PCR 3 only |
| rh_mars_RNR2.5    | AAGCAGTGGTATCAACGCAGAGGCCTCTAATACTGGTGATGCTrAGAGGA/3SpC3/          | PCR 3 only |

#### Supplementary Table 5. Primers used for targeted amplification of mitochondrial transcripts.

| Supplementary Table 6. | Primers use | d for targeted | I amplification of | f transcripts w | ith alternative |
|------------------------|-------------|----------------|--------------------|-----------------|-----------------|
| splicing (isoforms).   |             |                |                    |                 |                 |

| Name                         | Sequence                                             | Comment   |
|------------------------------|------------------------------------------------------|-----------|
| Bio_rh_CTLA4.Ex4.1           | /5Biosg/CCCAAATGCACAAACAAATAAAAATAGCTGrGATAGC/3SpC3/ | PCR 2     |
| mars_nested_CTLA4.Ex4.1      | AAGCAGTGGTATCAACGCAGAGGCTTTTCACATTCTGGCTCTGTT        | PCR 3     |
|                              |                                                      |           |
| Bio_rh_IL7R.Ex7.1            | /5Biosg/CCTTCCACTTCATCTCTAGCTTGArATGTCT/3SpC3/       | PCR 2     |
| mars_nested_IL7R.Ex7.1       | AAGCAGTGGTATCAACGCAGAGTGAATCTGGCAGTCCAGGAA           | PCR 3     |
|                              |                                                      |           |
| Bio_rh_PTPRC.Ex7.1           | /5Biosg/TCATCACATGTTGGCTTAGATGGArGTAGTC/3SpC3/       | PCR 2     |
| mars_nested_PTPRC.Ex7.1      | AAGCAGTGGTATCAACGCAGAGGAAATGACAGCGCTTCCAGAA          | PCR 3     |
|                              |                                                      |           |
| Other primers                |                                                      |           |
| Bio_rh_BCL2L11.Ex6.1         | /5Biosg/TCTCGGCTCCGCAAAGAArCCTGTA/3SpC3/             | Not shown |
| Bio_rh_BCL2L11.tr.Ex6.1      | /5Biosg/TGCTCTTGAGGTAAAGTGACTTCAArAGCTGA/3SpC3/      | Not shown |
| Bio_rh_CD6.Ex6.1             | /5Biosg/TCTATAGTGACTGTCTGAACACTTGCrAGGGAA/3SpC3/     | Not shown |
| Bio_rh_CD6.Ex10.1            | /5Biosg/CAACTCTTCAAGTCCTTCCTCCArAGGGTA/3SpC3/        | Not shown |
| Bio_rh_CD8B.Ex7.1            | /5Biosg/TCAGGATCCATGGGTTAAGCArGCTTCC/3SpC3/          | Not shown |
| Bio_rh_CD44.Ex16.1           | /5Biosg/GGGATGCCAAGATGATCAGCrCATTCC/3SpC3/           | Not shown |
| Bio_rh_FOXP3.Ex3.1           | /5Biosg/GTTGAGAGCTGGTGCATGAArATGTGA/3SpC3/           | Not shown |
| Bio_rh_FOXP3.Ex8.1           | /5Biosg/TCGGATGATGCCACAGATGAArGCCTTA/3SpC3/          | Not shown |
| Bio_rh_IKZF1.Ex9.1           | /5Biosg/CCCCAGGTAGTTGATGGCrGTTGTC/3SpC3/             | Not shown |
| Bio_rh_MALT1.Ex8.1           | /5Biosg/ACATCCACCAAAGGAGCTTTGArGCTTGA/3SpC3/         | Not shown |
| Bio_rh_SLAMF6.Ex3.1          | /5Biosg/GAGACATTGTCATCTGCATCCTCrCACAGT/3SpC3/        | Not shown |
|                              |                                                      |           |
| mars_nested_BCL2L11.Ex6.1    | AAGCAGTGGTATCAACGCAGAGCCAGGCGGACAATGTAACGTAA         | Not shown |
| mars_nested_BCL2L11.tr.Ex6.1 | AAGCAGTGGTATCAACGCAGAGGCAAAAGCTCCAATCCTGCAA          | Not shown |
| mars_nested_CD6.Ex6.1        | AAGCAGTGGTATCAACGCAGAGGGGGGGGGGGGGGGGGG              | Not shown |
| mars_nested_CD6.Ex10.1       | AAGCAGTGGTATCAACGCAGAGTGGAACCTGCTTTGCTGGA            | Not shown |
| mars_nested_CD8B.Ex7.1       | AAGCAGTGGTATCAACGCAGAGGGGTGTAGTATTGCTGTAGTATCCA      | Not shown |
| mars_nested_CD44.Ex16.1      | AAGCAGTGGTATCAACGCAGAGGTGTCCTTATAGGACCAGAGGTT        | Not shown |
| mars_nested_FOXP3.Ex8.1      | AAGCAGTGGTATCAACGCAGAGGGTCAGTGCCATTTTCCCA            | Not shown |
| mars_nested_FOXP3.Ex3.1      | AAGCAGTGGTATCAACGCAGAGCCTGGAGGAGTGCCTGTAA            | Not shown |
| mars_nested_IKZF1.Ex9.1      | AAGCAGTGGTATCAACGCAGAGTGTTGATGGCTTGGTCCATCA          | Not shown |
| mars_nested_MALT1.Ex8.1      | AAGCAGTGGTATCAACGCAGAGTCGCCAAAGGCTGGTCA              | Not shown |
| mars_nested_SLAMF6.Ex3.1     | AAGCAGTGGTATCAACGCAGAGAGCAAGTCAGATGGAGCTCA           | Not shown |

