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Response to Reviewer Comments 

Title: Uncovering Associations between Pre-existing Conditions and COVID-19 Severity: A Polygenic 
Risk Score Approach Across Three Large Biobanks 

Authors: Lars G. Fritsche, Kisung Nam, Jiacong Du, Ritoban Kundu, Maxwell Salvatore, Xu Shi, 
Seunggeun Lee, Stephen Burgess, Bhramar Mukherjee 

Ref: PGENETICS-D-23-00893 

We would like to thank the editorial board and the reviewers for their constructive feedback on our 
resubmission and for giving us an opportunity to address the concerns through a revision. Following 
are itemized responses to the reviewers’ comments. The original comments are in italics, our 
responses are in blue, and the resulting manuscript additions are quoted in green. We hope you find 
the revised manuscript suitable for publication in the PLOS Genetics.  

Reviewer #1 

The authors used PRS based on COVID GWAS as a proxy of severity of COVID and performed 
pheWAS in EUR samples from 3 biobanks (UKBB, MGI, and All of US). They found significant 
association between the PRS and phenotypes related with obesity, metabolic disorders, and 
cardiovascular conditions and the signal mainly came from UKBB EUR samples. In addition to the 
analysis performed in EUR samples, the authors also performed pheWAS in non-EUR samples but 
the signals were either non-significant or negatively correlated with the findings in EUR samples. 

While the scholarly pursuit undertaken is undeniably of substantial pertinence, there exist prospects 
for further enhancement of its methodological robustness. 

We thank Reviewer #1 for their kind evaluation of our work. We appreciate the thoughtful comments 
that we believe have strengthened our revised manuscript. 

1.1. First, COVID GWAS contains UKBB EUR samples. The samples that consist of one third of the 
whole discovery GWAS sample size were then used as the target data in the pheWAS analysis, and 
most of the signals are from UKBB EUR samples. If the phenotype used in the discovery GWAS and 
the target data prediction are the same, the overfitting would be very severe for sure. Although the 
phenotype used in discovery GWAS and pheWAS are different, they still can be correlated and 
therefore cause overfitting pheWAS results. The authors should rule out the possibility that the 
signals from the UKBB EUR sample result from overfitting, especially when almost all the significant 
results are from the UKBB EUR samples. Since the pheWAS in EUR samples is the main findings of 
this project, all the following analysis and discussion would be questionable if validity of this result 
cannot be confirmed. One solution could be collaborating with COVID GWAS consortium and getting 
a GWAS without UKBB samples. 

We thank the reviewer for highlighting the importance of avoiding overfitting due to sample overlap. 
We were conscious of this potential issue from the outset and intentionally selected GWAS summary 
statistics that did not include UK Biobank samples for the PRS analysis of the UK Biobank cohort. To 
clarify this point, we have added the following sentence to the methods section (pp 10 – 11): “To 
mitigate the risk of overfitting and to ensure the robustness of our findings, PRSs for the UK Biobank 
cohort were specifically calculated using GWAS meta-analysis results that excluded UK Biobank 
samples (‘leave_23andme_and_UKBB’): “B1_ALL_leave_23andme_and_UKBB” [12,455 cases vs. 
61,144 controls]) and “B2_ALL_leave_23andme_and_UKBB” [40,929 cases vs. 1,924,400 controls]). 
In contrast, the PRS for the other two cohorts were based on GWAS that included UK Biobank 
samples.”  
 
1.2. Second, I agree with the authors that the inconsistency between EUR and non-EUR results can 
be caused by the small sample size of non-EUR data and low transferability across populations. I 
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would like to further point out that for traits that are influenced by many confounding factors, like 
getting COVID during the pandemic, the PRS transferability across populations can be even lower 
than traits mainly caused by biological or genetic factors . The COVID GWAS used in this study is 
mainly based on EUR samples. The PRS based on this GWAS is very likely to be heavily influenced 
by EUR-specific factors (not only LD structure, but also other confounding factors only existing in the 
EUR populations) and therefore cannot sufficiently represent the likelihood of getting COVID or the 
severity of COVID in non-EUR populations. It could be another reason for signals from the AFR and 
EUR samples being negatively correlated. 

