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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

This article developed a long-read-based workflow and analysis pipeline (nanoranger) to 

detect cell lineage-defining features in single-cell cDNA libraries. The approach used limited 

primer sets to amplify target genes to detect various genetic barcodes in cell lineage 

through long-read sequencing. The authors demonstrated the effectiveness of this approach 

in tracking somatic and mtDNA mutations, fusion genes, transcriptomic structural variants, 

and the sequences of chimeric antigen and T cell receptors in cell lines. This method 

provides an efficient solution for detecting cell lineage mutations and supplements existing 

single-cell variant detection methods. This streamlined approach could advance the 

understanding of tumor and immune cell co-evolution at the single-cell level and have 

significant potential application value. 

1. The authors may provide a more background introduction to the development of similar 

methods and discuss the strengths and weaknesses of those approaches. 

2. Since accurate genotyping of single nucleotide variants at single-cell resolution is highly 

dependent on low sequencing error, the use of the PacBio platform seems to offer higher 

accuracy in transcriptomics. It would be valuable if the authors could further discuss the 

selection of sequencing platforms. 

3. The authors may consider further discuss potential improvements to this method, such as 

expanding the detection of genetic variants to a larger set of genes or even to all genes at 

once. 

4. The authors could discuss the potential applications of this method in scientific research 

as well as disease diagnosis and therapy. 

5. In the sentence “We mixed Kasumi-1 (AML) with K562 (chronic myeloid leukemia [CML]) 

cells at four defined ratios ranging from 1:100 to 100:1 (Fig. 2d); at each ratio, we amplified 

and sequenced the homozygous TP53R248G mutation found in Kasumi-1 cells”, it may be 

helpful to improve understanding for reader if the authors clarify the differences between 

Kasumi-1 and K562 cells, as well as specify the exact four ratios used here. 

Leng Han 



Reviewer #2 (Remarks to the Author):

In this manuscript by Penter et al., the authors demonstrate the utility of the ONT platform 

for long-read sequencing and provide robust data to illustrate its effectiveness in detecting 

lineage-defining features, SNP variants, fusion genes, identifying CAR T-cells, and analyzing 

the TCR repertoire. This is a well-executed study; however, I have a few minor comments. 

Minor comments: 

Although the authors present sufficient data to support the applications of the ONT 

platform, several limitations have been identified, such as the low detection rate of specific 

fusion genes, the inability to identify certain mutation genotypes depending on their 

location, and allele dropouts due to low gene expression. I recommend that the authors 

briefly summarize these limitations in the abstract and discussion. 

In the trajectory studies involving transplant-naïve AML/MDS patients and those in the post-

HSCT setting, the authors report that erythropoiesis and megakaryopoiesis were entirely 

recipient-derived in 6 of the 8 analyzed cases post-HSCT. Please clarify whether this 

discordance was observed in the relapse setting or even before AML/MDS relapse, and 

provide information on the overall bulk donor chimerism of these patients at the time of the 

studies. 

The observations made on erythroid and megakaryocytic progenitors may need to be 

tempered, as the number of genotyped cells is limited. 

Regarding the finding of BCR-ABL restriction to B-cell progenitor-like cells, could the authors 

explain if this observation can be attributed to absence or very low expression of this 

transcript in other cell lineages? 

In addition to identifying CAR T-cells and their functional status, it would be beneficial if the 

authors could also identify TCR transcripts to support the idea that high CAR-expressing cells 

represent a subpopulation with high proliferative capacity. 



In the discussion, it would of interest to readers if the authors could compare the 

advantages and limitations of the ONT long-read platform with other available long-read 

sequencing platforms. 

Reviewer #3 (Remarks to the Author):

Summary 

This study introduces a repurposing technology of single cell cDNA technologies using 

priming of targets. The approach enables amplification of target regions that can then be 

sequenced with long-read technology which can genotype cells far more effectively than 

standard 10x sequencing. This has the major advantage of genotype-phenotype mapping at 

single cell resolution. The authors show how the technology can be applied in a wide 

ranging set of genotypic variation scenarios in the leukemia setting. Overall the paper 

represents an advance that will be of interest to the community. My comments are aimed at 

rounding out the paper such that while there is a laudable diversity of applications that are 

exemplified, the analytical components of how the methods are performing could be 

improved. 

Critique: 

1. There have been other methods attempting to recapture mutations from scRNA libraries. 

Could the authors show a more explicit comparison to, for example, PMID: 31270458 ? It 

would be most convincing to perform a head to head comparison on the same library with 

sensitivity/specificity metrics of known clonal mutations, or mutations that are lineage 

specific. 

2. Pg 4 - this sentence ending with ‘uncoupled from sample processing’ is unclear to me. 

Please clarify or reword. 

3. Pg 5 - the sentence ‘Loci of interest…’ please clarify in the intro a bit more detail of how 

the method is distinct from others referred to in this sentence : ‘sophisticated primer panels 

are required to read out mutations using short-read sequencing, creating cumbersome and 



inefficient experimental workflows’ 

4. A more rigorous presentation of the deconcatenation method is needed. Could the 

authors present a sensitivity/specificity analysis for the readers? This section reads as 

insufficiently quantitative to be convincing. More specifically, the reader is left without a 

sense of false negative and false positive rates. Moreover a discussion comment about how 

errors in deconcatentation would propagate and lead to spurious inference is warranted. 

5. Pg 7 - can the CDR3 sequences be used to estimate the sequencing error rate in ONT 

using this method? This would be a nice and accessible comparison of the illumina approach 

and would allow for ‘calibration’ of sequencing error. 

6. Pg 8 - how much would the TP53 frameshift lead to non-sense mediated decay. Is it 

possible to read this out of the data? 

7. Pg 9, section ending with ‘Thus, we caution that while detection of somatic mutations was 

specific for leukemic clones, their absence is not sufficient for identification of wildtype 

cells.’ How much can phasing of heterozygous polymorphisms help here? Are there any 

SNPs recovered in the data- can this calibrate allele dropout vs absence of mutation more 

quantitatively? 