| Name                 | Sequence                                                                 |
|----------------------|--------------------------------------------------------------------------|
| DNMT3A_RT            | AGCAAGTGAGAAGCATCGTGTCTGTTTAACTTTGTGTCGCTACCTCA                          |
| RUNX1_RT             | AGCAAGTGAGAAGCATCGTGTCTGTGATTTTGATGGCTCTGTGGTA                           |
| SF3B1_RT             | AGCAAGTGAGAAGCATCGTGTCCTTCAGCCAAGGCAGCAA                                 |
| Additive Primer      | AGCAAGTGAGAAGCATCGTG*T*C                                                 |
| Bio_Additive         | /5Biosg/AGCAAGTGAGAAGCATCGTG*T*C                                         |
|                      |                                                                          |
| GoT PCR1 Primers     |                                                                          |
| Name                 | Sequence                                                                 |
| DNMT3A_Staggered0    | CACCCGAGAATTCCAATGACTGGCACGCTCCAT                                        |
| DNMT3A_Staggered1    | CACCCGAGAATTCCAAATGACTGGCACGCTCCAT                                       |
| DNMT3A_Staggered2    | CACCCGAGAATTCCATTATGACTGGCACGCTCCAT                                      |
| DNMT3A_Staggered3    | CACCCGAGAATTCCACATATGACTGGCACGCTCCAT                                     |
| RUNX1_Staggered0     | CACCCGAGAATTCCACTTGCGGTGGGTTTGTGAA                                       |
| RUNX1_Staggered1     | CACCCGAGAATTCCAACTTGCGGTGGGTTTGTGAA                                      |
| RUNX1_Staggered2     | CACCCGAGAATTCCATTCTTGCGGTGGGTTTGTGAA                                     |
| RUNX1_Staggered3     | CACCCGAGAATTCCACATCTTGCGGTGGGTTTGTGAA                                    |
| SF3B1_Staggered0     | CACCCGAGAATTCCACAAAGCACTGATGGTCCGAA                                      |
| SF3B1_Staggered1     | CACCCGAGAATTCCAACAAAGCACTGATGGTCCGAA                                     |
| SF3B1_Staggered2     | CACCCGAGAATTCCATTCAAAGCACTGATGGTCCGAA                                    |
| SF3B1_Staggered3     | CACCCGAGAATTCCACATCAAAGCACTGATGGTCCGAA                                   |
|                      |                                                                          |
| 10x 5'kit bead oligo | CTACACGACGCTCTTCCGATCT-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN               |
| SI-PCR               | AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC                        |
| P5                   | AATGATACGGCGACCACCGAGATCTACAC                                            |
| RPI-X                | CAAGCAGAAGACGGCATACGAGATXXXXXXXGTGACTGGAGTTCCTTGG <u>CACCCGAGAATTCCA</u> |
| P7                   | CAAGCAGAAGACGGCATACGAGAT                                                 |