We appreciate the reviewer’s insightful comments highlighting the potential limitations of PRS 
applicability across different populations. Considering this, we have amended the Discussion section 
(pp 25 – 26) to address these concerns more directly: 

“Secondly, we did not assess the predictive performance of the COVID-19 severity PRS as it is 
usually recommended for newly developed PRS [67] due to a lack of well-characterized COVID-19 
cases/severity and small sample sizes. Instead, we relied only on the discovery GWAS and the 
applied PRS method, i.e., any biases or confounding in the underlying GWAS may have also biased 
the resulting PRS. In particular, the predictive accuracy of PRS is likely diminished for non-European 
individuals due to the GWAS being based primarily on European samples, where EUR-specific 
environmental and socio-economic factors, in addition to genetic factors, may significantly influence 
COVID-19 severity. Thirdly, our approach did not work for non-European subsets, which could be due 
to their substantially smaller sample sizes and the well-established lack of transportability of PRS 
across diverse populations [68]. This underscores the need to establish larger, more diverse 
populations to expand the investigation of a COVID-19 severity PRS to a broader group of 
individuals. Finally, we did not account for selection bias in the three cohorts, which could explain 
some of the heterogeneity we observed in the meta-analysis. For example, MGI is a hospital-based 
cohort enriched for patients undergoing surgery [46], and UKB is a population-based cohort that was 
reported to have a “healthy volunteer” selection bias [69]. At the same time, All of Us has purposefully 
oversampled certain underrepresented subgroups [44,70]. While many of our PheWAS results align 
with previous reports, moving forward, it is imperative to include and analyze more representative 
samples of non-European populations and to apply ancestry aware PRS methods to improve the 
accuracy and applicability of PRS PheWAS in diverse ancestry groups.” 

1.3. I also agree with the authors that the correlation between the PRS and the actual severity of 
COVID could not be tested with the current data due to the existing poor phenotyping of COVID. 
Therefore, it would be great if the author could have other proxies of severity of COVID to support the 
findings based on the COVID PRS. 

We acknowledge the reviewer’s point regarding the limitation imposed by poor phenotyping of 
COVID-19 severity in our dataset. As suggested, we agree that the inclusion of alternative severity 
proxies could enrich the analysis. While our current dataset restricts us to hospitalization status, we 
advocate for future studies to encompass a more nuanced array of clinical endpoints, such as 
mechanical ventilation, ICU admission rates, and the presence of specific immune biomarkers. This 
recommendation has been added to the discussion section to guide subsequent research (p 25): 

“Future research should strive for a more standardized definition of COVID-19 severity, incorporating 
additional proxies such as mechanical ventilation requirements, ICU admissions, or specific immune 
biomarkers, to improve the evaluation of severity PRS models and facilitate cross-study 
comparisons.” 

In conclusion, while the authors' work addressed an important topic of the relationships between 
COVID severity PRS and various phenotypic traits, the study would greatly benefit from addressing 
the aforementioned concerns to fortify the overall robustness and reliability of its findings. 
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We thank the reviewer for their guidance and have addressed the points raised to enhance the 
integrity and clarity of our work.  
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Reviewer #2 

Report: Uncovering Associations between Pre-existing Conditions and COVID-19 Severity: A 
Polygenic Risk Score Approach Across Three Large Biobanks 

The main contribution of this paper is, Authors investigated the use of polygenic risk scores (PRS) as 
reliable proxies of COVID-19 severity across three large biobanks: the Michigan Genomics Initiative 
(MGI), UK Biobank (UKB), and NIH All of Us, to identify associations between pre-existing conditions 
and COVID-19 severity. By utilizing PRS as a proxy for COVID-19 severity, Authors identified known 
risk factors and novel associations between pre-existing clinical phenotypes and COVID-19 severity. 