8. Pg 9 - the the compound heterozygous TP53 mutations should be out of phase. Can you 

quantify this? Are the reads long enough such that both mutations are covered? 

Demonstrating they are out of phase would be very convincing. 

9. Pg 12 - Phasing of SNPs might also help in deconvoluting donor/recipient cells- can the 

authors corroborate/support the mtDNA results with SNPs/haplotype analysis? 

10. Discussion - curiously the discussion does not align well with the claims presented in the 

results. Suggest a rewrite of the discussion that more closely aligns with the main claims of 

the paper and their implications for the field. This is more of a high level subjective 

comment in that I found after reading the results, the discussion seemed disconnected. 



11. Some approaches are now emerging that co-register DNAseq and RNAseq from the 

same cells. Could the authors discuss these emergent technologies - especially since there 

are potential issues of trying to genotype RNA : e.g. RNAedits, allele-specific expression due 

to epigenetic control, very low expressed transcripts etc.. that would yield incomplete or 

worse misinterpretation of variations. Although 

https://pubmed.ncbi.nlm.nih.gov/36798358/ is not yet published, it is nevertheless highly 

relevant and should be placed in context. 

Reviewer #4 (Remarks to the Author):

Penter et al. reported an integrative single-cell analysis method for simultaneous 

genotyping and phenotyping with the aid of long-read sequencing. They presented the 

utility of the platform by analyzing acute myeloid leukemia samples carrying several fusion 

genes. 

Essentially this method is the combination of short-read and long-read error-correct 

sequencing of scRNA-seq libraries of the same origin. Using the long-read information, 

identification of SNVs (either on the chromosomes or mitochondrial DNA) or cell-specific 

sequences (such as TCR/BCR and CAR-T gene sequences) was possible as shown using cell 

lines and clinical samples. Discrimination between transcript variants was also possible and 

may help analyzing CD45RA/RO or CTLA-4 expression. 

The drawbacks of the method are related to those of detecting mutations using cDNA. As 

the authors have shown using Kasui-1 and K562 cells, truncating variants are prone to 

nonsense-mediated decay and are difficult to identify from cDNA. Fusion genes having 

breakpoints that are >2,000 bp distant from the 5’- end are also difficult to identify because 

of incomplete reverse transcription. 

While the reviewer believes in the importance of validating new systems, the most part of 

the manuscript (corresponding to figures 2-6) describes validation experiments using the 

method, and the presentation of results are superficial and are within the range of the 

knowledge of previous publications. The reviewer is unsure why the authors presented 



fusion gene detection, mutation detection, mitochondrial profiling, and transcript variant 

analysis separately when the major strength of the system is to evaluate them 

simultaneously. 

The reviewer is unsure why the authors analyzed ~1,000 cells per analysis when discussing 

the intratumor heterogeneity.



Reviewer #1 

This article developed a long-read-based workflow and analysis pipeline (nanoranger) to detect cell lineage-
defining features in single-cell cDNA libraries. The approach used limited primer sets to amplify target genes 
to detect various genetic barcodes in cell lineage through long-read sequencing. The authors demonstrated 
the effectiveness of this approach in tracking somatic and mtDNA mutations, fusion genes, transcriptomic 
structural variants, and the sequences of chimeric antigen and T cell receptors in cell lines. This method 
provides an efficient solution for detecting cell lineage mutations and supplements existing single-cell 
variant detection methods. This streamlined approach could advance the understanding of tumor and 
immune cell co-evolution at the single-cell level and have significant potential application value.  

We thank the reviewer for their encouraging assessment of our work.  

1. The authors may provide a more background introduction to the development of similar methods and 
discuss the strengths and weaknesses of those approaches. 

We thank the reviewer for this great suggestion, which we have implemented accordingly. The introduction 
now goes into greater detail of strengths and weakness of similar methods: 

Existing single-cell genotyping approaches include plate-4 and droplet-based protocols5–8, some of 
which entail adding locus-specific primers of predefined targets at the very initial steps of sample 
processing, at the stage of oil encapsulation. As all these approaches are based on Illumina short-
read sequencing, they require large numbers of primers for covering all possible mutational sites 
across entire genes or genetic regions like the mitochondrial chromosome7, creating cumbersome 
and inefficient experimental workflows. While Illumina currently provides the lowest cost per base 
at sequencing error rates below 1/1000, a clear limitation of short-read based sequencing is that it 
is suboptimal for long fragments, which creates considerable difficulties for detecting mutation sites 
that require amplicons exceeding a length of 500 nucleotides9.  
Additionally, short-read sequencing is unable to easily resolve structural transcriptomic variants 
such as gene fusions, transgenes or even isoforms that characterize malignant and immune cell 
subpopulations. Finally, single-cell analyses often reveal unanticipated genetic and transcriptomic 
variants whose read-out would improve analytical resolution, thus creating the need to iteratively 
interrogate single-cell cDNA for such features even following library preparation. 

2. Since accurate genotyping of single nucleotide variants at single-cell resolution is highly dependent on 
low sequencing error, the use of the PacBio platform seems to offer higher accuracy in transcriptomics. It 
would be valuable if the authors could further discuss the selection of sequencing platforms. 

The reviewer is correct that low sequencing error is crucial for identification of single nucleotide variants 
and therefore the PacBio platform is a great choice. However, sequencing accuracy of Oxford Nanopore 
Technologies has also greatly improved recently and is considerably more affordable than the PacBio 
platform. We have added these points to our introduction: 

PacBio and Oxford Nanopore Technologies (ONT) are two established long-read sequencing 
platforms. PacBio was the first long-read sequencing technology to achieve low error rates 
comparable to Illumina12. However, with the recent introduction of the V14 chemistry, sequencing 
accuracy of ONT now exceeds 99%,13 while also having lower sequencing costs  and providing a 
wider range of available flow cell sizes.  