| Supplementary  | Table  | 7. | Primers | used | for | comparison | of | nanoranger | with | genotyping | of |
|----------------|--------|----|---------|------|-----|------------|----|------------|------|------------|----|
| transcriptomes | (GoT). |    |         |      |     |            |    |            |      |            |    |

| Antigen         | Fluorochrome                      | Clone | Vendor    | Cat. no | Dilution |
|-----------------|-----------------------------------|-------|-----------|---------|----------|
| anti-human CD45 | PE-Cy7                            | 2D1   | BioLegend | 368532  | 1:50     |
| anti-human CD3  | APC-Cy7                           | UCHT1 | BioLegend | 300426  | 1:50     |
| live/dead       | Zombie Aqua fixable viability kit | n/a   | BioLegend | 423102  | 1:400    |

Supplementary Table 8. Antibodies used for FACS sort of tumor-infiltrating lymphocytes.

|         | HS      | C     | LMF     | P     | GM      | Р     | CD14⁺ Mono |           | CD16⁺ Mono      |        |
|---------|---------|-------|---------|-------|---------|-------|------------|-----------|-----------------|--------|
|         | mutated | cells | mutated | cells | mutated | cells | mutated    | cells     | mutated         | cells  |
| AML1002 | 182     | 280   | 120     | 172   | 5       | 8     | 21         | 44        | 1               | 30     |
| AML1007 | 62      | 83    | 31      | 43    | 31      | 64    | 151        | 325       | 5               | 42     |
| AML1010 | 126     | 231   | 32      | 56    | 21      | 48    | 4          | 15        | 2               | 4      |
| AML1019 | 54      | 86    | 2       | 14    | 0       | 2     | 0          | 1         | NA              | NA     |
| AML1022 | 202     | 401   | 208     | 357   | 17      | 29    | 267        | 522       | 1               | 6      |
| AML1026 | 93      | 141   | 18      | 27    | 15      | 23    | 0          | 2         | NA              | NA     |
| AML3003 | 18      | 44    | 34      | 58    | 5       | 15    | 0          | 1         | NA              | NA     |
| AML3005 | 163     | 275   | 114     | 145   | 8       | 17    | NA         | NA        | 0               | 5      |
| AML8007 | 85      | 116   | 110     | 123   | 14      | 17    | NA         | NA        | NA              | NA     |
|         |         |       |         |       |         |       |            |           |                 |        |
|         | cDC     | 2     | pD      | C     | Prog_   | DC    | Megakar    | yopoiesis | Erythrop        | oiesis |
|         | mutated | cells | mutated | cells | mutated | cells | mutated    | cells     | mutated         | cells  |
| AML1002 | 3       | 7     | 2       | 3     | 2       | 8     | 208        | 388       | 119             | 186    |
| AML1007 | 36      | 68    | 0       | 2     | 10      | 14    | 8          | 19        | 63              | 157    |
| AML1010 | 1       | 1     | NA      | NA    | 2       | 3     | 1          | 1         | 19              | 38     |
| AML1019 | NA      | NA    | NA      | NA    | NA      | NA    | 4          | 7         | 1               | 6      |
| AML1022 | 40      | 79    | NA      | NA    | 4       | 4     | 79         | 138       | 67              | 104    |
| AML1026 | NA      | NA    | NA      | NA    | 0       | 2     | 12         | 18        | 59              | 89     |
| AML3003 | 0       | 2     | 8       | 18    | NA      | NA    | 1          | 3         | 3               | 48     |
| AML3005 | 1       | 2     | 3       | 6     | 3       | 14    | 3          | 23        | 23              | 834    |
| AML8007 | NA      | NA    | NA      | NA    | 1       | 4     | 60         | 74        | 137             | 187    |
|         |         |       |         |       |         |       |            |           |                 |        |
|         | CD4⁺ N  | aïve  | CD4⁺ Me | emory | Treg    |       | CD8⁺ Naive |           | CD8⁺ Effector 1 |        |
|         | mutated | cells | mutated | cells | mutated | cells | mutated    | cells     | mutated         | cells  |
| AML1002 | 5       | 208   | 7       | 623   | 0       | 22    | 0          | 29        | 3               | 249    |
| AML1007 | 0       | 16    | 5       | 623   | 0       | 36    | 1          | 22        | 0               | 5      |
| AML1010 | NA      | NA    | NA      | NA    | NA      | NA    | NA         | NA        | 0               | 2      |
| AML1019 | 0       | 1     | 0       | 28    | 0       | 2     | NA         | NA        | 0               | 4      |
| AML1022 | 1       | 4     | 0       | 12    | NA      | NA    | 0          | 1         | NA              | NA     |
| AML1026 | 1       | 2     | 1       | 115   | 0       | 4     | 2          | 14        | 0               | 2      |
| AML3003 | 0       | 16    | 0       | 107   | 0       | 6     | 0          | 5         | 0               | 9      |
| AML3005 | 2       | 824   | 11      | 4515  | 0       | 237   | 0          | 148       | 0               | 120    |
| AML8007 | 0       | 10    | 5       | 102   | 0       | 2     | 0          | 16        | 0               | 17     |

