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Modeling of Electrochemical CO2 Reduction

To simulate the CO; reduction reaction (CO2RR) mechanism, we initiated the process with
CO- adsorption, followed by two protonation steps to form *COOH and *CO. Subsequently,
we examined the *CO dimerization, which is reported as the rate-determining step (RDS) for
the production of ethylene.l: 2 Also, the competing hydrogen evolution reaction (HER) was

considered.

(R1a, R2a, R3a, R4a, R5a, R6a) and (R1b, R2b, R2c, R3b, R4b, R5b, R5¢c, R6b, R6¢)
represent the modeled reactions for Cu (100) and AA/Cu (100), respectively. Using the liquid
configuration obtained from the AIMD simulations, we calculated the reaction Gibbs energies
for the key reactions. Note that the initial and final states have an identical number of atoms in
all cases except for the initial CO adsorption step (1) and the second step of HER (6). The
energy of the initial state of CO> adsorption was calculated as the sum of energies of the bare
surface and gaseous CO2 molecule and the energy of the final state of H> production was
calculated as the sum of energies of the bare surface and gaseous H> molecule. In the following

reaction expressions, * denotes the catalyst surface.
(1) CO2 adsorption
x +CO, (g) = * CO, (R1a)
x +AA + CO, (g) —»*CO, + AA (R1b)

(2) Protonation of *CO-

* CO, + H,0 + e~ -»xCOOH + OH™ (R2a)
*CO, + H,0 + AA+ e~ —»xCOOH + OH™ + AA (R2Db)
* CO, + H,0 + AA + e~ -+ COOH + H,0 + ASC™ (R2c)



(3) Protonation of *COOH

* COOH + H,0+e~ —»*CO +H,0+ OH™ (R3a)

« COOH + H,0 + AA + e~ >+ CO + 2H,0 + ASC™ (R3b)

(4) *CO dimerization

* 2C0O —* OCCO (R4a)

«2C0 + AA —* 0CCO + AA (R4b)

(5) HER (*H formation)

*+H,0+ e~ »xH+ OH™ (R5a)
x+H,0 + AA+ e~ >xH + AA + OH~ (R5b)
«+H,0 + AA+ e~ > H + H,0 + ASC™ (R5¢)

(6) HER (H2 production)

*H+ H,0+e” -+ OH™ + H, (g) (R62)
«H+H,0+AA+ e~ >+ + OH™ + AA + H, (g) (R6b)
«H+ H,0 + AA+ e~ >+ + H,0 + ASC™ + H, (g) (R6c)

Functional groups in graphene quantum dots (GQDs) can affect CO,RR.3 However, in our work,
the effect of GQDs on CO2RR is not dominant for cAA-CuNW because most GQDs lost their
functional groups by the reduction during AA introduction and the types of GQD functional
groups are less controlled. Therefore, since the presence of GQDs is not expected to have a

significant impact on the DFT results, we excluded GQDs from the simulation model.
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Supplementary Fig. 1 | Schematic illustration of the interaction between AA, GQDs, and Cu
surface.

The functional groups of GQDs such as hydroxyl and carboxyl group can be interacted and
chelated to the nanometer-scale native oxide layer on the Cu surface.* ° In the reaction between
GQD and AA, AA removes impure oxygenated functional group in GQD through nucleophilic
substitution (Sn2) reaction and reduces GQD through thermal elimination.® ” Since the reaction
between AA and GQD proceeded for 1 h at 95°C, most intermediates formed during the Sn2

reaction were eliminated.

The reduced GQDs can be combined with AA via physisorption, such as & interaction at
the basal plane or hydrogen bonding with edge functional groups. Molecules with endiol
groups (e.g. catechol), carboxyl group, or aromatic rings can form 2-dimensional

supramolecular systems with reduced graphene through = interaction or hydrogen bonding.8!



Supplementary Fig. 2 | SEM image of as-synthesized cAA-CuNW. SEM image shows the
surface structure and uniform distribution of CuNWs with AA and GQDs.