3. The authors may consider further discuss potential improvements to this method, such as expanding the 
detection of genetic variants to a larger set of genes or even to all genes at once. 

Please see next point. 

4. The authors could discuss the potential applications of this method in scientific research as well as 
disease diagnosis and therapy. 



Points 3 and 4 are fantastic suggestions, which we have now adopted in our discussion: 

Further technical improvements to our approach could pave the way for its adoption as a clinical 
tool for immune monitoring in the future. Increasing the number of genotyped features per sample 
could extend target detection to other, less frequently mutated genes or even non-recurrent, private 
somatic mutations. This would make possible the detection and characterization of lowly abundant 
tumor cells, for example to identify the phenotype of residual malignant cells after systemic therapy 
or of relapse-initiating populations at incipient relapse. Such combined phenotypic and genetic 
information could potentially be used to instruct clinical decision making and thus provides a clear 
translational application for our technology. Co-sequencing of DNA and RNA, currently under 
developed by several academic and industry groups.39–41, may overcome current limitations in 
genotyping while preserving the ability to dissect transcriptional states. 

5. In the sentence “We mixed Kasumi-1 (AML) with K562 (chronic myeloid leukemia [CML]) cells at four 
defined ratios ranging from 1:100 to 100:1 (Fig. 2d); at each ratio, we amplified and sequenced the 
homozygous TP53R248G mutation found in Kasumi-1 cells”, it may be helpful to improve understanding 
for reader if the authors clarify the differences between Kasumi-1 and K562 cells, as well as specify the 
exact four ratios used here. 

We apologize for our lack of detail, which we have corrected in the revised version of our manuscript: 

We mixed Kasumi-1 (an AML line harboring AML1::ETO and homozygous TP53R248G) with K562 
(a chronic myeloid leukemia [CML] line harboring BCR::ABL1 and monoallelic TP53Q136fs) cells at 
four defined ratios (1:100, 1.5:1, 15:1, 100:1) (Fig. 2d); at each ratio, we amplified and 
sequenced the homozygous TP53R248G mutation found in Kasumi-1 cells18.  



Reviewer #2  

In this manuscript by Penter et al., the authors demonstrate the utility of the ONT platform for long-read 
sequencing and provide robust data to illustrate its effectiveness in detecting lineage-defining features, 
SNP variants, fusion genes, identifying CAR T-cells, and analyzing the TCR repertoire. This is a well-
executed study; however, I have a few minor comments. 

We thank the reviewer for this concise summary and appreciate the opportunity to improve our work as 
suggested.   

Minor comments: 

Although the authors present sufficient data to support the applications of the ONT platform, several 
limitations have been identified, such as the low detection rate of specific fusion genes, the inability to 
identify certain mutation genotypes depending on their location, and allele dropouts due to low gene 
expression. I recommend that the authors briefly summarize these limitations in the abstract and discussion. 

This is a great suggestion, which we have implemented accordingly. We have included the following 
sentence in the abstract: 

Through systematic analysis of these classes of molecular features, we define the optimal targets 
for nanoranger, namely those loci close to the 5’ end of highly expressed genes with transcript 
lengths shorter than 4 kB. 

These limitations are also addressed in the discussion, which we have further clarified: 

Lastly, long-read sequencing provided us with insights into the structure of 5’ 10x Genomics 
scRNA-seq cDNA libraries which are characterized by skewed coverage at the 5’ end and dramatic 
drop-off of coverage after the first 4kB. Therefore, we expect efforts for targeted enrichment of 
transcript regions will work best for shorter transcripts or loci within the first 4kB from the 5’ end. 
Besides potentially impacting gene expression quantification with short-read sequencing, this 
skewing is a major bottleneck for further developments in the field of single cell transcriptomics. 
While long-read sequencing can improve the detection of molecular features, the ceiling for any 
genotyping approach is currently determined by the low, incomplete representation of many 
transcripts including absence of longer variants and cannot be merely overcome through optimized 
amplicon-generation or deeper sequencing. We thus recommend future efforts to focus on 
developing high-throughput single cell chemistries that provide truly full-length cDNA in order to 
expand the accessible terrain in single cell RNA sequencing space. 

In the trajectory studies involving transplant-naïve AML/MDS patients and those in the post-HSCT setting, 
the authors report that erythropoiesis and megakaryopoiesis were entirely recipient-derived in 6 of the 8 
analyzed cases post-HSCT. Please clarify whether this discordance was observed in the relapse setting or 
even before AML/MDS relapse, and provide information on the overall bulk donor chimerism of these 
patients at the time of the studies. 

We thank the reviewer for this query. The samples were indeed analyzed at time of overt AML/MDS relapse 
after transplant. We have included the information on non-fractionated bone marrow bulk donor chimerism 
in Table 1 and mention the chimerism in the text. 

Distinguishing normal and malignant hematopoiesis using expressed donor- and recipient-specific 
single nucleotide polymorphisms (SNPs) (souporcell)24 revealed two additional AML-derived ECs, 
megakaryopoiesis and erythropoiesis, to be almost entirely recipient-derived in 6 of 8 analyzed 
cases from the post-HSCT cohort at time of relapse prior to initiation of decitabine and ipilimumab 
(non-fractionated bone marrow chimerism 2-85%) (Fig. 3b-left; Table. 1). 



The observations made on erythroid and megakaryocytic progenitors may need to be tempered, as the 
number of genotyped cells is limited. 