We thank Reviewer #2 for their insightful feedback on our manuscript. Their suggestions have been 
instrumental in refining our study.  

2.1. Authors performed the analysis stratified by Biobanks due to varying sampling strategies in these 
Biobanks. It would be great to include the details in the paper such as how they are not comparable 
with each other. 

We agree that it’s important to clarify that the three biobanks we’ve analyzed recruit their participants 
in very different ways. The MGI is based in a hospital setting and tends to include individuals with 
specific health issues [PMID: 36819667]. The UK Biobank's participants, despite being randomly 
selected from the population, are generally healthier than the average person in the UK. This 
discrepancy is known and could lead to a lower rate of reported health issues [PMID: 28641372]. The 
All of Us Research Program uses a mix of open invitations and partnerships with healthcare provider 
organizations to ensure a diverse and representative set of participants [PMID: 31412182]. 

We added the following to the Discussion section (p 22): 

“In examining the distribution of diagnoses across various categories of diseases in unrelated 
European ancestry cohorts from hospital-based (MGI), population-based (UKB), and the All of Us 
cohorts, certain patterns emerge, as illustrated in Fig S14. Generally, the MGI cohort exhibits a 
higher proportion of affected individuals across all categories, reflective of its hospital-based nature 
[PMID: 36819667]. In contrast, the UKB data, representing a population-based sample, consistently 
reports lower diagnosis rates, especially for congenital anomalies [PMID: 28641372]. The All of Us 
cohort demonstrates intermediate values reflective of their recruitment, a mix of open invitations and 
partnerships with healthcare provider organizations [PMID: 31412182]. These observations highlight 
the variability in health condition prevalence across different cohort types and underscore the 
importance of considering the cohort source and recruitment strategies when interpreting disease 
frequency data.” 

2.2. Would it be possible to describe the phenotypic categories in each bank separately with the help 
of a plot? 

The reviewer raised an important point we have addressed by creating a new bar plot that compares 
the prevalence of phenotype categories across the three cohorts. This visualization can be found in 
Fig R2.1 (Fig S14 in the manuscript). It clearly shows the differences in disease prevalence 
discussed in 2.1 and visually supports the sentiment of the impact of recruitment strategies on the 
prevalence of health conditions. 

We added this new plot and referred to it in the new discussion section (see 2.1): 



 5 

 

Fig R2.1: Prevalence of Phenotype Categories in the three analytical datasets. The bar chart displays 
the pre-pandemic prevalence of 17 phenotype categories among unrelated individuals of European 
(EUR) ancestry within three biobanks: MGI (green, n = 47,257), UKB (blue, n = 425,787), and All of 
Us (orange, n = 47,401). 

 

2.3. In addition to the table, it would be great to show the association of phenotypes, PheWAS results 
with the help of plot such as Forest plot. 

Thank you for the suggestion. To complement the supplementary tables, we added forest plots of the 
significant associations of the meta-analysis to the supplementary material (Fig R2.2 and R2.3, Fig 
S7 and S8). 
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Fig R2.2: Forest plots of the BMI-unadjusted association between the PRS for COVID-19 severity and various 
pre-pandemic phenotypes. Each of the 27 panels (A – AA) represents a phenotype that reached phenome-
wide significance in the meta-analysis. Each panel is labeled with its description and phecode. For each 
phenotype, odds ratios (ORs) and 95% confidence intervals (CIs) are shown for the MGI, UKB, All of Us 
studies, and the overall meta-analysis. The ORs and 95% CIs are also numerically represented on the right 
side of each plot. The vertical dashed line represents an OR of 1. The I2 statistic, Q statistic, and P-value for 
heterogeneity are shown for the meta-analysis. 
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Fig R2.2 cont’d 
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Fig R2.2 cont’d 
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Fig R2.3: Forest plots of the BMI-adjusted association between the PRS for COVID-19 severity and various 
pre-pandemic phenotypes. Each of the 10 panels (A – J) represents a phenotype that reached phenome-wide 
significance in the meta-analysis adjusted for BMI. Each panel is labeled with its description and phecode. For 
each phenotype, odds ratios (ORs) and 95% confidence intervals (CIs) are shown for the MGI, UKB, All of Us 
studies, and the overall meta-analysis. The ORs and 95% CIs are also numerically represented on the right 
side of each plot. The vertical dashed line represents an OR of 1. The I2 statistic, Q statistic, and P-value for 
heterogeneity are shown for the meta-analysis.
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Fig R2.3 cont’d 