Supplementary Fig. 3 | SEM images of as-synthesized CuNWs according to the degree of
surface hybridization. SEM images of (a) p-CuNW, (b) G-CuNW, (c) AA-CuNW, and (d)
CAA-CuNW. All CuNWs were prepared by a sonication-mediated wrapping method. There
was no significant deformation in their one-dimensional (1D) morphology.



cAA-CuNW

Supplementary Fig. 4 | TEM images of as-synthesized CuNW according to the degree of
surface hybridization. The surface nanostructure of each CUNW was investigated as TEM
images of (a) p-CuNW, (b) G-CuNW, (c) AA-CuNW, and (d) cAA-CuNW.



Supplementary Fig. 5 | Surface Cu oxidation during the synthesis of AA-CuNW. a TEM
image of the oxidized AA-CuNW. b Magnified TEM image at the surface area of AA-CuNW.
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Supplementary Fig. 6 | High-resolution (HR) TEM images of CUNW to investigate the
crystalline phase and atomic arrangement. Crystal structures of the core Cu in (a) p-CuNW,
(b) G-CuNW, (c) AA-CuNW, and (d) cAA-CuNW. Inset: Fast Fourier transform (FFT) image
of the corresponding pure Cu phase.
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Supplementary Fig. 7 | Cu, C, O elemental distributions of CUNWSs. TEM EDS mapping
of Cu, C, O, and the combination of Cu-C-O for (a—d) G-CuNW, (e-h) AA-CuNW, and (i-I)
cAA-CuNW, respectively.
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Supplementary Fig. 8|TEM EDS spectrum of CuNWs for atomic faction analysis.
Atomic elements of Cu, C, and O were detected in (a) G-CuNW, (b) AA-CuNW, and (c) cCAA-
CuNW.
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Supplementary Fig. 9 | C 1s XPS spectra of GQDs separated from cAA-CuNW. To
investigate the oxidation states and chemical bonding of GQD in cAA-CuNW, GQDs were
separated from cAA-CuNW via repeated ultrasonication and centrifugation.
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Supplementary Fig. 10|TGA analysis of G-CuNW and cAA-CuNW to verify the
presence of AA in cCAA-CuNW. The large weight loss of cCAA-CuNW near 190°C is due to
the decomposition of AA.
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Supplementary Fig. 11 | Crystal structure analysis of CuNWs after CO2RR. a XRD
patterns of p-CuNW, G-CuNW, AA-CuNW, and cAA-CuNW on PTFE substrate before
CO2RR. b Magnified XRD patterns of each sample before CO2RR. ¢ XRD patterns of p-CuNW,
G-CuNW, AA-CuNW, and cAA-CuNW on PTFE substrate after CO2RR. d Magnified XRD
patterns of each sample after CO2RR.
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Supplementary Fig. 12 | Investigation on microstructures of CUNWs after CO2RR. SEM
(top) and HR-SEM (bottom) images of (a, b) p-CuNW, (c, d) G-CuNW, (e, f) AA-CuNW, and
(9, h) cCAA-CuNW after COzRR.
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Supplementary Fig. 13 | Investigation on surface structures of CuNWs after CO2RR.
TEM (top) and HR-TEM (bottom) images of (a, b) p-CuNW, (c, d) G-CuNW, (e, f) AA-CuNW,
and (g, h) cAA-CuNW after COzRR.
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Supplementary Fig. 14 | Investigation on elemental distribution of CuNWs after CO2RR.
TEM EDS mapping of Cu, C, O, and the combination of Cu-C-O for (a—d) p-CuNW, (e-h) G-
CuNW, (i-1) AA-CuNW, and (m—p) cAA-CuNW after CO2RR, respectively.
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Supplementary Fig. 15 | Redox behavior of nanoconfined AA on GQDs without gas supply.
a Cyclic voltammetry (CV) of a GCE coated with nanoconfined AA on GQDs ina 1 M KOH
electrolyte. Inset: 2" cycle to 5" cycle CV of the GCE coated with nanoconfined AA on GQDs.
As the cycle progressed, the integration of the oxidation peak (0.18 V vs Ag/AgCl) gradually
decreased, while that of the reduction peak (-0.30 V vs Ag/AgCl) increased. b CVs from the
intact GCE and GCE coated with GQDs. All CVs were taken from the 3" cycle.
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Supplementary Fig. 16 | Redox behavior of AA and nanoconfined AA on GQDs under
N2 and COz2 gas. a CV plot of GCE with AA dissolved in 0.1 M KHCO:s electrolyte. b CV plot
of GCE coated with nanoconfined AA on GQDs in 0.1 M KHCO:s electrolyte. 4th cycle of the
CV plot of GCE coated with nanoconfined AA on GQDs under (¢) N2 and (d) CO> gas.
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Supplementary Fig. 17 | Schematic illustration of our strategy for CO:2 capture in
atmosphere. The redox behavior of nanoconfined AA on GQDs contributes to CO> capture by
promoting CO»-to-*CO conversion during CO2RR.
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Supplementary Fig. 18 | Linear sweep voltammetry (LSV) of nanoconfined AA on GQDs
before and after CO2RR. LSV of nanoconfined AA on GQDs (a) before and (b) after CO.RR
in 0.1 M KHCOg3 electrolyte. ¢ Flow chart to investigate the redox behavior of AA/DHA in the
potential range of LSV and CO2RR. Nanoconfined AA on GQDs was prepared on GCE and
CO2RR was conducted at a constant potential of —1.8 V (vs RHE, non-iR corrected) in 0.1 M