We agree with the reviewer that the number of genotyped cells is limited and that we have studied a subset 
of relapsed/refractory AML cases mostly in the setting of secondary AML. However, there are now two 
recent publications (Beneyto-Calabuig et al., Cell Stem Cell 2023 PMID 37098346 and Cores-Lopez et al., 
Cell Stem Cell PMID 37582363) that have also described erythroid and megakaryocytic differentiation 
states in AML, supporting our observations. 
To address the reviewer’s concern about the preliminary nature of these observations, we have added 
these points to the concluding statement of this section: 

Altogether, our integrated analysis of recurrent somatic mutations, donor chimerism and copy 
number changes at single cell resolution revealed not only clear definition of individual AML clones 
present in myeloid cellular compartments but also their differentiation into erythroid and 
megakaryocytic lineage in the setting of relapsed/refractory secondary AML, consistent with two 
recent single-cell sequencing studies in AML/MDS8,29. These discovery findings provide leukemia-
discriminating signatures that can yield more accurate analysis of bulk RNA-sequencing profiles of 
AML. 

Finally, we have now also added data on de-novo AML in which we genotyped several thousand cells that 
similarly demonstrate differentiation of AML into megakaryocytic and erythroid populations (new Extended 
Data Figure 11b, shown below).

Extended Data Fig. 11b. Percentage of mutated cells across myeloid, megakaryocytic and erythroid lineage in de-
novo AML 1-3 assessed with somatic mutations. 

Regarding the finding of BCR-ABL restriction to B-cell progenitor-like cells, could the authors explain if this 
observation can be attributed to absence or very low expression of this transcript in other cell lineages? 

This is an important query. To address the question whether the absence of BCR::ABL1 detection outside 
the ALL compartment could be attributed to low expression of the fusion transcript in other cell lineages, 



we have included a new panel to Extended Data Fig. 11d in which we show the expression of the BCR 
transcript to be indeed largely constricted to the ALL compartment. As we are unable to perform additional 
DNA-based sequencing, it cannot be definitely ruled out using transcriptome-based genotyping with 
nanoranger, whether this is the reason for the observed phenotypic restriction of BCR::ABL1+ cells.  
Nevertheless, this is the reason why we included a validation cohort in which we re-analyzed published 
scRNA-seq datasets by Witkowski et al. and Caron et al., in which we demonstrate that other copy number 
changes (i.e. other than t(9:22)) in ALL – especially in cases of Philadelphia+ ALL – also predominantly are 
detectable in progenitor B cells (Extended Data Fig. 11e).  
We believe this to be a strong confirmation of the genotyping results obtained with genotyping of 
BCR::ABL1 using nanoranger. 

Extended Data Figure 11d-e. Genotyping of B ALL cells. 
d UMAP plots show cell type annotation (left) and detection of BCR transcripts ALL1 and ALL2. e Detection of CNV 
changes in re-analyzed data of B ALL single cell profiles by Wittkowski et al., Cancer Cell 20204 and Caron et al., 
Scientific Reports 20205. 

In addition to identifying CAR T-cells and their functional status, it would be beneficial if the authors could 
also identify TCR transcripts to support the idea that high CAR-expressing cells represent a subpopulation 
with high proliferative capacity. 

The reviewer proposes an attractive suggestion for further analyses of the single cell data by bringing 
together detection of CAR expression and TCR sequences. In fact, in the original submission, we already 
performed a comparison of CAR expression versus clonal expansion of the native TCR, which we 
calculated as the frequency of that TCR amongst all detected TCRs in the sample which was presented in 
Fig. 7k, and which we shown below. We observed that T cells with less expanded TCRs (i.e. naïve T cells) 
tended to have higher CAR expression, which supports the idea that naïve T cells are likely better suited 
for generating CAR T cell products. 



Expression levels of CAR transcripts compared clonal expansion of native T cell receptor (Fig. 7k). 

In the discussion, it would of interest to readers if the authors could compare the advantages and limitations 
of the ONT long-read platform with other available long-read sequencing platforms. 

We agree with the reviewer that this is an important point which was also raised by reviewer 1. We have 
included a short discussion on the rationale of choosing ONT over PacBio in the introduction. 

PacBio and Oxford Nanopore Technologies (ONT) are two established long-read sequencing 
platforms. PacBio was the first long-read sequencing technology to achieve low error rates 
comparable to Illumina12. However, with the recent introduction of the V14 chemistry, sequencing 
accuracy of ONT now also exceeds 99%,13 while also having lower sequencing costs  and providing 
a wider range of available flow cell sizes.  



Reviewer #3 

Summary 
This study introduces a repurposing technology of single cell cDNA technologies using priming of targets. 
The approach enables amplification of target regions that can then be sequenced with long-read technology 
which can genotype cells far more effectively than standard 10x sequencing. This has the major advantage 
of genotype-phenotype mapping at single cell resolution. The authors show how the technology can be 
applied in a wide-ranging set of genotypic variation scenarios in the leukemia setting. Overall, the paper 
represents an advance that will be of interest to the community. My comments are aimed at rounding out 
the paper such that while there is a laudable diversity of applications that are exemplified, the analytical 
components of how the methods are performing could be improved.  

We thank the reviewer for this summary and their favorable assessment of our work.

Critique: 
1. There have been other methods attempting to recapture mutations from scRNA libraries. Could the 
authors show a more explicit comparison to, for example, PMID: 31270458? It would be most convincing 
to perform a head-to-head comparison on the same library with sensitivity/specificity metrics of known 
clonal mutations, or mutations that are lineage specific. 

This is a terrific idea which we have implemented accordingly. Specifically, we have generated additional 
sequencing data with nanoranger in parallel with the genotyping of transcriptomes (GoT) protocol as 
suggested by the reviewer. As a result of this analysis, we have now added a new Figure 3, which we are 
also including below.   

By targeting three somatic nuclear mutations in AML1022 (DNMT3AR882H, RUNX1I177S, SF3B1K700E), we 
now show that nanoranger had a comparable performance to GoT for two of these targets. Notably, we are 
able to improve the performance of GoT by sequencing it with ONT and analyzing the respective data using 
nanoranger.  