 

 
2.4. Please include the details of the summary statistics on COVID-19 severity such the details of the 
participants, summary of the analysis etc. 
 
We now added details to our method section to include information on participants and provided a 
concise summary of the underlying analysis for COVID-19 severity and susceptibility GWAS meta-
analysis (pp 10 – 11): 

“We downloaded the GWAS meta-analysis summary statistics on COVID-19 severity from the 
COVID-19 Host Genetics Initiative (COVID19-hg GWAS meta-analyses round 7; release date: April 8, 
2022; also see Web Resources). We considered summary statistics from two GWAS meta-analyses: 
(1) “B1_ALL”: hospitalized COVID-19 versus not hospitalized COVID-19 (“B1_ALL_leave_23andme” 
[16512 cases vs. 71321 controls] and (2) “B2_ALL”: hospitalized COVID-19 versus population 
controls (“B2_ALL_leave_23andme” [44,986 cases vs. 2,356,386 controls]. To mitigate the risk of 
overfitting and to ensure the robustness of our findings, PRSs for the UK Biobank cohort were 
specifically calculated using GWAS meta-analysis results that excluded UK Biobank samples 
(‘leave_23andme_and_UKBB’): “B1_ALL_leave_23andme_and_UKBB” [12,455 cases vs. 61,144 
controls]) and “B2_ALL_leave_23andme_and_UKBB” [40,929 cases vs. 1,924,400 controls]). In 
contrast, the PRS for the other two cohorts were based on GWAS that included UK Biobank samples. 
The underlying meta-analyses utilized a standard association model, including covariates for age, 
sex, the first 20 principal components (PCs), and study-specific technical covariates, excluding 
heritable risk factors and comorbidities. Each contributing cohort conducted GWAS under this 
framework, employing the SAIGE software [PMID: 30104761] to account for relatedness and case-
control imbalance. For a comprehensive account of the participant demographics and individual study 
contributions, see Table S1 in the supplementary material, which lists sample sizes and ancestry 
data for the “B1_ALL” meta-analysis." 

 

2.5. Even though PRS-CS is a well-known PRS development technique, it would be good to include 
short summary of the algorithm in the paper. 

We added a summary of the PRS-CS algorithm to the methods section (p 11): 

“We used the software package “PRS-CS” [37] to define PRS weights based on a Bayesian 
regression framework employing continuous shrinkage (CS) priors. Briefly, PRS-CS adjusts the SNPs 
‘effect sizes to account for their associations with the trait of interest and the local LD patterns, 
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thereby resulting in a PRS that more accurately reflects the complex genetic architecture of a trait. It 
does not require individual-level data but integrates GWAS summary statistics with a provided, 
precomputed, ancestry-specific LD reference panel for up to 1,117,425 common, non-ambiguous, 
autosomal SNPs based on samples of the UK Biobank (see Web Resources). We opted for PRS-CS 
because it has demonstrated superior performance to other PRS methods, likely attributable to its 
adaptable modeling assumptions [55].” 

 

2.6. Please include in the discussion section how this paper is different from similar papers in the 
literature such as if we use only the PRS with known loci. 