KHCO:s electrolyte.
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Supplementary Fig. 19 | HPLC analysis of the extracted solution from AA- and cAA-
CuNW to verify the immobilization effect of Nafion on AA. Chromatographs of the
extracted solution with extraction times of (a) 30 and (b) 60 min. The integration of the peak
is much larger for CUNW without Nafion.
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Supplementary Fig. 20 | HPLC analysis of standard solutions of AA and dehydroascorbic
acid (DHA). The chromatograph shows that the peak with a retention time of ~5.8 min

corresponds to DHA under the same HPLC conditions.
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Supplementary Fig. 21 | HPLC calibration data of DHA. a Chromatograph of DHA solution

with concentrations of 0.5, 1, and 2 mM. b Calibration curve for DHA. The correlation
coefficient (R?) for DHA was 0.998.
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Supplementary Fig. 22 | Schematic of flow cell components including electrodes and

membrane for electrochemical COz2RR. Electrolytes for the cathode and anode are circulated
independently, and CO: gas is supplied directly to the gas diffusion electrode.
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Supplementary Fig. 23 | Electrochemical CO2RR performance of CuNWs. Faradaic
efficiencies (FEs) and current densities for (a) p-CuNW, (b) G-CuNW, (c) AA-CuNW, and (d)
CAA-CuNW. All tests were performed in a flow cell electrolyzer with 1 M KOH electrolyte.
All the error bars represent standard deviation based on three independent samples.
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Supplementary Fig. 24 | Comparisons of the product selectivities. FEs of CO2RR products
for (a) p-CuNW, (b) G-CuNW, (c) AA-CuNW, and (d) cAA-CuNW. All the error bars
represent standard deviation based on three independent samples.
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Supplementary Fig. 25 | Investigation of CO2RR of G-CuNW at extended potential range.
Gaseous product FEs and total current densities for G-CuNW up to —-1.89 V (vs RHE). All the
error bars represent standard deviation based on three independent samples.
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Supplementary Fig. 26 | Gaseous product selectivity of hybridization materials without
CuNW. FEs of the gaseous products of (a, ¢) pristine GQD and (b, d) nanoconfined AA on
GQDs. The electrodes were fabricated by spray-coating each material on porous carbon paper-
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Supplementary Fig. 27 | Wetting properties of the CuNWs. Water contact angle of (a) p-
CuNW, (b) G-CuNW, (c) AA-CuNW, and (d) cAA-CuNW on PTFE substrates.