To benchmark performance of nanoranger to Illumina-based mutation detection, we processed a 
bone marrow sample of an AML case with three somatic mutations (DNMT3AR882H, RUNX1I177S, 
SF3B1K700E) at relapse after allogeneic hematopoietic stem cell transplantation (HSCT) with 
nanoranger and with the 5’ genotyping of transcriptomes (GoT) protocol5 (Fig. 3a). In addition to 
the Illumina sequencing described in the published protocol, we sequenced the unfragmented GoT 
library on ONT, processing the raw data with the nanoranger analytical pipeline. Overall, 
nanoranger and GoT sequenced with Illumina achieved similar genotyping rates (4.8-19.2% for 
nanoranger; 5.5-19.1% for GoT) of scRNA-seq profiles for two of the 3 mutations (DNMT3AR882H, 
SF3B1K700E) that we targeted (Fig. 3b-c). For RUNX1I177S, located in close proximity to the 5’ end, 
GoT reverse transcriptase (RT) primers improved capture from 15.1% to 39.2% (Extended Data 
Fig. 5a-c). For all three targets, we observed that the performance of GoT increased by another 1-
7% when sequenced with ONT and processed with the nanoranger pipeline. Across all three 
experimental conditions, 99% cells with an identified SF3B1K700E mutation were recipient-derived 
(Methods), demonstrating the specificity of these approaches (Fig. 3d). The largest difference 
between data acquired with nanoranger, GoT sequenced on Illumina and GoT sequenced on ONT 
was the cell barcode representation (Fig. 3e). We speculated that this could be in part due to a 
lower capture efficiency of longer library fragments with Illumina sequencing. We therefore 
analyzed the minimal fragment length in reads from the GoT library that associated with cell 
barcodes identified with Illumina and ONT sequencing versus those that were only identified using 
ONT sequencing. This revealed that Illumina sequencing did not capture fragments that were 
longer than approximately 1.5kB, demonstrating the advantage of long-read sequencing for 
genotyping of loci that are not immediately adjacent to the 3’ or 5’ of a transcript (Fig. 3f).  

In sum, nanoranger has comparable performance to GoT, but genotypes different cell barcodes 
due to differences in sequencing capture rates of longer library fragments. The GoT ONT results 
with nanoranger processing indicate that including gene-specific RT primers during the cell 



encapsulation step can improve the genotyping rate of targets close to the 5’ end but requires the 
prescience to select targets prior to initiation of a single cell project. As illustrated by the numerous 
examples presented herein, the full nanoranger workflow enables re-analysis of archived cDNA 
libraries so that targets can be flexibly added to address new hypotheses that are generated after 
the initial single cell analysis. 

Figure 3 Comparison of nanoranger with GoT. 
a Experimental workflow of comparison between nanoranger and genotyping of transcriptomes (GoT). A pretreatment 
bone marrow sample of AML1022 at relapse after allogeneic hematopoietic stem cell transplantation (HSCT) was used 
for single cell cDNA library preparation according to the standard 10x Genomics 5’ gene expression protocol and 
following the modified 5’ GoT protocol with in-droplet inclusion of gene-specific reverse transcriptase primers. Both 
cDNAs were taken forward for sequencing with the standard nanoranger protocol (orange), GoT using Illumina 
sequencing (black) and GoT using Oxford Nanopore sequencing (blue).   
b, c Number of cells genotyped with each experimental condition (b) and percentage of genotyped cells across 
hematopoietic differentiation states (c).  
d Comparison of apparent single cell variant allele frequencies (VAFs) for SF3B1K700E in donor- versus recipient-derived 
cells to demonstrate specificity of genotyping with each experimental condition. 
e Comparison of cell barcodes identified with each condition. The venn diagrams demonstrate the number of cell 
barcodes that are uniquely identified or shared across experimental conditions. To enable direct comparison of captured 
cell barcodes, the cDNA for the GoT condition was used as input for nanoranger. 
f Minimal read length versus number of reads for cell barcodes identified with GoT on Illumina and ONT (black) versus 
those identified only with GoT on ONT (blue), demonstrating the preferential sequencing of shorter fragments with 
Illumina sequencing. 



2. Pg 4 - this sentence ending with ‘uncoupled from sample processing’ is unclear to me. Please clarify or 
reword. 

We apologize for this unspecific wording and have clarified the sentence as follows:  

We report the generation of a long-read based pipeline using limited primer sets to amplify target 
genes from 5’-biased 10x Genomics scRNA-seq whole-transcriptome cDNA libraries, thus enabling 
the flexible detection of a wide range of barcodes from single cell libraries, without spike-in of gene-
specific primers during cDNA library preparation.

3. Pg 5 - the sentence ‘Loci of interest…’ please clarify in the intro a bit more detail of how the method is 
distinct from others referred to in this sentence : ‘sophisticated primer panels are required to read out 
mutations using short-read sequencing, creating cumbersome and inefficient experimental workflows’ 

We agree with the reviewer that the introduction was very short, which was also remarked by reviewer 1. 
We have expanded the introduction as follows: 

Existing single-cell genotyping approaches include plate-4 and droplet-based protocols5–8, some of 
which entail adding locus-specific primers of predefined targets at the very initial steps of sample 
processing, at the stage of oil encapsulation. As all these approaches are based on Illumina short-
read sequencing, they require large numbers of primers for covering all possible mutational sites 
across entire genes or genetic regions like the mitochondrial chromosome7, creating cumbersome 
and inefficient experimental workflows. While Illumina currently provides the lowest cost per base 
at sequencing error rates below 1/1000, a clear limitation of short-read based sequencing is that it 
is suboptimal for long fragments, which creates considerable difficulties for detecting mutation sites 
that require amplicons exceeding a length of 500 nucleotides9. 

4. A more rigorous presentation of the deconcatenation method is needed. Could the authors present a 
sensitivity/specificity analysis for the readers? This section reads as insufficiently quantitative to be 
convincing. More specifically, the reader is left without a sense of false negative and false positive rates. 
Moreover, a discussion comment about how errors in deconcatentation would propagate and lead to 
spurious inference is warranted. 