We have expanded our discussion to highlight the distinctiveness of our research within the literature 
(pp 24 – 25): 

“Our study's application of a comprehensive GWAS-derived PRS for PheWAS is novel in COVID-19, 
mirroring successful strategies in other genomic research areas [PMID: 32392212, 29779563, 
37663543]. Unlike most studies where COVID-19 risk SNPs have been used as weak instruments 
[PMID: 34655949], in our research, a PRS serves as a robust proxy for the severity of COVID-19. 
This is particularly significant given the availability of accurate PRS data for a large number of 
individuals, contrasting with the often poor quality or incompleteness of COVID-19 outcome data. By 
broadly capturing genetic variations related to COVID-19 outcomes, our PRS expands risk prediction 
capabilities beyond what is possible with analyses restricted to known loci like ACE2 and TMPRSS2. 
This agnostic approach aligns with the aims of initiatives such as the COVID-19 Host Genetics 
Initiative, which seeks to discover genetic factors impacting patient outcomes [PMID: 32393819], 
underscoring the value of wide-ranging genetic investigations in understanding disease risks and 
informing clinical decisions.” 
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Reviewer #3 

The manuscript explores the role of genetic factors in determining the severity of COVID-19 
outcomes, utilizing Polygenic Risk Scores (PRS) to predict COVID-19 severity. The authors analyzed 
genetic data from over half a million individuals across three large biobanks, aiming to identify 
individuals at high risk of severe illness due to COVID-19. By leveraging PRS, the study seeks to 
overcome challenges posed by data availability and quality, aiming to inform targeted interventions 
and prevention measures. The approach could potentially facilitate personalized healthcare, but I 
have few concerns: 

We thank Reviewer #3 for their expert feedback, which has been invaluable in elevating the clarity 
and rigor of our revised manuscript. 

3.1. Causal Inference: The authors aim to shed light on the shared genetic susceptibility of COVID-19 
severity and pre-existing conditions. However, establishing associations through PRS does not 
necessarily imply causality. The study would benefit from a Mendelian Randomization (MR) approach 
to infer causality and better inform intervention strategies. 

We appreciate the suggestion to employ a Mendelian Randomization (MR) approach to infer 
causality. In alignment with this recommendation, we have conducted supplementary MR analyses to 
explore the potential causal relationship between smoking behaviors and COVID-19 outcomes. 
Utilizing various statistical methods (MR Egger, Weighted Median, Inverse Variance Weighted, 
Simple Mode, Weighted Mode, and MR-PRESSO) and a robust set of instrumental variables 
(117/116 SNPs for smoking initiation, 82/83 SNPs for the number of cigarettes smoked per day), we 
have systematically assessed causation. The results indicate that there is no significant causal 
relationship between genetic predisposition to smoking initiation and the severity of COVID-19 
outcomes. Additionally, while the MR analyses provided a marginal indication of a genetic link 
between cigarette consumption and COVID-19 susceptibility, the evidence is not consistently strong 
across different MR methods. These findings have been integrated into the revised manuscript to 
clarify the limitations of causal interpretations derived from our original PRS findings. 

 

We added the follow-up analysis to the Discussion section (pp 21 – 22): 

“To follow up on our findings, we performed Mendelian Randomization (MR) analyses and applied a 
range of statistical methods, including MR Egger, Weighted Median, Inverse Variance Weighted 
(IVW), Simple Mode, and Weighted Mode, to assess the genetic evidence for a causal relationship 
between smoking-related traits and COVID-19 outcomes (Methods R3, Supplementary Methods). 
For both smoking initiation and cigarettes per day, the majority of MR analyses did not demonstrate 
significant causation with COVID-19 severity (B1) or susceptibility (B2), with p-values generally 
exceeding the nominal significance threshold, indicating no robust genetic causal effect. For the B2 
outcome, the IVW method yielded a marginally significant p-value (p=0.023) for the number of 
cigarettes smoked per day, a finding corroborated by the MR-PRESSO (p=0.025 pre-outlier 
correction; p=0.029 post-outlier correction; Fig R3.1 – R3.4 [Fig S10 - 14], Tables R3.1 – R3.4, 
[Table S20]). The observed effect sizes were relatively small, suggesting only weak evidence of 
causality between cigarette consumption and increased COVID-19 susceptibility.” 