Hydrophobicity is an important property of molecular additives in enhancing CO2 mass
transport. Improving the hydrophobicity of the catalyst surface can increase *CO coverage by
participating in kinetic control between *CO and *H.2 However, GQD is hydrophilic due to
large amount of oxygen containing functional groups on edge site.'® The water contact angles
of G-CuNW and cAA-CuNW were slightly lower than others due to hydrophilic properties of
GQDs. Therefore, the hydrophilic properties of GQDs are not beneficial for high current

density CO2RR.
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Supplementary Fig. 28 | Effect of DHA on electrochemical CO2RR performance of
CuNW. a Gaseous product FEs and total current densities of DHA-CuNW up to -1.47 V (vs
RHE). b Comparison of the gaseous product selectivity of p-CuNW, DHA-CuNW, and AA-
CuNW. All the error bars represent standard deviation based on three independent samples.
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Supplementary Fig. 29 | Comparison of the C2Hs4 and CHas selectivity of CuNWs.
The ratio of CoHs FE to CH4 FE (C2Hs FE/CH4 FE) in p-CuNW, G-CuNW, AA-CuNW, and
CAA-CuNW according to applied potentials.
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Supplementary Fig. 30 | Comparisons of the H2 and CO productivity of CUNWSs in CO2
electrolysis. Partial current densities versus potentials of p-CuNW, G-CuNW, AA-CuNW, and
CAA-CuNW were compared in terms of (a) Hz and (b) CO. All the error bars represent standard
deviation based on three independent samples.
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Supplementary Fig. 31 | Electrochemically active surface area (ECSA) measurement for
CuNWs. CV plot of (a) p-CuNW, (b) G-CuNW, (c) AA-CuNW, and (d) cAA-CuUNW in 1 M
KOH electrolyte. e electrochemical double-layer capacitance (Cq;) and (f) the calculated ECSA
for CUNWs. The ECSA was characterized by calculation of C4,; over specific capacitance (Cs),
and C4q was determined from the equation: Cq = Aj(j, — jc)/2v, where j, and j. are
anodic and cathodic current densities and v is the scan rate. C; in 1 M KOH electrolyte was

assumed as 0.022 mF/cm?.
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Supplementary Fig. 32 | Comparison of ECSA-normalized CO2RR productivities
between CuNWs. Partial current densities versus potentials of p-CuNW, G-CuNW, AA-CuNW,
and cAA-CuNW were compared in terms of (a) Hz, (b) CO, and (c) C2Ha. All the error bars
represent standard deviation based on three independent samples.
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Supplementary Fig. 33 | Effect of KOH concentration on shifting the potential of high-
rate C2Ha4 production of cAA-CuNW. a Gaseous product FEs and total current densities for
CAA-CuNW with 2 M KOH electrolyte. b Comparison of Jconsa versus potentials of cAA-
CuNW according to the KOH concentration. All the error bars represent standard deviatio
n based on three independent samples.
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Supplementary Fig. 34 | Gaseous product selectivity of CUNW modified with AA and
GQD without a preceding reaction. a Gaseous product FEs and total current densities of
CuNW modified with AA and GQD without a preceding reaction. b Line plot of gaseous
product FEs of CUNW modified with AA and GQD without a preceding reaction. The modified
CuNW was prepared by wrapping with AA and GQD mixed solution through a sonication-
mediated method without chemical reaction to compare with the CO2RR performance of cAA-
CuNW. All the error bars represent standard deviation based on three independent
measurements.
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Supplementary Fig. 36 | Comparison of COz2RR stability between p-CuNW and cAA-
CuNW in flow cell electrolyzer with 1 M KOH electrolyte. CO2RR of p-CuNW and cAA-
CuNW proceeded at a total current density of 300 mA/cm? by chronopotentiometry.
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Supplementary Fig. 37 | FT-IR spectra of CAA-CuNW before and after CO2RR stability
test in the flow cell. When we compared the FT-IR peaks before and after CO2RR of cAA-
CuNW, the peaks for C=C stretching vibration, C=C—O asymmetric stretching vibration of the
enol-hydroxyl group, and C—O vibration in the functional groups of AA were identical. The
peaks at 1,207 and 1,153 cm™ corresponding to asymmetric and symmetric CF stretch mode
in Nafion, respectively. FT-IR analysis was performed by FT-IR spectrometer (Nicolet
Continuum, Thermo Scientific) with attenuated total reflection (ATR) accessory.
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Supplementary Fig. 38 | Long-term C2Hs production of cAA-CuNW in a membrane

electrode assembly (MEA) electrolyzer with 0.1 M KHCOs electrolyte. CO2RR of cAA-