We thank the reviewer for this very valuable suggestion, which we have addressed in detail. We reasoned 
that by re-analyzing synthetically concatenated data that was originally sequenced and processed with 
PacBio and its standard tools, we would be able to demonstrate that nanoranger was able to sensitively 
and specifically deconcatenate such data at the level of individual reads, genes, and cells.  
We would like to point out that conceptionally, nanoranger uses transcript alignment for identification of 
segments within reads. Therefore, segments that do not contain transcripts present in the reference 
transcriptome are ignored, while tools that are based on recognition of adapter sequences retain such 
segments. 

Finally, we assessed nanoranger’s performance for deconcatenating and quantifying MAS-ISO-
seq data from healthy donor peripheral blood mononuclear cells (PBMCs) sequenced with PacBio. 
When comparing the number of segments deconcatenated per read, nanoranger found 
consistently fewer segments (median 12; range 0-37) than the PacBio processing tool skera 
(median 15; range 0-16), yielding a total of 85,387,903 and 110,127,015 segments (Extended Data 
Fig. 1e-f). This is because nanoranger identifies only segments that align to the reference 
transcriptome (gencode v44) and therefore does not recognize non-human transcripts, genomic 
contamination, intronic or unannotated transcripts, such as repeat elements. Nevertheless, the 
mean number of detected molecules per gene (141 vs. 55) and per cell (2,580 vs. 1,650) were 
highly correlated and consistently higher with nanoranger compared to skera (r = 0.88 and 0.97) 
(Extended Data Fig. 1g-h), likely due to differences in the underlying reference transcriptome and 
the annotation method. Similarly, nanoranger identified genes in more cells (122 vs. 50) and more 
genes per cell (1,380 vs. 867) (r = 0.87 and 0.96) (Extended Data Fig. 1i-j). This resulted in 
identification of very similar cell types between the two analytical pipelines but better capture of 



immunologically relevant genes such as HLA-E, IGHM or IL17RA with nanoranger (Extended Data 
Fig. 2a-b).  

Benchmarking of nanoranger versus PacBio (Extended Data Fig. 1). Synthetically concatenated data sequenced 
on PacBio were processed with nanoranger and compared to results of the PacBio processing pipeline. e, f Number of 
segments extracted from each read with nanoranger and skera. g, h Number of identified molecules per gene (g) and 
per cell (h) with nanoranger and the PacBio analysis pipeline. i, j Number of cell barcodes associated with genes and 
number of genes detected per cell barcode with nanoranger and the PacBio analysis pipeline.

For Extended Data Fig. 2a-b see next page. 

5. Pg 7 - can the CDR3 sequences be used to estimate the sequencing error rate in ONT using this method? 
This would be a nice and accessible comparison of the illumina approach and would allow for ‘calibration’ 
of sequencing error. 

We thank the reviewer for this creative idea to utilize CDR3 sequences to determinate sequencing error 
rates of ONT compared to Illumina. We have implemented this approach as follows: based on consensus 
sequences that were determined for each TCR clone, we generated a TCR repertoire reference against 
which all TCR reads of that library were aligned. This permitted us to quantify the number of mismatches 
and indels of each read against the consensus.  
This analysis demonstrated that we could validate the 99% sequencing accuracy claimed by Oxford 
Nanopore Technologies and demonstrates the ability of ONT to be used for detection of natural genetic 
barcodes. We show these analyses in the new Extended Data Figure 2b-f, also shown below).  

The data also afforded us the ability to estimate the sequencing performance of V14 ONT chemistry 
and Illumina. By comparing TCR reads against their respective consensus sequence, we observed 
per-base mismatch (0.54% [Illumina] vs. 0.83% [ONT]) and indel rates (0.08% [Illumina] and 0.25% 
[ONT]) that were slightly higher with ONT (p < 0.001) (Extended Data Fig. 2c-e). Consistent with 
known characteristics of ONT10,18,19, the indel rate increased in reads with homopolymers such as 
guanine-repeats (Extended Data Fig. 2f-g).



Comparison of sequencing error with Illumina and V14 Oxford Nanopore Technology (ONT) chemistry 
(Extended Data Fig. 2).  
a, b UMAP projection of cell types identified based on count matrices generated with nanoranger and the PacBio 
analysis pipeline (a) alongside feature plots of genes with higher detection rate using nanoranger (b). c T cell receptor 
(TCR) reads were aligned against their respective consensus sequence, enabling to determine mismatch and indel 
rates of each read. d Per-base mismatch rate (left) and indel rate (right) of each read with Illumina and ONT sequencing.  
e Distribution of mismatches and indels per read for Illumina (grey) and ONT (orange). f Statistics of mismatch and 
indel rates with Illumina and ONT. g Rate of indels with Illumina (grey) and ONT (orange) increases with higher lengths 
of guanine homopolymers in TCR reads. Statistical testing with t-test. 

6. Pg 8 - how much would the TP53 frameshift lead to non-sense mediated decay. Is it possible to read this 
out of the data? 

This is a fantastic idea. Assuming that two TP53 alleles are each equally transcribed and one contains a 
frameshift mutation, it would indeed be possible to approximate nonsense mediated decay through a 
comparison of the wildtype and the mutated TP53 transcript levels. However, K562 cells only have one 
mutated TP53 allele, the other being deleted (PMID 17088437, 18277095, 8246608). This analytical 
approach is therefore not possible in K562. This is also reflected by the much lower expression of TP53 in 
K562 that we show in Fig. 2f. 



Figure 2f. Expression of TP53 and percentage of cells with detectable TP53 transcripts. 

7. Pg 9, section ending with ‘Thus, we caution that while detection of somatic mutations was specific for 
leukemic clones, their absence is not sufficient for identification of wildtype cells.’ How much can phasing 
of heterozygous polymorphisms help here? Are there any SNPs recovered in the data- can this calibrate 
allele dropout vs absence of mutation more quantitatively? 