 

The corresponding methods, tables and figures were added to the supplementary material as 
Supplementary Methods, Table S20 and Fig S10 – 14. 
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Methods R3 - Mendelian Randomization (MR) Analysis 
We employed Mendelian Randomization (MR), a statistical method that uses genetic variants as 
instrumental variables, to infer potential causal relationships between smoking-related traits and 
COVID-19 susceptibility. Genetic instruments for our exposures—smoking initiation and cigarettes 
per day—were sourced from genome-wide association study (GWAS) datasets for smoking initiation  
(https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.txt.gz) and for 
cigarettes per day 
(https://conservancy.umn.edu/bitstream/handle/11299/201564/CigarettesPerDay.txt.gz) [PMID: 
30643251]. We selected variants that reached genome-wide significance and ensured their 
independence through Linkage Disequilibrium (LD) clumping, utilizing an R^2 threshold of 0.1 within a 
250kb window. The outcome data for COVID-19 severity and COVID-19 susceptibility were retrieved 
from a leave-UKB-out dataset available (COVID-19 Host Genetics Initiative (COVID19-hg GWAS 
meta-analyses round 7; release date: April 8, 2022; https://storage.googleapis.com/covid19-hg-
public/freeze_7/results/20220403/leave_one_out/sumstats/COVID19_HGI_B1_ALL_leave_23andme
_and_UKBB_20220403_GRCh37.tsv.gz and https://storage.googleapis.com/covid19-hg-
public/freeze_7/results/20220403/leave_one_out/sumstats/COVID19_HGI_B2_ALL_leave_23andme
_and_UKBB_20220403_GRCh37.tsv.gz). Our MR analysis encompassed a suite of methods, 
including MR Egger regression, Weighted Median, Inverse Variance Weighted, Simple Mode, and 
Weighted Mode [PMID: 24114802, 27061298, 29040600, 28527048]. Additionally, the Mendelian 
Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) analysis was conducted to 
detect and correct for potential horizontal pleiotropy, a pivotal step in identifying any outliers that 
might influence MR estimates [PMID: 29967445]. 

  