### Supplementary Table 9. Number of cells bearing somatic nuclear mutations across cell types (I).

|         | CD8⁺ Effe | ctor 2 | CD8⁺ Mem | ory 1 | CD8⁺ Mer | nory 2 | CD56 <sup>bright</sup> NK |        | N       | к     |
|---------|-----------|--------|----------|-------|----------|--------|---------------------------|--------|---------|-------|
|         | mutated   | cells  | mutated  | cells | mutated  | cells  | mutated                   | cells  | mutated | cells |
| AML1002 | 0         | 6      | 0        | 9     | 3        | 516    | 2                         | 7      | 52      | 871   |
| AML1007 | 0         | 1      | 0        | 1     | 1        | 83     | 1                         | 15     | 4       | 230   |
| AML1010 | 0         | 1      | NA       | NA    | 0        | 6      | NA                        | NA     | 0       | 4     |
| AML1019 | 0         | 2      | NA       | NA    | 0        | 8      | 0                         | 1      | 0       | 35    |
| AML1022 | NA        | NA     | NA       | NA    | 0        | 5      | 0                         | 3      | 0       | 21    |
| AML1026 | NA        | NA     | NA       | NA    | 3        | 124    | 0                         | 1      | 1       | 45    |
| AML3003 | 0         | 4      | NA       | NA    | 0        | 15     | 1                         | 5      | 10      | 146   |
| AML3005 | 0         | 49     | 0        | 14    | 0        | 151    | 1                         | 29     | 1       | 493   |
| AML8007 | 1         | 14     | NA       | NA    | 0        | 40     | 0                         | 2      | 4       | 42    |
|         |           |        |          |       |          |        |                           |        |         |       |
|         | gdT       |        | MAIT     | •     | Progenit | or B 1 | Progenite                 | or B 2 | Naï     | ve B  |
|         | mutated   | cells  | mutated  | cells | mutated  | cells  | mutated                   | cells  | mutated | cells |
| AML1002 | 0         | 1      | 0        | 10    | 37       | 62     | 3                         | 3      | 0       | 10    |
| AML1007 | NA        | NA     | 1        | 28    | 1        | 2      | NA                        | NA     | NA      | NA    |
| AML1010 | NA        | NA     | NA       | NA    | NA       | NA     | NA                        | NA     | NA      | NA    |
| AML1019 | NA        | NA     | 0        | 1     | NA       | NA     | NA                        | NA     | 0       | 13    |
| AML1022 | NA        | NA     | NA       | NA    | 1        | 6      | NA                        | NA     | NA      | NA    |
| AML1026 | NA        | NA     | 0        | 1     | NA       | NA     | NA                        | NA     | NA      | NA    |
| AML3003 | 1         | 3      | 0        | 9     | 5        | 12     | NA                        | NA     | NA      | NA    |
| AML3005 | 0         | 6      | 0        | 71    | 84       | 150    | 4                         | 5      | 0       | 14    |
| AML8007 | 0         | 1      | 0        | 2     | 2        | 4      | 0                         | 1      | 0       | 3     |
|         |           |        |          |       |          |        |                           |        |         |       |
|         | Memor     | у В    | Plasmab  | last  |          |        |                           |        |         |       |
|         | mutated   | cells  | mutated  | cells |          |        |                           |        |         |       |
| AML1002 | 0         | 20     | 0        | 11    |          |        |                           |        |         |       |
| AML1007 | NA        | NA     | 0        | 2     |          |        |                           |        |         |       |
| AML1010 | NA        | NA     | NA       | NA    |          |        |                           |        |         |       |
| AML1019 | 0         | 8      | NA       | NA    |          |        |                           |        |         |       |
| AML1022 | 0         | 1      | NA       | NA    |          |        |                           |        |         |       |
| AML1026 | NA        | NA     | NA       | NA    |          |        |                           |        |         |       |
| AML3003 | NA        | NA     | NA       | NA    |          |        |                           |        |         |       |
| AML3005 | 0         | 12     | 0        | 28    |          |        |                           |        |         |       |
| AML8007 | 0         | 6      | 0        | 5     |          |        |                           |        |         |       |