Similar to the above query, the proposed strategy is in theory a very elegant way to overcome the issue of 
allelic drop-out. Through read-out of additional germline SNPs that colocalize on the same transcript from 
the same allele as the somatic mutation, it would be possible to distinguish true wildtype cells from those 
where the mutated allele was not captured. We have manually reviewed all amplicons that were generated 
for this manuscript, but unfortunately, we were unable to find a suitable SNP colocalizing on the same 
transcripts as a somatic mutation for this kind of analysis. This likely relates to the fact that on average 
germline SNPs are found only every 1-2kB (PMID 11237013) and most amplicons generated for our 
analyses have a length of only about 1kB or less.  

Nevertheless, we did identify a germline SNP that distinguishes wildtype CD28 from CD28 as part of the 
expression vector of the CD19 CAR. To illustrate the feasibility of this approach, we now include additional 
analyses that demonstrate how a germline SNP can distinguish wildtype CD28 from transgenic CD28 (new 
Extended Data Fig. 12f, g, and also shown below). 

Distinguishing wildtype CD28 and CD28 transcripts as part of the CAR construct using a single-nucleotide 
polymorphism (SNP) in CD28 (Extended Data Fig. 12). f Length distribution of transcripts containing the CD28 
germline SNP (blue) versus the CD28 SNP encoded by the CAR expression vector (red). g High correlation of identified 
CAR transcripts and transcripts containing the CAR-specific CD28 SNP per cell.  

We noticed that the CD28 domain of axicabtagene ciloleucel harbored a SNP that distinguishes 
wildtype CD28 transcripts from CD28 expression as part of the CAR transgene (Extended Data 



Fig. 12e-f), illustrating how germline SNPs can serve as proxies for molecular features in long-read 
sequencing data (i.e. “phasing”).  

8. Pg 9 - the compound heterozygous TP53 mutations should be out of phase. Can you quantify this? Are 
the reads long enough such that both mutations are covered? Demonstrating they are out of phase would 
be very convincing. 

We thank the reviewer for this additional query regarding germline SNPs colocalizing to somatic mutations. 
As mentioned in response to query 6 and 7, K562 only express the TP53 mutated allele, and do not have 
a wildtype TP53 allele. Therefore, this analysis is not feasible using this cell line.  

9. Pg 12 - Phasing of SNPs might also help in deconvoluting donor/recipient cells- can the authors 
corroborate/support the mtDNA results with SNPs/haplotype analysis? 

We have indeed performed a comparison of mtDNA-based and SNP-based donor/recipient deconvolution 
(using the tool souporcell) as shown in Extended Data Fig. 10g. This demonstrates the high agreement of 
both methods for cells with sufficient coverage of mitochondrial transcripts.  

Extended Data Fig. 10g. Concordance of donor and recipient annotation with mtDNA variants and souporcell3. The 
relevant fields are highlighted. Due to insufficient coverage of cells with little mtDNA abundance, mtDNA variants are 
unable to assign some cells that souporcell can annotate. 

10. Discussion - curiously the discussion does not align well with the claims presented in the results. 
Suggest a rewrite of the discussion that more closely aligns with the main claims of the paper and their 
implications for the field. This is more of a high level subjective comment in that I found after reading the 
results, the discussion seemed disconnected. 

We thank the reviewer for this suggestion. In this revised manuscript we include a discussion that 
incorporates several more specific points that were raised by all four reviewers.  

While long-read sequencing can improve the detection of molecular features, the ceiling for any 
genotyping approach is currently determined by the low, incomplete representation of many 
transcripts including absence of longer variants and cannot be merely overcome through optimized 
amplicon-generation or deeper sequencing. […] 
Further technical improvements to our approach could pave the way for its adoption as a clinical 
tool for immune monitoring in the future. Increasing the number of genotyped features per sample 
could extend target detection to other, less frequently mutated genes or even non-recurrent, private 
somatic mutations. This would make possible the detection and characterization of lowly abundant 
tumor cells, for example to identify the phenotype of residual malignant cells after systemic therapy 
or of relapse-initiating populations at incipient relapse. Such combined phenotypic and genetic 
information could potentially be used to instruct clinical decision making and thus provides a clear 
translational application for our technology.  

Please also see the next comment. 



11. Some approaches are now emerging that co-register DNAseq and RNAseq from the same cells. Could 
the authors discuss these emergent technologies - especially since there are potential issues of trying to 
genotype RNA : e.g. RNAedits, allele-specific expression due to epigenetic control, very low expressed 
transcripts etc.. that would yield incomplete or worse misinterpretation of variations. 
Although https://pubmed.ncbi.nlm.nih.gov/36798358/ is not yet published, it is nevertheless highly relevant 
and should be placed in context. 

This is a great suggestion. We now mention this work in our revised discussion.  

Co-sequencing of DNA and RNA, currently under developed by several academic and industry 
groups.39–41, may overcome current limitations in genotyping while preserving the ability to dissect 
transcriptional states. 

https://secure-web.cisco.com/1oOlRXtUr402EqRiyc-KH1Lgvc2A8eEy5muxSarchqXc4csIACUeLrX7GOzuY9cy1fe57m7IxwtdsINaq7ssk_XmmGS01plEG2BA853z3VN90AgfXwaA75vbcQovM8HMIyHbB8cRTV0kHc9DlDhHw6gjh8dCsMrZJxpBEo-npr5Zhp1aUQsknRoJ5f3SXcJ2jgpPs78XZo97yJtN_1LkH42zgU2Eof_jy_b-8sNP5aa9X3Q7cdr1bPAbScptecic-5lOxZlGUj1SxyskjqELe_XAoTEWv8ub2w2FstYH71dmfeMkBF-GxVhI2ktWtmUSH6XjJZwST2MH5AeRzt4UNwQ/https%3A%2F%2Fpubmed.ncbi.nlm.nih.gov%2F36798358%2F


Reviewer #4 

Penter et al. reported an integrative single-cell analysis method for simultaneous genotyping and 
phenotyping with the aid of long-read sequencing. They presented the utility of the platform by analyzing 
acute myeloid leukemia samples carrying several fusion genes. 