https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.txt.gz
https://conservancy.umn.edu/bitstream/handle/11299/201564/CigarettesPerDay.txt.gz
https://storage.googleapis.com/covid19-hg-public/freeze_7/results/20220403/leave_one_out/sumstats/COVID19_HGI_B1_ALL_leave_23andme_and_UKBB_20220403_GRCh37.tsv.gz
https://storage.googleapis.com/covid19-hg-public/freeze_7/results/20220403/leave_one_out/sumstats/COVID19_HGI_B1_ALL_leave_23andme_and_UKBB_20220403_GRCh37.tsv.gz
https://storage.googleapis.com/covid19-hg-public/freeze_7/results/20220403/leave_one_out/sumstats/COVID19_HGI_B1_ALL_leave_23andme_and_UKBB_20220403_GRCh37.tsv.gz
https://storage.googleapis.com/covid19-hg-public/freeze_7/results/20220403/leave_one_out/sumstats/COVID19_HGI_B2_ALL_leave_23andme_and_UKBB_20220403_GRCh37.tsv.gz
https://storage.googleapis.com/covid19-hg-public/freeze_7/results/20220403/leave_one_out/sumstats/COVID19_HGI_B2_ALL_leave_23andme_and_UKBB_20220403_GRCh37.tsv.gz
https://storage.googleapis.com/covid19-hg-public/freeze_7/results/20220403/leave_one_out/sumstats/COVID19_HGI_B2_ALL_leave_23andme_and_UKBB_20220403_GRCh37.tsv.gz
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Fig R3.1 Scatter plot demonstrating the SNP effect of smoking initiation on COVID-19 severity (B1 
ALL). Each dot represents one of 117 SNPs, with the SNP effect on smoking initiation plotted on the 
x-axis and the SNP effect on COVID-19 severity depicted on the y-axis. The vertical and horizontal 
lines encompassing each dot correspond to the confidence intervals for the SNP effects. Mendelian 
Randomization (MR) estimates from different methods are illustrated as solid lines across the scatter 
plot: light blue for the Inverse Variance Weighted method, green for the Weighted Median method, 
blue for the MR Egger method, red for the Weighted Mode method, and light green for the Simple 
Mode method. The intersection of these lines provides an overall estimate of the causal effect of 
cigarettes smoked per day on COVID-19 severity. 
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Fig R3.2 Scatter plot demonstrating the SNP effect of cigarettes smoked per day on COVID-19 
severity (B1 ALL). Each dot represents one of 82 SNPs, with the SNP effect on cigarettes smoked 
per day plotted on the x-axis and the SNP effect on COVID-19 severity depicted on the y-axis. The 
vertical and horizontal lines encompassing each dot correspond to the confidence intervals for the 
SNP effects. Mendelian Randomization (MR) estimates from different methods are illustrated as solid 
lines across the scatter plot: light blue for the Inverse Variance Weighted method, green for the 
Weighted Median method, blue for the MR Egger method, red for the Weighted Mode method, and 
light green for the Simple Mode method. The intersection of these lines provides an overall estimate 
of the causal effect of cigarettes smoked per day on COVID-19 severity. 
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Fig R3.3 Scatter plot demonstrating the SNP effect of smoking initiation on COVID-19 susceptibility 
(B2 ALL). Each dot represents one of 116 SNPs, with the SNP effect on smoking initiation plotted on 
the x-axis and the SNP effect on COVID-19 severity depicted on the y-axis. The vertical and 
horizontal lines encompassing each dot correspond to the confidence intervals for the SNP effects. 
Mendelian Randomization (MR) estimates from different methods are illustrated as solid lines across 
the scatter plot: light blue for the Inverse Variance Weighted method, green for the Weighted Median 
method, blue for the MR Egger method, red for the Weighted Mode method, and light green for the 
Simple Mode method. The intersection of these lines provides an overall estimate of the causal effect 
of cigarettes smoked per day on COVID-19 severity. 

 

  



 17 

Fig R3.4 Scatter plot demonstrating the SNP effect of cigarettes smoked per day on COVID-19 
susceptibility (B2 ALL). Each dot represents one of 83 SNPs, with the SNP effect on cigarettes 
smoked per day plotted on the x-axis and the SNP effect on COVID-19 severity depicted on the y-
axis. The vertical and horizontal lines encompassing each dot correspond to the confidence intervals 
for the SNP effects. Mendelian Randomization (MR) estimates from different methods are illustrated 
as solid lines across the scatter plot: light blue for the Inverse Variance Weighted method, green for 
the Weighted Median method, blue for the MR Egger method, red for the Weighted Mode method, 
and light green for the Simple Mode method. The intersection of these lines provides an overall 
estimate of the causal effect of cigarettes smoked per day on COVID-19 severity. 

 

 

  



 18 

Table R3.1 Mendelian randomization analysis for the effect of smoking initiation on COVID-19 
severity (117 SNPs). MR-PRESSO detected no outlier. 

Method/Analysis Beta Standard Error P-value 

MR Egger -0.11 0.51 0.82 

Weighted median 0.07 0.15 0.63 

Inverse variance weighted 0.04 0.10 0.69 

Simple mode 0.28 0.43 0.51 

Weighted mode 0.22 0.44 0.62 

MR-PRESSO Raw 0.06 0.10 0.54 

 

Table R3.2 Mendelian randomization analysis for the effect of cigarettes consumed per day on 
COVID-19 severity (82 SNPs). MR-PRESSO detected no outlier. 

Method/Analysis Beta Standard Error P-value 

MR Egger 0.05 0.11 0.66 

Weighted median -0.01 0.09 0.93 

Inverse variance weighted -0.06 0.05 0.25 

Simple mode -0.11 0.18 0.53 

Weighted mode -0.04 0.10 0.73 

MR-PRESSO Raw -0.07 0.05 0.20 

 

Table R3.3 Mendelian randomization analysis for the effect of smoking initiation on COVID-19 
susceptibility (116 SNPs). MR-PRESSO detected no outlier. 