### Supplementary Table 10. Number of cells bearing somatic nuclear mutations across cell types (II).

#### Supplementary references

- Oliveira, G., Stromhaug, K., Klaeger, S., Kula, T., Frederick, D.T., Le, P.M., Forman, J., Huang, T., Li, S., Zhang, W., et al. (2021). Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125. 10.1038/s41586-021-03704-y.
- van Galen, P., Hovestadt, V., Wadsworth Ii, M.H., Hughes, T.K., Griffin, G.K., Battaglia, S., Verga, J.A., Stephansky, J., Pastika, T.J., Lombardi Story, J., et al. (2019). Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell *176*, 1265-1281.e24. 10.1016/j.cell.2019.01.031.
- Bottomly, D., Long, N., Schultz, A.R., Kurtz, S.E., Tognon, C.E., Johnson, K., Abel, M., Agarwal, A., Avaylon, S., Benton, E., et al. (2022). Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell 40, 850-864.e9. 10.1016/j.ccell.2022.07.002.
- Heaton, H., Talman, A.M., Knights, A., Imaz, M., Gaffney, D.J., Durbin, R., Hemberg, M., and Lawniczak, M.K.N. (2020). Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. Nat Methods *17*, 615–620. 10.1038/s41592-020-0820-1.
- Witkowski, M.T., Dolgalev, I., Evensen, N.A., Ma, C., Chambers, T., Roberts, K.G., Sreeram, S., Dai, Y., Tikhonova, A.N., Lasry, A., et al. (2020). Extensive Remodeling of the Immune Microenvironment in B Cell Acute Lymphoblastic Leukemia. Cancer Cell 37, 867-882.e12. 10.1016/j.ccell.2020.04.015.
- Caron, M., St-Onge, P., Sontag, T., Wang, Y.C., Richer, C., Ragoussis, I., Sinnett, D., and Bourque, G. (2020). Single-cell analysis of childhood leukemia reveals a link between developmental states and ribosomal protein expression as a source of intra-individual heterogeneity. Sci Rep *10*, 8079. 10.1038/s41598-020-64929-x.