CuNW proceeded at a total current density of 150 mA/cm? by chronopotentiometry. 1rO;

deposited Ti frit was used as an anode. The cathode and anode were separated by anion

exchange membrane (Sustainion X37-50 RT, Dioxide Materials).
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Supplementary Fig. 39 | Schematic of the flow cell reactor for in situ Raman spectroscopic
analysis during the electrochemical CO2RR. The immersion objective lens is placed through
the exposed top to observe reaction intermediates on the sample, and CO- gas is supplied from
the backside of the gas diffusion electrode.
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Supplementary Fig. 40 | Real-time observation of *CO bindings from CuNWSs under N2
gas. In situ Raman spectra of (a) p-CuNW, (b) G-CuNW, (c) AA-CuNW, and (d) cAA-CuNW
obtained in the region of 200-700 cm™* according to the applied potentials under Nz gas.
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Supplementary Fig. 41 | Real-time observation of *CO bindings from DHA-CuNW. In
situ Raman spectra of DHA-CuNW obtained in the region of 200-700 cm™ according to the
applied potentials under (a) N2 and (b) CO2 gas. ¢ In situ Raman spectra of DHA-CuNW
obtained in the region of 1,800-2,400 cm™ according to the applied potentials under CO; gas.
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Supplementary Fig. 42| Monitoring *CO2~ on CuNWs during CO2RR. In situ Raman
spectra of (a, b) p-CuNW and (c, d) cAA-CuNW obtained during CO2RR according to the
applied potentials in the region of 200-700 cm™ (top) and 1,400-1,700 cm™* (bottom). Cu-CO
stretching peak for p-CuNW and cAA-CuNW appeared with the decrease of *CO, peak
intensity.
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Supplementary Fig. 43 | Real-time observation of *CO bindings from CuNWSs under
CO2+Ar mixed gas. In situ Raman spectra of (a, b) p-CuNW, and (c, d) cAA-CuNW obtained
during CO2RR according to the applied potentials in the region of 200-700 cm™ (top) and

1,800-2,400 cm'* (bottom).
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Supplementary Fig. 44 | Real-time oxidation state analysis of p-CuNW and cAA-CuNW
during the CO2RR. Operando Cu K-edge XANES spectra obtained from (a) p-CuNW and (b)

CAA-CuNW. The black and gray lines represent reference Cu and oxidized Cu spectra,
respectively.
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Supplementary Fig. 45 | Fitting curves of operando Cu K-edge EXAFS in R-space for p-

CuNW and cAA-CuNW before and during the COzRR. Experimental curves (colored
circles) and fitted curves (black line) of (a) p-CuNW and (b) cAA-CuNW.
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Supplementary Fig. 46 | Atomic structures of (a) AA molecule and (b) ASC" ion. Color code:
black (C), white (H) and red (O). We considered the deprotonation of Hoxi for CO2RR.**
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Supplementary Fig. 47 | Atomic structures of *CO. adsorption on (a) AA/Cu (100) and (b)
Cu (100). Color code: black (C), white (H), yellow (H), red (O), purple (K), and orange (Cu).
Yellow H atoms are considered for the protonation during the CO2RR.
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Supplementary Fig. 48 | Atomic structures of (a) the initial and (b) the final states of *CO>
protonation on Cu (100) (* CO, + H,0 + e~ - COOH + OH™).
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Supplementary Fig. 49 | The Gibbs free energy diagram of the HER. The reaction pathway

involving the deprotonation of AA is highlighted with white circles, while H2O is the proton
source otherwise.
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Supplementary Fig. 50 | An illustration of *CO, adsorption on Cu (100) and its electrostatic
potential level along the z-direction at 0 VRrHe.
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Supplementary Fig. 51 | The bond lengths between the hydrogen atoms in four distinct OH
groups (Hoxi-4) in AA and the oxygen atom near the electrolyte (Oe¢) of *CO2 measured during
the last 3 ps of AIMD simulations.
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Supplementary Table 1 | Comparison of various Cu-based CO2RR catalysts for high-current
C2Ha4 production.