Essentially this method is the combination of short-read and long-read error-correct sequencing of scRNA-
seq libraries of the same origin. Using the long-read information, identification of SNVs (either on the 
chromosomes or mitochondrial DNA) or cell-specific sequences (such as TCR/BCR and CAR-T gene 
sequences) was possible as shown using cell lines and clinical samples. Discrimination between transcript 
variants was also possible and may help analyzing CD45RA/RO or CTLA-4 expression. 

We thank the reviewer for the summary of our work. 

The drawbacks of the method are related to those of detecting mutations using cDNA. As the authors have 
shown using Kasumi-1 and K562 cells, truncating variants are prone to nonsense-mediated decay and are 
difficult to identify from cDNA. Fusion genes having breakpoints that are >2,000 bp distant from the 5’- end 
are also difficult to identify because of incomplete reverse transcription. 

The reviewer is correct in this limitation. We would like to point out that this is a general issue of any 
transcriptome-based genotyping approach and not specific to our method. The strength of our approach is 
that we can identify multiple layers of information. By integrating different genetic barcodes with low and 
high genotyping rates (different somatic nuclear and mitochondrial DNA mutations), it is possible to greatly 
increase the number of cells for which at least one mutation can be detected. 

While the reviewer believes in the importance of validating new systems, the most part of the manuscript 
(corresponding to figures 2-6) describes validation experiments using the method, and the presentation of 
results are superficial and are within the range of the knowledge of previous publications. The reviewer is 
unsure why the authors presented fusion gene detection, mutation detection, mitochondrial profiling, and 
transcript variant analysis separately when the major strength of the system is to evaluate them 
simultaneously. 

We thank the reviewer for raising this question and agree with the reviewer that an integrated analysis of 
the different genetic features is a powerful way of utilizing our approach. However, there are few biological 
questions for which an integrated analysis of all possible genetic and transcriptomic features is useful, as 
their relevance is highly context specific. We would like to point out that our analyses already included 
several examples of integration of multiple data layers, such as CNV and somatic mutations (Fig. 4) or 
mitochondrial and somatic nuclear DNA mutations (Fig. 5). 



Co-existence of two de-novo AML clones. Detection of the somatic nuclear mutations NPM1W287fs and NPM1W288fs

demonstrates co-existence of two AML clones that are different in presence of FLT3-ITD and loss of heterozygosity on 
chromosome 13 as well as several mitochondrial DNA mutations (new Fig. 6c) 

Nonetheless, to further explore the ability for data integration, we now provide an additional analysis (new 
Fig. 6c, also shown above), in which we demonstrate the read-out of four different modalities: A 24-
nucleotide internal tandem duplication (FLT3-ITD), two mutually exclusive NPM1 somatic mutations 
(NPM1W287fs and NPM1W288fs), a loss of heterozygosity of chromosome 13 (loh(13)) and several 
mitochondrial DNA mutations. Together, they demonstrate a comprehensive characterization of an unusual 
case of two co-occurring AML clones that likely arose independently within the same patient.  
This case illustrates the strength of our approach: currently available bulk sequencing methods likely would 
not have been able to identify these two co-occurring clones. Indeed, the clinical genotyping of this 
specimen only reported one of the two NPM1 mutations. 

In another notable example (de-novo AML1) (Table 2), we discovered two leukemic clones defined 
by distinct mutually exclusive mutations in NPM1. Clone 1 (NPM1W287fs) also harbored FLT3-ITD 
and loh(13), which were absent in clone 2 (NPM1W288fs). By evaluating mtDNA mutations, we 
observed that both clones could be identified by a total of 6 mutually exclusive mtDNA mutations 
(Fig. 6a-c). Both clones were further distinguished by their phenotypes: clone 1 differentiated along 
the entire myeloid, megakaryocytic, and erythroid trajectory, while clone 2 had a more confined 
progenitor-like phenotype. These findings were confirmed by analyzing the distribution of the 
mtDNA mutations. Within GMP-like cells, further gene expression differences between both clones 
of de-novo AML1 could be identified such as differential expression of myeloid markers like LYZ or 
CST3 (Fig. 6d-e). This case demonstrates that, like secondary AML and MDS, de-novo AML can 
also differentiate from HSC-like to monocytic or even megakaryocytic and erythroid populations, 
which we also observed in two additional cases of de-novo AML (Extended Data Fig. 11a-b).

The reviewer is unsure why the authors analyzed ~1,000 cells per analysis when discussing the intratumor 
heterogeneity.

We thank the reviewer for this important query. The number of analyzed cells is dictated by the inherent 
features of cDNA that we discuss in our manuscript, like transcriptional bursting or the uneven coverage of 
transcripts from 5’ to 3’. The numbers of genotyped cells that we were able to obtain are comparable to 
similar works that have used short-read sequencing for genotyping of AML single cell cDNA libraries (for 
example PMID 37098346 or 30827681). 



Genotyping rate of different recurrently mutated genes in AML/MDS. Shown are the number of cell barcodes that 
are associated with high-quality cells (Extended Data Fig. 6a). 

Due to these inherent limitations of current cDNA chemistries, the number of genotyped cells varies greatly 
for different targets. To illustrate this better, we provide an additional figure (new Extended Data Fig. 6a), 
in which we demonstrate that for genes such as splicing factors (SRSF2, SF3B1 and U2AF1) or NPM1, 
which are all highly relevant for AML biology, the number of genotyped cells often exceeds 1,000. 
We anticipate that as the throughput of single cell technologies increases and new single cell chemistries 
optimized for long-read sequencing are introduced, the number of cells that can be genotyped will improve 
further.    



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors addressed all my comments. 

Leng Han 

Reviewer #2 (Remarks to the Author):

The authors have adequately addressed this reviewer's comments and concerns in this 

revised submission 

Reviewer #3 (Remarks to the Author):

The authors have been very responsive to my comments. I have no further concerns and 

recommend publication.