Method/Analysis Beta Standard Error P-value 

MR Egger 0.17 0.22 0.43 

Weighted median 0.09 0.06 0.13 

Inverse variance weighted 0.09 0.04 0.03 

Simple mode 0.10 0.16 0.54 

Weighted mode 0.13 0.14 0.37 

MR-PRESSO Raw 0.08 0.04 0.05 

 

Table R3.4 Mendelian randomization analysis for the effect of cigarettes consumed per day on 
COVID-19 susceptibility (83 SNPs). MR-PRESSO detected one outlier. 

Method/Analysis Beta Standard Error P-value 

MR Egger 0.04 0.05 0.46 

Weighted median 0.06 0.03 0.09 

Inverse variance weighted 0.06 0.03 0.02 

Simple mode 0.06 0.07 0.36 

Weighted mode 0.06 0.04 0.11 

MR-PRESSO Raw 0.06 0.03 0.03 

MR-PRESSO Outlier-corrected 0.05 0.02 0.03 
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3.2. PRS Generation: The study exclusively utilized PRS-CS for generating PRS, overlooking the 
PRS-CSX method which is known to be more suitable for multiple ancestries. This choice might limit 
the generalizability of the findings across diverse populations. 

We thank the reviewer for their input on our choice of PRS generation method. We chose PRS-CS 
over PRS-CSX due to the homogeneous European ancestry of our cohorts, where the benefits of 
PRS-CSx are less pronounced. The absence of diverse GWAS data on COVID-19 severity and 
susceptibility limits the utility of PRS-CSx in this context. We have added to the discussion (pp 25 – 
26) the limitation of our approach and the need for inclusive genetic research to improve the 
generalizability of PRS findings across ancestries (see response R1.2): 

“This underscores the need to establish larger, more diverse populations, particularly by including 
more representative non-European samples and applying ancestry-aware PRS methods, thereby 
enhancing the accuracy and broader applicability of COVID-19 severity PRS investigations across 
diverse ethnic groups.” 

3.3. COVID Severity PRS Link with Tobacco Use Disorder: The manuscript highlighted a significant 
association between COVID-19 severity PRS and tobacco use disorder in both B1_ALL and B2_ALL 
analyses. This finding raises questions regarding the causal relationship between the two, warranting 
further investigation through MR to understand the underlying causality. 

Given the insights from our MR analyses, we have expanded our discussion to address the 
association between COVID-19 severity PRS and tobacco use disorder. Our MR findings consistently 
showed no significant causal link between smoking initiation and COVID-19 severity. For COVID-19 
susceptibility, the evidence of a potential causal link with the number of cigarettes smoked per day is 
weak and inconsistent across MR methods. The borderline significant results from the Inverse 
Variance Weighted method and MR-PRESSO are acknowledged; however, they do not provide 
compelling evidence for a strong causal relationship. This nuanced interpretation of the results 
underscores the complexity of the relationship between tobacco use and COVID-19 outcomes, which 
we discuss in our response to comment R3.1 above. 

3.4. The study presents an approach to understanding the genetic predispositions to COVID-19 
severity, offering valuable insights into managing risks associated with the disease. However, it is 
imperative to address the limitations and to substantiate the findings through causal inference studies 
to enhance the robustness and applicability of the approach in real-world settings. 

We concur with the importance of acknowledging the study's limitations and the need for 
substantiating findings through causal inference studies. The MR analyses added to the 
supplementary materials serve to address this concern partially. While the MR approach strengthens 
the causal inferences that can be drawn from our study, we recognize that these findings are 
inconclusive and require follow-up with well-powered studies. 

We added the following to our paragraph on the MR analysis in the Discussion (p 22): 
“While the MR approach strengthens the causal inferences that can be drawn from our study, we 
recognize that these findings are inconclusive and require follow-up with well-powered studies to 
understand the implications of our results fully.” 