Cell J Jeans CoHa \Y,
Catalyst type Electrolyte (mAJem?) (mA/em?)  FE (%) (vs RHE) Ref.
1 M KOH 888 539 60.7 -1.55
CAA-  Flow This work
CuNW cell
2 M KOH 805 453 56.3 -0.57
Angew Chem. Int.
S- Flow Ed. 61,
HKUST-1  cell 1 MKOH 400 229 572 132 e202111700,
(2022).%5
Quiasi-
graphitic ~ Flow i Nat. Commun. 12,
Cshellon  cell 1 M KOH 400 284.4 71.1 0.69 3765, (2021).1°
Cu
Nanoporo Flow Adv. Mater. 30,
us Cu cell 1 MKOH 653 252 386 -0.67 1803111, (2018).7
Fluorinate Flow Nat. Catal. 3, 478—-
4 Cu cell 0.75M KOH 1,600 1040 65 -0.89 487, (2020).
Cu NPs + .
. Flow Science 367, 661—
Nafg? on 7M KOH 1,550 930 60 -3.23 666, (2020).1
Cu(100)
gown % 7MKOH 580 388 67 071 NatCawl 3 98-
cell 106, (2020).
under CO;
Cufilmon Flow 3.5M KOH + Science 360, 783-
PTFE cell 5MKI 720 473 66 -0.67 787, (2018).%
Nat. Energy 7, 835-
Porous Cu MEA  Pure Water 900 420 46.6 3.54 843, (2022).2
Slim,
mgglf_i-e g rlt(a):ivs-t IMHPOs+ ) 00 372 31 4o  Science 372, 1074-
Cu ance 3MKCI ’ ' 1078, (2021).2
flow
cell
Flow Nat. Commun. 12,
CuO NS cell 1 M KHCO;s 700 231 33 794, (2021) 2*
cu12  TW iMKHCO, 322 232 72 083 Nawress7 S09-

cell 513, (2020).%
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Supplementary Table 2 | Cu—Cu atomic distance (R), coordination number (CN), and fitting

parameters in operando EXAFS analysis of CUNW and cAA-CuNW.

Condition Bonding R (A) CN % (A AE, (eV)
p-CuNW before
Cu-Cu 2.54 10.269 0.0087 5.36
CO2RR
p-CuNW during
Cu-Cu 2.54 11.557 0.0087 5.29
CO2RR
CAA-CuNW before
Cu-Cu 2.54 10.266 0.0088 5.20
CO2RR
CAA-CuNW during
Cu-Cu 2.54 11.706 0.0089 5.07

CO2RR
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Supplementary Table 3 | The Bader charges of adsorbates on Cu (100) and AA/Cu (100).
*OCCO are more reduced on AA/Cu (100) than on Cu (100).

Cu (100) AA/Cu (100)
*CO2 -1.16 € -1.07 e
*OCCO -1.39 ¢ -1.53 ¢

S7



Supplementary Table 4 | Gibbs free energy correction values of gaseous molecules and
adsorbates. For CO2 and Hy, partial pressures of 101,325 Pa were set, respectively. All values
of zero-point energy (ZPE), enthalpic (f C, dT), and entropic (-TAS) contributions are given

inev.
ZPE f C,dT -TAS
CO2(g) 0.304 0.098 -0.663
H2 (g) 0.291 0.065 -0.403
*COz2 0.283 0.101 -0.206
*COOH 0.604 0.102 -0.209
*CO 0.175 0.075 -0.132
*2CO 0.358 0.151 -0.303
*OCCO 0.366 0.135 -0.277
*H 0.122 0.013 -0.019
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